Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i

Size: px
Start display at page:

Download "Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i"

Transcription

1 <latexit sha_base64"lw4qvmxz6lhq39hnu2kq/f65xgq">aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq</latexit> <latexit sha_base64"lw4qvmxz6lhq39hnu2kq/f65xgq">aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq</latexit> <latexit sha_base64"lw4qvmxz6lhq39hnu2kq/f65xgq">aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq</latexit> <latexit sha_base64"f3om9jilwrz9l9gprolwmw6bu8">aaacw3icbzhfa9swemcvdu77ffape7flaw6wojdbmhhclguoc9pdanhdgzsnj2rgtjsofripyx7s/z463f2jykkgt7kdiq8/dsbq7rblcybd87hg7dx42t73h3y9nnzf739g5frtwyqmswuvsmoacelrmhrwe2lgzazghe2/9d6x99bg67kvxukjs0kdznjkjdas8apxzwnrexgbwn4va8ps2njrdnisdreqoabqhprmqmt9u3eubffmhcztc6uujvkedrrb4ngaf59ea5fn6xtmo53xvfusboeiuxqyyzhugfiqubobdtdudzqutanbuycllqek9hl/y3/xpgpnyvtlkr/se9mwfoasygzflsnjltxwv/55vumj8llsuqrpbs9vbecxv3zbtn3indmxccco0d3/2yy6bqfrcyry7srybuv2ntacqamseuf3qkmdhraknlzvmwhvlizsfupu/tafvirfxzn8zfwexylaezv78r23sjc7cbff9hj4hwqxl/rx75fz2spvckvysejysm5jj/jkesekr/kf/ln/nifpofpdehxmed85jsmnf8bdam4zw</latexit> second-order active filters Building up higher-order active filters from first-order filters is OK, but limiting, because we can never have Q P > 0.5 by using first-order building blocks. To get more flexibility we need slightly different approaches. Here we describe three types of second-order active filter circuits that can achieve higher Q P. Two-integrator loop biquad Start with the transfer function for a second-order high-pass T hp V hp V i G o and re-arrange: s 2 s 2 ω o Q P s ω 2 o V hp ω o Q P s ω2 o s 2 G o V i The left-hand side is essentially a summation of V o, a scaled version of the integral of V o, and a scaled version of the second integral of V o. This way of writing may seem a bit odd, but this is the key observation. EE 230 active second-order filters

2 <latexit sha_base64"z6rkagnfaukyyxzminpsw9tf4">aaac93icfzhfitnafmyn8d9a/2xx8urqybg6sfvsiqigskcwxnjrbdsunn0wmz6kqyczyezetg55an/ck/hwx/epfaunbzvtd/fa4on3vjmtov9scg4wdh95/rxrn27e2rnduhp33v3d5t6dovglzjbgsih9mladgksyiecbp4ugmiccrsn8xd0ffqztujkfcfhajkez5clnfb2kmhsz0vvsqgxbajnm9mup/2ofbdmg/cwyjvlnli5zdrifavpyn7qpenasypjr85z7r/dd5qvizivshmsklovuwrtiuvrxnjekpoqvouhkghoz7oyftizvyjmaqhgvbgrk5jsdszos5mamdrmzknjuydrilxafxgbjl56wnddmksfomvocmeeda/qjutmx00sl0wjinnqorquaaqgdicycg0mxcijyjr3/xqwgxw7qrftxi3l2qwwjzfy8jypqawrqweo6yogsccclm/yvapcdll9re7etvvvczr3pwsw4ehguaf4fb8nf0de/gux6hved8ktf62jntmdshj8oy0sze8jefkamtawhkt/fiei99b/43/zv/ovffwzx6sjfj//geeuftx</latexit> V hp G o V i ω o V hp Q P s ω 2 o V hp s 2 V o /s integral of V o V o /s 2 integral of V o /s second integral of V o We can create the high-pass output by summing the input, the integral of the output and the second integral of the output, with appropriate scaling. We have seen summing-type amps and integrating amps, so it appears that we might be able make this work. C v i (t) V i R v o (t) V o v i (t) dt V i s EE 230 active second-order filters 2

3 <latexit sha_base64"scj3qczzw7vki0xi5jmrivn7s">aaacq3icbvfnixnbeo2mx2v8yurry2aqsrcgmuvqwywffftgicomwcyeoaztkztp6r66a2rdm7/gxnvt/4be5iim6wfdy9xr6q6xmwlfjai6e8ruhx7zt7b/fbdx4evykc/h0zhvloa65ltpczmbovdeitxsjqirszxnc3pm/z4oxortlqgvyntauzk5iidesrtni7sojgyu88mrswxdht6kskncbfx7ut5vcgjc3keldxounnw7uj9yr3gtxfntzngbpywuczdsvcltejvg7iaospg4mcs6xbievxrl4euy48vbbgxbqnvw4uvpzmjcg/8uhwv2eowdwtpvkxllabsw7mg/f9uulhduqekitcxted8kqgpmpgthamdhkskwagh/gvifegfiw7szzd27rl6zibuqlob6hnuspcsy4emlvibqzvzuanlfrul/to/x8l0pyi7ihn9ukscfdely6jq27u8r7xt/ewxpu/60zfx3bp325scsofsbeuxmlhzwtg7ah4wh8lsd9bp7givgxjrhq0tjxp2e4ebf5cden</latexit> <latexit sha_base64"omy62eirdfyfrzjqjq9vtafpuje">aaac5hicbvhfi9naen7ex2fvj4hisqg/okhrbbq8okuidd/ww7uftw2y7szdunmf3clxz8if4jl76fwnmw7aefxbbxyvubmzubbco//dtw7d/df3dwshv49ojxk/bx07hos8vgxhkrq8uyahbcwgg5crgsfnasfjcjl4nanyb0jyxx3fvwcyjqeqjzxqtfbwvxle/fjbgv4ekpws8oxsvjooyetmylbt8dgktk2v0dxzjwjxqwa8vv/js0simov0prup3/hv4yboqic0myyonuk4zmzguqmqnbtwc9wzqhczgrurbduufc2pclmlzq0az0z6wvv3kvlzl0kv/zj9nbs7qxdm6xwwydwf3tvq8n/atmtk7cxwwzqikm0ajaxwmpfqbxtzrochwflamel2rx5bulsbtdfz6rkuxqdbmsrcl5kzfa47rmbrvnssgjcjxnztmsev9qgy/0fbejxf/cbtjvr0cy2eflqay5nb3py9rbc7h0w6vfe9fwvrzvn75ubhjdn5axpkoc8iefkexmsewhkjm6h86rm7rf3r/uz43vdzqcqr3f9/afwh7c4</latexit> V o G o V i ω o V o Q p s ω 2 o V o s 2 Try building up a circuit. Start with V o applied to two successive integrating circuits. C C R V R V 2 V hp V V 2 V hp s V s V hp () 2 s 2 We see a slight issue with signs in the equation the first and second integral terms have the same sign (negative), but V and V 2 from the integrator circuits have opposite signs. EE 230 active second-order filters 3

4 We could try to fix the sign problem using an extra inverter, which require one more op amp. Or we can be clever with the implementation for the summing amp. Consider the following circuit (which may have seen this before.): R c R f v c v b R b v o v a R a It is straight-forward to show that v o R f R c R v a a R b R f R c R f R v b b R R c b v c G a v a G b v b G c v c This is exactly what is needed, a three-input circuit that adds two of inputs and subtracts a third. EE 230 active second-order filters 4

5 Putting it all together: Rc Rf Rb Vi C R Vhp V R V2 Ra Vhp Gb Vi V where the G s are defined on the previous page. V2 <latexit sha_base64"hmhewxsiwun4wiqipgbunfog">aaacwxicbzflixnbemc742unr6wevqwgiytrmfkefrqwxighdxhnzcejtu2njmnt0z08igir/mjljq34le7irdriwnpz5aurki2udbrfpvbjzu3bt85unud//bw0edw8ejm6uvobjggxuegkmlny5ikslzwilkqcjxuvpq8ff0tpp9fdafzjlyafljgwqr7zzjehvsthmfwbucmrf0s6ej/gacjle74yceh43iqvbwk/kqjeacb9aothddfvbndtrmhp2ynp3mjyhwcqxotekoofkflqrquglps4cfibuscoklhhzdrnpovwmfezipm2p90xru6dwmcnlnnnqi3ogpdv3fb/vklj2ztzjxvrempx2sgrvugmrfczzqvfqwrtbqgr/v9dsqqlgvzcg22tqsujumqijlyea4rxvdkauphvioutdtvunq/mla/moxs7z3ihyr/qp3ha4u4oros2/anipcxf2mtvpv9hnv93td7ubhlcn7bnrszi9zqfsixuyerpsb/vffrm/wvnwlsgcexkathy5tjdguovubfmg</latexit> Vhp Gb Vi C Vhp s (s) 2 Vhp <latexit sha_base64"oa5w0spvv0xd8z65zscsoaytjo">aaac7nicbzhfihmxfmyz47rtpv9mabwsj0ys3trvbbyafcvfcilrzd6nqhk55pqzpjmjyrlwhat/bkvpwvfagfw0x3lg23bwifvckscjbfcybj9vxr2/cvlv3u3fn/6982dbyojcsgyjrqiyhbgsxmesoas5ydtrlbiytza/yx9bg67kjzlmm3oxpkum4ooxcvo9gu8jiskglbrjrpf3j4th8no5hvwudrqimz/ziwpz2yl2f/3nyawvntfd7n493lstnvtgjxfcfdategdg/jag0czxyomjdjbjzl0wxynlmrktedziaodowvlooejk5jmykpaoyeobileivdkdiskaxkyznjfllicvmkc7mtlfbxd6kwptvhkzfwisxvyufijafvrzd2zca0oxcoiyzdba7agblrotrnxy7p3dmzjj/a8kjypgwxrgeeoqymgmkncvryayrceqx6h2/irff8tlhc/shmo/6gmb5ecm34vbr3r78vte87rzuhb9fte7edvzi0/iu9imxfksnjd3zecghje/3r73yhvsf/g/z/8nxepvlfxpcqb4f/6c2ba8hg</latexit> Vhp Thp Gb Vi s2 <latexit sha_base64"wqc6j5hlhjilfecaedvn97lh9u">aaadbhicbzhnattaemdx6lfqfsrpj72imikdjzfdos00ehdbpftghjgowk5yruf24twu2b2vgkfz36bv0vppte/rdmhk0ub2mnalspvp//9milswq36/l/hvxf/wcnhe48bt54e77fphhxyvsmgyyzekpfrtsa4blgyfhazaqbjpgasbqalprkg2jdltzhdqqzhc4kjzmjafhy/hee5su0cate2dab5oslhp0esaysv7hdkizlohkgeybmyusbobrcvfunaqsgsoqfvnzokg9pnonwzfxdwedwrp2imy2/j6/ce920qtfqljfb44k2cuwjaaaomdonispxo5ea0gsxastmklmbqu0ktmln808dce23j3iuvtkuit6e3htlnjfknkamkc7nrlbcu7rphvg7wc5lmifivl0uz8jd5zxt8ozca0oxtgllmtu3emxjbwfqzmzrls3zkbctnrxmermzwghcrxcts00ganlsvxvpqlcdl2qa2zpk3n7i9wnn3ppdgdaodv0y3ahhff7fxt5pxce99z//ypnx6oz7jhnlfdkmb9mlbckokreze0boydoxm6392f7i/3dxqorxnjdkk989/gfl5/a</latexit> EE 230 s2 s ω2o ()2 () ωo Qp 2 active second-order filters 5

6 But, wait There s more. V is the integral of Vhp V <latexit sha_base64"scj3qczzw7vki0xi5jmrivn7s">aaacq3icbvfnixnbeo2mx2v8yurry2aqsrcgmuvqwywffftgicomwcyeoaztkztp6r66a2rdm7/gxnvt/4be5iim6wfdy9xr6q6xmwlfjai6e8ruhx7zt7b/fbdx4evykc/h0zhvloa65ltpczmbovdeitxsjqirszxnc3pm/z4oxortlqgvyntauzk5iidesrtni7sojgyu88mrswxdht6kskncbfx7ut5vcgjc3keldxounnw7uj9yr3gtxfntzngbpywuczdsvcltejvg7iaospg4mcs6xbievxrl4euy48vbbgxbqnvw4uvpzmjcg/8uhwv2eowdwtpvkxllabsw7mg/f9uulhduqekitcxted8kqgpmpgthamdhkskwagh/gvifegfiw7szzd27rl6zibuqlob6hnuspcsy4emlvibqzvzuanlfrul/to/x8l0pyi7ihn9ukscfdely6jq27u8r7xt/ewxpu/60zfx3bp325scsofsbeuxmlhzwtg7ah4wh8lsd9bp7givgxjrhq0tjxp2e4ebf5cden</latexit> Vhp s Gb s s2 s Gb s2 ()2 <latexit sha_base64"ntioqtacrbrh5ejccpuafglpjaq">aaaczhicbzfdi9nafian8wuth9vvs2creiya0mkoilcqov6ivgxaxeatkwmj3qystmnmiwibfmvef8fb/qfopha2xq8kvdzvma/3hjnggj3vv8u5dfvo3xsh99sphj56fng5evjnp7limggpsnvfsduilmgchavczapoegqyhpth6u/g9i8lv9xm8e8osvjy84owrtsln6/hc3dgeupbrgiznr/vzdnw0ixri8gj4gaghumvrsygoux63xwj9cyvayuu982hilqveso2v7xl3hri7qkqfhyqdunoptlcuhkgmo9870m54yq5exa0q5ydrllg7qcmzwsjqdnpgqicf9yerlxquwn0a3o9rwgjlpvk9b2jhtxet8r4f8wy7xm7nhmssrjkspinphyuqwqborv8bqbk2gthf7v5etqu0gbfy7pr7z8b2xmiuc8lzgseefxijilqoarpkzfkqm6bcdkmv9juv/leb77iqe8/lebpsafsjq/tu0o/p3gb4rjop2735t78zkgdwjz0mpoqosmfyzhmccm/yw/yh/xpju5y5yibnvazzqnzkech/8azclkg</latexit> s s ()2 <latexit sha_base64"w7uskgp/igjur/wp6g3chd6d2pm">aaac2nicbzfna9taeizx6lfqfsrpj72imojduiobqhtoiebceujbdxudsbszwo/sxauv2b2fmgvppzve8t66z/psstbhtjpwc4vzzuzhznjibjgmpzjxfu3rv/yo9h49hjj0/3mwfpvum8vayglbe5ukiobseldjgjgitcac0saank0a/80ruozxp5fzcfxbmdsz5yrtghsvn8eb2lijjznkms26in2dthnds4jrzvtxw6mveusqgxfa2fskmohptpgzs0677xfe5c9ayfnvtgjvxhcftategdg8mbn4qmosszkmgexrcdqumdvximqdbieonbwuloooxk5jmogozaosnxjkyddjcusuxwngbfyzmwizxgvmfod66vg/7xxiem72hbzlaisrs9ksxfghlq9dqzcauoxdiiyxdbazanrjpojrfyrsatjwt8xktnlp7bdbv6jog5qwixywf3kdkhwo5t5brvzkt7yc9fhnyjwuwclwxu5dtek7m7jb4thr3pscb8ar2eyr6ql6rnuuqtoswfyiamcso/yv/p83w/9r/7p/yf6tfq2uek63wf/0djklptq</latexit> sha_base64"f6dckzioewfpv5guzso2loyamga">aaacxnicbzflswmxemft9vflxhsd4tfujcy9alebau9ekhgrvblmcoa2g2wzjzavn6bbz66fwsfgaztuifdgt/gyyzzcrwliqfbw8pewvbxjelmvnf7z7e09wxajg2ujbavirguqqfdrik8suxcheosrn2b3j/8x2nf90tdbdgw9jbqcazlu75qqqtuym78oahnryrprlavn0jznezfxikrvqqudsdq4jlhbvfu4sj8d70sowkghhtoxv3ofkphyn8rjbukflhdpphbrgwzh0kthqm5335fa/xyul7mu7eypjcrx/ldrnpu/az4f2i2gqkxw6adwi6vp38aaj7eamsrj3anymumyqaoexhouukdmucgrypbqhyqra7s7vbppzy5fzkvvqe2boh3hl2zxd7poxrxej2vzef0xjvhpvdr4dts4o2be7ytv2wa7zpauzbumsyh/ss/dt7xn7vwfzcpplldmmeyc/waw8zw</latexit> sha_base64"bxiwq0y/xffhukxpss9tu/qmw90">aaacz3icbzhnb9mwgmad8dxkybxlhetuqenku0focahfwkcojsj0klnvjnom9aqy0f2g7tk8okt4r/jxn/ceacf0trxsrye/z43dvwwsw4wtje4t37j94ojgcevj4dnnr3jw29gzrbicmh9fvgdqguyyqcbvxvgmizcrhni0hjj7dnlzjr7isic3ptpkcm4oetdvi/euk0jtzi2nm/ezdwnkfa7zqloxa2ecndf9s0ragzdk9f8nsdtc7bfznl3vg433nzu2tjuvkroruhtxanzhb6hiytxlg6bilmugmmvbjcfknnalwraq2ufg2odoyeclpcsaq7g46junevqo7zfeaevvf2fpacyyzhxnsxfu9r0g/sbfi8ts2xvy0g2fqiohyrqqizczrzdqzf0gvknpf/gre59znbn8tolauzk2a7l7e3term5bbhbd6gph4awjjy2bzkdqnwuuqxf68hnc8hlhc/65mc8vnmdi9fzvy0fr2x/8xthqd994y8xosavyevsit3yhnwgn8iqjagjv8nfiajcma/hd/xmyxbjrznzkfcx/8aemzodq</latexit> sha_base64"ijlgdiglx8j7zoztgoba8jhswcu">aaac2nicbzfnixnbeiz7xq8fmx6guwcfl2dzncvfbyilaepmtfmixmbojpquma9hqp3twyyeitj/hql/pmp/fotzkbtdacbl6et6o/qpjccinhmfzb92c/fewf3wg4ephj9phz79alspgyyzekpfjnsa4blgyfharagb5omasbicv7kg2jdlfycqwlinm4lzzij6ncsld6/ijjnwxu2s6zbqiyqnddtg6fnqgluzy8fxjcdd7q4vat5f4je53mjmq03ebdxlgfwztqdsbeui7gpo3okczgs0nveqwkltliziiam2hbcyvcizanuksgmfzus6h6mtkuzg4mrdfhu8dcqnmqxdkhis6fwkiubgrplezeyuf2bfqh/vgmj2zu44rioestbxjsvikavd0ouq6bovg5qznm7q0bwdxgxst2lllfxybbocnvupovmp7fgbv6ipgwywpzwv6pgvlhrsrxf7ryadz/woudz8qk2t840wplowm7ljak/3/ibyjzove2fn8po6btmjgfkoxlbuqrpxpnt8pgmyjgw8pv89tzp92p/u//d/7lj9b2m5hnzcf/xpyni6uk</latexit> V is simply a band-pass function!! ωo Qp ω2o Go <latexit sha_base64"ifelqncyhy/ooclcmovybe4vi6o">aaacgnicbvfdsxtbfj2swm20bfx482vpejtasfsfw7agkmqhhiwrkjccndynw6znvlm7hbtjf/f/qpmcjrfm7iuzdudnxtnulgkgn8vb2l55d3q2vvqsahj59qms3vuegy5trqctdbalungmqrjvm4oqxhi78ei89hdo7fcq2saz9hpyaheijiqo6latjpsp7/2ego8aebxxh0wiwrobfmzx8lwhmos5moskpzfqpe9rezdgbtcmmuoxyehwiznql7eyar/belsokkjr9ovpbn/zzedp9hgpuxlh2duubq7tinxwqkdxfsx5p83pr7vxaqywkvf26u5nin7zdaanhkjmcowdccderz/asufosbku09oz8rlnivtcca4humbkuicdjrrikqhvblw0qdrjlx6hxb2s378qq0h28kp0hjyn4ujgvwzvnsjcfp4tah9r/ggev47rz6ezm6yxxfaz7boqnbazdslarm048me2f/26k4x7zqo3oo9sqzng02z97pexc2xge</latexit> Gb () 2 And V2 is the integral of V. V2 <latexit sha_base64"gk8ln3sb5hacsziwvcdhx2b0">aaacqhicbvfna9taef2rx4n7eac59ijqcg5njrqkbuicgrtsqw9oqo0uy4jvemqvxu2k3vgiwfrf8mtyba79nnzdsrobxyeb97m7lxjcsenbsg/mvfsyuxrzy266/fvh23dh3zoq0ay6tamllxnqqhajxeqo4dlxqlneqdznlb5/hw5x8jbmchhkds55yrtfrceowf9haljsmujz8qr3j79eqabmhqw9oc0xubehq6lsmjjunin2ma//kqixoemw0ym3a/opfirguqmqdgdmmhxaklgzgsu9agwkfm2pwmyochpbmzo50uw/ifhjpxuafcknp2cywlmtgzlhhkjolerocq8n5qyhp96hlmi8qjfsmsgvho/irx/wr8bqzbygthp3v59nqlmfna8rua9c2arm9jrqnkmrrdgcrxgtrpadpkzbwv7vdhdipva36vxzrbx9znhu/qutemqay7j7st0pwnxjn4lufvughzx/bz4clwyqt6qj6rfqvknnjcfpeo6hjebckvkjvvs3fu9b0/c6lxw9bskjxwknvxytxr</latexit> V s Gb G a s2 ()2 s ()2 <latexit sha_base64"ydv7tdgcijm/konvgafnsbca">aaac53icbzhpattaemzxatokbps46bexuvnwsdcykasfbaiupice3fdxacsxq9xi3nqk3zhiubohxoqvfaxeuqrdgxlydsgx4fd/sn5kwfdyg7/93cdpd57t7j2vvxj5avgfnj03ahmmgzjzscakbwsx0kaoamqdtuibg3dwlfxbhwjdlfyg8xrgczihnng0ajxfx4rxjqy/gocfnajrcaihuu2umirbwjibf53a80nuzy7rrfbm47j0uzrzufpxhnkwwe7rxg/4lx8r3sokxsunukvvfogmgkixlagjtfbjhm0/xvfonximokgfmygushmdwncmkizgrvmir4x3zplii5w2s6k3oosvou2mmsehdsyup2zbkfj2jddmmo5zlnecrbxhrnwkpllq33iq6bozjbhdln7vs9nqw2m2jhsnhl4uwu2mzp8vtmcqyi2kic7ftcwgqrksf5x3qlbzlwqf7xklb37ie47m9espnl5pgnnxmrdmr9hebvzdpn9pfwz5x983lsrmeyrnqtazi2osox5dppkt5h5jz4w7b4p96f7y/29tlpovfoabit75z/r6e2s</latexit> V2 is simply a low-pass function!! Gb s2 ()2 s ()2 <latexit sha_base64"n6ahzx5tzxgmosprvwli4mpkmdm">aaac53icfzhfahnbfmznv6sapvqptelquhpczsgqkbqifavvijfmei2dbozz5mxszplzflpgpydvbjvfsyvfbvnkw00qxhghspv878osfobtcyhr89/87dvxv39x80hj56fhdyphryxahcmxgyjzsjkkbwsumkaoaywdzwibo3jrr/trn9cgk/kzlzlmmjqtpowmokpt5vjdlgrk7pk0lt3gyoglctdso7dsrgjsbf/0i8nczy6pwlnve9kzxfgglpl/pl7ten/6fnlthjxfcdvpkmldgyhnmjkfgsyeaie9syctfmcwkprs4eli2omjbttqazgltu0gzmxk56vayvhemcvgm3jayrerpc0syyzry7z0zxbnacv5lgxeyvp5ylvmcqblrwkhalrbfag4royiqvlknpcvtvgco6g24sw7eszs6bbf3exhesm5xadhv4jzo6aaazymxkzugwsvqg25w8/z7pojrtj5v4eq4bfsc3va03iu5u428nw7ntsf89lj9raeyt55rp6tnumsvsmfcadmism/ph2vapv0p/qf/d/d/xvtra56srfb//qxbi2w</latexit> ωo 2 ωo 2 Qp () Gb Go <latexit sha_base64"kiweafgxcxwothdtzedrpvigxem">aaacgxicbvfdsxtbfj2s0aaxajspfvkabcssnijuuufoix3oqwrgcely7k7uxigzm8vmxtess22p/uf9pzmeisvtdd4dzvc6nucktb8lfkbzq3tz5upla3p3s7tx2d6szgzhltdsm/sileqhseucjn6nbigjjpaiyffc33tey4vwtzrnczjawilyccbhhbv6o9txg9gaz9thnhmfn4wrtam5ua/ba0falcfdcl9um8w0jxlubgxyg2/faq0zmgq4bjnufmmqugth2hvsqob3m8ln/qfjrn6sjxuk/dm7njfdyu00ivxkavrg30fz6vnf8psyfsjncxv8bxzn0sfuffp5igoqkpw4an8ln6vmhcfkqe2yly7x2inxlk/wpu4lrea6xkp7igcmtugjcfvvlhzbocax/065ewr/9egnb9urx4txpg8tj6xyqjtfa34t6b72rxobr/pgjdxi5tu2gf2hr2xfvvgbthpmfdxtmupbmx9scre8de4j2hnqlru6drzh3qphcxm</latexit> All three filters achieved with one circuit. Pretty nifty. EE 230 active second-order filters 6

7 Interesting observation: An network must always have poles on the negative real axis no complex conjugates, so no Q P > 0.5. However, it can have complex conjugate zeroes. If we use the network in the feedback path of a closed-loop circuit, the zeroes of the bare network become the poles of the closed-loop transfer function.!!! To see this: V A T V B T V B V A N D G A A T V B T V A ( network turned around.) If A G T D N As claimed! EE 230 active second-order filters 7

8 So we need networks that have complex-conjugate zeroes. Two that do are the bridged-t networks. R 2 C 2 C C 2 V x R R 2 R C Note that because these are symmetric, it doesn t matter which side is input and which is output it s the same either way. EE 230 active second-order filters 8

9 Transfer function for a bridged-t circuit. R 2 As usual, start with node-voltage: sc (V i V x ) V x R sc 2 (V x V o ) sc 2 (V x V o ) V o V i R 2 V i C C 2 V x R V o Re-arranging each (sr C ) V i ( sr C sr C 2 ) V x (sr C 2 ) V o V x sr 2C 2 sr 2 C 2 V o sr 2 C 2 V i Substitute the second into the first to eliminating V x. Then carefully rearrange to get the transfer function in standard form. V o V i s 2 s R 2 C 2 R 2 C R C R 2 C 2 s 2 s R C R 2 C 2 R 2 C R C R 2 C 2 EE 230 active second-order filters 9

10 V o V i s 2 s R 2 C 2 R 2 C R C R 2 C 2 s 2 s R C R 2 C 2 R 2 C R C R 2 C 2 Again, since we will use this in the feedback loop of a closed-loop amp, we are concerned with the numerator, as it will become the denominator of the closed-loop gain. s 2 s R 2 C 2 R 2 C R C R 2 C 2 s 2 s ω o Q P ω 2 o ω o R C R 2 C 2 ω o Q P R 2 C 2 R 2 C Q P > 0.5 is possible for this function. Picking a few numbers to illustrate: with R kω, R 2 00 kω, C 2 C 2 0 nf, the parameters are ω o 0,000 rad/s and ω o / Q P 2000 rad/s. From these, we find that Q P 5. EE 230 active second-order filters 0

11 Delyiannis-Friend Insert the circuit into the feedback loop of an op amp circuit. But where is the input? We need to insert the input in a way that does not change the poles of the circuit. Because an ideal voltage source has no resistance, we can connect the source anywhere between ground and a component connected to ground without affecting the transfer function. So we can connect an input source between R and ground. Re-drawing the circuit to make it slightly simpler. R R 2 C C 2 C 2 V i R C R 2 V o EE 230 active second-order filters

12 Delyiannis-Friend C2 Calculating the transfer function is straight-forward. Once again, start with a couple of node-voltage equations. Vi Vx R sc Vx sc2 (Vx sc Vx R2 ) Vi R Vx Re-arranging each: Vi ( sr C sr C2 ) Vx Vx sr2 C Substitute in for Vx: Vi ( sr C sr C2 ) R2 C sr C2 sr2 C sr C2 Multiply by sr2c, collect terms, and re-arrange to get the transfer function. Vi EE 230 sr2 C s2 (R C R2 C2 ) s (R C R C2 ) active second-order filters 2

13 Vi sr2 C s2 (R C R2 C2 ) s (R C R C2 ) R C2 s ωo s2 s R2 C2 R C R2 C2 R2 C R C R2 C2 Go ωo QP R2 C2 R2 C s ωo QP s2 s ωo QP ω2o ωo Go QP R C2 This is a bandpass filter. Plug in some typical numbers: R k!, R2 00 k!, C C2 0 nf. Of course, we already did this calculation. (Slide 5.) ωo 0,000 rad/s (fo 59 Hz.) ωo / QP 2000 rad/s QP 5 ωo Go 05 rad/s Go 50 QP EE 230 active second-order filters 3

14 Design example Design a second-order bandpass filter with f o 3200 Hz (ω o 20,000 rad/s), Q P 0, and G o > 50. Since there are 4 components, it would seem that there are more enough degrees for freedom to specify all three parameters. However, because the resistors and capacitors are always combined as time constants, there isn t enough flexibility to specify all three parameters arbitrarily. You can design for 2 of the 3 independently, and then take what you get for the third. Re-writing each of the parameters directly in terms R s and C s: ω o R C R 2 C 2 Q P R 2 R C 2 C C C 2 G o R 2 R C 2 C (You might want to derive these for yourself.) EE 230 active second-order filters 4

15 It is typical to choose C C2 C. In that case, the previous set of equations reduces to ωo R R2 C QP 0.5 R2 R Go R2 2R 2Q2P We can choose a value of C and then calculate the R and R2 needed to obtain the desired ωo and QP. Pick C 0 nf. R 250 Ω 2ωo QC 2Q R2 ωo C 00 kω Then, Go 200. (You get what you get.) EE 230 active second-order filters 5

16 <latexit sha_base64"8rjscjy0hwgxksxeo0anxhd4a">aaackxicbzhdahnbfmcna7ufrs3nmzgiqknwxawbzucfawyc8imksyhoxs5gw6zhzmmtlbepz9aj/gw32uvo2z2xsatacg/vm7hzpnncivwliqxne8r2upn6xvpk0/e/7i5ebw9queznh2ovaanmrguupfhzjkmslcakkcrnd0t/f0rnfzo9zpmky4smcgw7kuljvgmygen4lzx96os7yxf8fmwvfedwkufzaay/75olusdlawtbtf6w7hmwykkuarrb60gpveohgsxwnshmcuubqmohbsqyj2lffdfp47r8zri07ivyk3s3iibf2nkqumgg6tkuej7kg2quh45yodkmupgbhjmqt9cjtwbjkjodoadfc/dxnlbgqw6as69utvpks53ks0wjrse4qixnyicdfikbocqu8g5itwglb7grv/ldr2iiyo6dl869bwzxv5obn2toru6puiu988agy/pjbaj4udbla37c3bzs32ibxzgeuwlupsn/vd/rj/3mvv2gt7x25cvdoiz4ctmff9p0awzkc</latexit> <latexit sha_base64"g9wsxidqrdymxiupzn2qs8a2nma">aaacqxicbzhfaxnbemc3z6srtbvrobqhfgo5kquwfgoj96emu84mm4zjbzkvl9nap3tljoo6p8a/xvr/9b9xlu2gsbxafobxzkycswepcp7wvac7uw8f7t2u7x88exryohrwszo3hltcs20gmviuqmgxbekczayhjsx249mnyt//gcykrb7tisnxclmlesgbhioa70ejav70ivg6f83l4joky493bo6yrthzwqlnzdroxm0g6x52yjciszbwsc6qvvhe83zfbvxcdyowycjcqggbjdyke5xqz4dky4dfjbinzclkcs/zeotpxeg/cuut6p6oanpfgrvifojgbvoqd/fmkfk7bgqkssjfb9tlotsjxk/mnwianuxacubhurz6/abcocotd67ksnsffm6sy50pwpcenkmlobhy0sckivuvdec6yyh9h29ip98flnbtnvvovtfdols9f5s3z0i3fz8tuietdg6/nzyspq5vssrfsmj2wklhfysdvixcfat/wk/2rv5x3zbt7bahxwu8vm8x9iatzn</latexit> Sallen-Key Another single-amp bi-quad is the Sallen-Key configuration. It is fundamentally different than the DF circuit. The amp is configured in a non-inverting fashion in fact, it usually has unity gain. The general form of the circuit is shown below. To find the transfer function, we start by noting that the unity-gain feedback means that V i Z Z 2 V x V V o Z 3 Z 4 V o V V V o Writing node equations: V i V x Z V x V o Z 2 V x V o Z 4 (effectively Z 2 and Z 4 are in parallel.) V x V o Z 2 V o Z 3 EE 230 active second-order filters 6

17 Re-arranging the equations: Vi <latexit sha_base64"uyzfn2edcvcqkxxt0d6mqrrvf8i">aaac03icjvfnixnbeo2mx2v82kwevqwgiytrmfkw3awfbqu9eihgksvmggo6numtnu6hu0ysxrmiv3zv8cf4vuv9iqrnlkpfntztwrqq6qjjfcuhd8ahjxrt4ewvvdvpo3xv39shdwzwf4zjn2upzuucfqvq2cdbei9yg5aleofj/fxth35cy4vwh2iz4zidqrkp4ecoils4imxlsgjknfbplbrg5cc4rnxxg2/t6riiommdgfx4tk64n/om6g26wmv8qcdegztbwiw8aw2iiezghii7b2ley5dquwzdgeqtmvfjmgc9hiimhfwroxvqhpx/xdetp9xghuxir0cuujm7tjlndidmtldx03yzcqkd0dl0llbahi60jpix3sfjcfyimcpjlb4ab4f7q8xm4ozbbwvavve4cvyn5ajqgusj7rcsfmtakrypa6hqrsoeslddpf/sll/nd6lqsb79k52hr0xippds9qmw0w4o/iroh/cpesg70/a5y82o9ljj9hjmehe87o2vvwy33g2xf2k/iv72b99n74nds73gjuyh2zlv2x9xnbc</latexit> Vx <latexit sha_base64"uwyzcnjble9jfqy50mvd764qvms">aaack3icbvhbahsxejw3t8s9xgkgl3lzagiodwy3lbsffeitab9ackg2q7mmzvnbwgtteizxwbxfrrtpsf4mwsef2omaxomzhmtjjlyskirmveg4ephj/q4/ffb8xu5j92xp6sjw7hittblmwkiucrsksojlbhcyrgi/mz5xev8xgiu0khzhiczjjvibqdyvnw47mwzj5helfrh6ygwmuf8cncxw8wkrhjcr3yh03mke7wiz/h4qr0gsr6ms7tx400rziubgxyo0gdhialmbicimlelryzifpyywdbxvkaiflcp6ffiykz9q444if8nersghs3aejs4za5ryta0i/6cnckrfd0uh8ojq8duh0kl6pp3khh8kdhkscweagh6vmjofpiwbj2yrj3jnxtknjwkmhcddystmy4eillifqvrlb6tbgdl/anev4lsxyizihntxoppbnf6dce37lyrbhp/h3rp2h/awfe3zbptu622af7xszo/ygfvcoqzloltiv9kf9tfb9069t97fbapxw9xssbxwvt0afvjmsa</latexit> Z Z Z4 Z3 Z Z Z4 Vx Substitute the second into the first to eliminate Vx Vi <latexit sha_base64"8md0rql85/zgiufka3nxba5ta">aaac8xicjvfnaxsxenvuvxknbzz2ktdluhnwagp2nubaacgqqnvowyxydvwarsvp2sjaazfms8yyp/6lnkqvux5cf0xdooxe4pgzb4eu/nsjqjm8env64z54ojxk43n2tbtz836zsvekblmkgxkah0ruwncc6hixwfxgqaabol6mfts0rv/wbtujlnomtgmnkx5alnfc0vx/2iv4xfjbgm3gtjpqy4nsulhzrl6vn4zlufdzbg3v3ukpbtrepn4uhperzvrveg3/hl4d0gwba2yje604/tdkwj5chkzomymaj/dyueciagriw5gyyykr3dwejjuzddyt6t0tu3zmhlllzlojdnb2cundvmlsbwmvkcmhwtivndxjm3g0llrmcqblfrukupfrexpvxduwfdmlknpcvtvje2qbgnzak7fma2favn5sxoasmzwcnvbgjwpqsqoyui6rxxudkuyepbqhbb2kb37iy47m8gslhn7wanodw96ahuww3vi7ontuvw/5344bpxwm9kgr8hr0iqbosgn5avpkc5h5kz7ew6ey66v9zf7pfxwwos/jsrhx/wcgfo/v</latexit> Z Z Z4 Z3 Z Z Z4 Multiply everything out Vi <latexit sha_base64"zjpmshl6sa50gvbmht9d7heb9u">aaadanicbvfdixmxfm2mx2v92k4hisqqu7zaywdgwfbqv98kgcbrfbmmtso2ojhmso7jlmef/gf/cj/hvpjf8clmtj2gsj5557cppce2dswaycx55/7fqnm7f2bjfu3l3f7958gbkdw44dlmw2pzfziiucoyoumjzzoclsyrxvhpdcefwvihudczzbl2ukjrhcgjoqax0eredwvkga7fdzndopfpygs3dyrd/pv7xx5c9r9xrel2vyor7o7rcimuso6nir8w0a02qaccatazbud6mabtea5yko5jjzowmddfmyi4hlixzskjk/yaiyokpacnrwb8zx0iwpmnnhglyv0w4ubdu2nuao2xkcgnrtyr8x22sy3iyk4tkcgtfly5kcklr08olohcgomqa4wb4d5kzk5oabzboewte8mm5pivncca7nugmlnqnhjrsakroqluxynjzrvrf2vwrpybsrbod99xxco3bmdvuartocvcucvgmgv6ibfoi3tl9updkjj8hj0iyhosan5b0zkchh5ldhvy73p/if/o/z8upl63pfoq7it/8w/9j/c0</latexit> Z Z Z Z Z4 Z3 Z3 Z4 Z3 Z Z Z4 And wrangle it into a transfer function T Vi <latexit sha_base64"zwhscm44qry8shhqgfq6mkqhv4a">aaac9nicbzhdahnbfmdn68ap5pw70qzdekkjezwqhusfbt0wositvpmhmv2cjyzmjuzzjyvhmxvfquvxftfx5fwgzxnojtbhpjhp7/zn69zklwki0hw2/nv3lx87w3da9w8ebrd3dsslgyhaddsm/oewzbcwqafsjjpdbasktbm5u/q/pargcu0osvfduomtzvibwfounzdhpjslfriyomm9yjxzrkdeplwaw3m5vdoogov96wksoxk/klpqjc9kr6vw6vwx9wdxsvtztblggvsrcteiqdftjhw8yttqvmldijbn2fay5jktmuhajvssqlosmz9kurk4qloedl8usvfsfixoaauogqrqkl3eulln2ksxomt2wauhtflrgwmr8eluhmbopjqorsqfdwt608nwgbhuxcccspcwymfmvcldf3augv5dg584yflraeexnouikxajidfjbjqtw/kvtmujyr/q782refsmau3pzq5/8eazpcuevuufwgz8fff4kd3phd8puycvf33zis8ic9jl4tkijyqj6rpbostp95j76n3zf/43/0f/svffwex6rjfb//quad/lj</latexit> EE 230 Z3 Z Z3 Z Z4 Z3 active second-order filters 7

18 T Vi <latexit sha_base64"zwhscm44qry8shhqgfq6mkqhv4a">aaac9nicbzhdahnbfmdn68ap5pw70qzdekkjezwqhusfbt0wositvpmhmv2cjyzmjuzzjyvhmxvfquvxftfx5fwgzxnojtbhpjhp7/zn69zklwki0hw2/nv3lx87w3da9w8ebrd3dsslgyhaddsm/oewzbcwqafsjjpdbasktbm5u/q/pargcu0osvfduomtzvibwfounzdhpjslfriyomm9yjxzrkdeplwaw3m5vdoogov96wksoxk/klpqjc9kr6vw6vwx9wdxsvtztblggvsrcteiqdftjhw8yttqvmldijbn2fay5jktmuhajvssqlosmz9kurk4qloedl8usvfsfixoaauogqrqkl3eulln2ksxomt2wauhtflrgwmr8eluhmbopjqorsqfdwt608nwgbhuxcccspcwymfmvcldf3augv5dg584yflraeexnouikxajidfjbjqtw/kvtmujyr/q782refsmau3pzq5/8eazpcuevuufwgz8fff4kd3phd8puycvf33zis8ic9jl4tkijyqj6rpbostp95j76n3zf/43/0f/svffwex6rjfb//quad/lj</latexit> Z3 Z Z3 Z Z4 Z3 It doesn t mean much until specific impedances are inserted. C4 Z R R2 Z3 sc3 Z4 sc4 <latexit sha_base64"oqnsy5we3fr3wie90ptcifkfiu">aaacghicbvfdsxtbfj2sdr4ffxrl6vbujc4q0jvwhasta99igcmmitl7uruhdi7s8zclyqlf8xx9i/5bzobuzcxfwyo59y5hfgmrswgucl4i9wf75upqpurasblv2965szo3hftcs23uy7aohciwczj4nxmenjbyjofxpd5qmofvrc0zrcxwkcjrhagr0wnyfo9fs3mcclcfly6h0etxqqsoyhv8ehdnqz7nortuvdrevez6iii7b2k4yznqrwjdgeifvbm4xaz6eaxycvjci7rxt4sfvmp6fqkne4r8kfv2rwgptem0dpkp0knderyfonps8vwiv5yskvzzkcumt9ksn/l4wyemohqbuhjvv54/gncdnyxae0mdwmxshxguslrcsrmtakrypbahkryomsge40v9ov6/kd76lgsb79ksuj34yxohhm9yqo0w4apx70dppxdscm7p6dfztvbzhvvmdljivrar9pmwytxnmlp7df74y5h96xf76mepxzn02f97lx9ewxqe</latexit> Vi R R2 C3 <latexit sha_base64"bo4t3oogvb2umyyf6kznngtgxc">aaacghicbvfdsxtbfj2swr8ivaxl4tbujc4k4gqtcbysa8pgcmmitl7uruhdi7s8zclyqlf6wv7v/qvlstmfelwwczrlzp86nmyksbchfirfyyxxt4/pgdxnre2e3trd/b3vuola5lto8xgbovteitxitmiasyxe4us73zjmykre5okme/haesiebajopq49r8svmcclcfry66g5jwrobhmwn8lwjmos3m0orkpzfqpe9rezdgbtcmmuoxyehwidnql7eyar/belsokkjr9ovz8fp/0dedp9hgpuxjh39o4du2kkau8wu6mkuayx5ntbnktnvf0jloahil42sxpqk/dijfyamcpitb4ab4wbrm4j8j5tdblvjtdvrbjmc6v4hqas6ykmrlwpevkqahyq6if0hmu9h/asv5o9ikmie3jbiyybhb2/yq26u4tlxr8f7bpgrsp42axffz3fzj9zgfsiixsc7tipiltrlny/al/wz/vbxv2dvwpdurzl/84kthhf5d9vsxqm</latexit> T sr2 C3 sr C3 s2 R R2 C3 C4 Make it high-pass by swapping resistors and capacitors. <latexit sha_base64"/agsb4h03wzrdnpetxokyrujln8">aaacqxicbzhfa9swemcvr9va7eft7bevpmgqshdsrlcvdlbioxvyqaajszojkycexfzmtk5njj8mftr9to9rp7gtqpdsq9vzj53ulkofnh59xxn2dbzfy3d6qvxr95uvbe/ftqewz6dellb5eidgenriucaguctsea/mnwkep8atofkxue8hvfcj5lhnfg0kkydxaucymyyqppjfa/brgmlpcxuf/rxibttvip8h7pf7etwsjoelqia3wv5zxmphxsttjyrrhxqufjbxlepdibdvm6hspjnkqktmbi2qqgugpm9ejdk2unaezyssuf4hs8zurlq9et2spr6r08syerlzzitigzgcvi/2dddmso5zlnecrbfooz4ajyi5g5y66bozhbqznm9q8umi7jrsdxatsvp0cwskv8kkomgtgdwpqoqfmkjdfv3mxcrszqf5h7bgd8wte0vxfb5ougmb0yq3avfibg38qeu3wccv7cvq/o3tzjvskwpsid75tm7in9ilpclih/kx3ji7plcogpnzlvqazuvcdr5rahnqdteg</latexit> R R2 C3 C4 s2 s R C4 R2 C4 <latexit sha_base64"hzmf8nc8leo0bxmwmch7sbjqqiw">aaacw3icbzfdaxnbfiyn60dr/ertptelquhjcbuxuaulhyh64uusrilk4zi7ozsmmzzzs5kw7c/zf/ipbf6j5xniispb2z4ed4zhectbdcybd8bhh37t67f3d4opnw0emntthz74avwogevnc6euughbcqoqcbvwxgmiechili0htj76dnlzjl7gsyjltmeqzzxqdslrrrzxpyux6dyt7lyrxsxqvbokzvlzbd8qcmuxsp9rmdwv0axbrppvjsteskly76awr8glccpazbpd5kgxiqekltliziiamw6daiewaurmqnwmswmfzqs6g7gtkuzgjnzvfw/dgtqz0q7jdff0e0tlubglppuzeyu52bfqh/vhgj2euj5bioesrbp5svwkfl830pwdq7f0gjln3v99nqeukhavvpk6u4c2e4l9qaunkkp7fgbn6ipgwywpzwvdkhfw5muv3d7r6ad97xgudzqk2tz9ogmxjvm7tjslcb/xtefv7b3rb57p25dvnta7jc/kcdehizskluigjckm/cc/yg/yx3vvcu97ue7gpszx2qnvoov8kjfya</latexit> Clearly low-pass with: ω2o <latexit sha_base64"rovmixteivluqwz5yuzygaa6je">aaackhicbvfbaxnbfj6stxpvqx30zwgqkpswgwtaukxeumshwiwpjhe5ozmbdpnlmnnwgpa82t8b/iv3e2jdckhhj4l5zmfodrfdsuxz/auq3bt66fwfnbvpe/qcph7v2h3/tnqcb8iq684y8kikwqfjunhwoasdkrxm86td7j89kal7qockjhzmqubvcg0tb2gqcau/tt7rce5avmmyok2t07tbs5/30qnl2mrhnxgv/dpiqdntfpdxvd8dskuqmhocd7urixnknakrqkl8x6beamyczjgi0onfpqtuys/40mfoewxeeib5irzuolf6cxkaqbzv63v5p0uun5y0kltvesgne5kc8vj8trz/huohskfggacdl8lytzci5q8g9jyqp3gwjjkqinflykw6xii7iqsa9kgzp6q2qpqhwagp/0affzr8kznj/vbtlr6d4jzzdymeuybbx8gg2znuxjp2ievjfzyu/ypjtgcxvbttghmcdjtgp9pp9yrjveg4eho9vuynguuapbyr0ce/mb7kwa</latexit> EE 230 R R2 C3 C4 <latexit sha_base64"x2nft/3z43vj/9xjadq8/mqly">aaacpxicbzhbahsxeibl7sld3y96imojlg9kngbtqqccf9qiup8rxwdalvp5hhvypnkqi/zr8js9brgbot7yltdedw88jm5mvujim4zn6mhdr4f7dxtpnv4uvua/vptol5ddnrhp7ltehumjoo0ajv4ufpjijg2x2vvshn2cdmpoc5wwmfztqkqvomkc0dtzklenzbrmgun5c/txnwypenlf6tjwxpuvv8dhzviw24gym3hfjsrtjynrpxmmwmhhektdijxnummqfjj2zklieqjkqhrsmz9guhkfqpscn/wlcir4nzejzy8ptsbd0pcmz5dxczsfsmbx2274a/s83ldh/mpzcfywc5stgeskpglqvi06eby5yhgtjs/un7nwi4wlhwjy6j2axxjen9bashnblaoxfu0leahqjjq9vsx2s4ijb/ckhx885nmrxodr7vzomvfmd2bi22gu6rbc/vugfdj924/oj9umnu2ygvyhnriqo7jkflkeqrpolkjp8kv8jvqrnjihygrovjn7zmoi9c9bjnqv</latexit> ωo QP R C4 R2 C4 active second-order filters 8

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). nd-order filters The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). T (s) A p s a s a 0 s b s b 0 As before, the poles of the transfer

More information

Bandwidth of op amps. R 1 R 2 1 k! 250 k!

Bandwidth of op amps. R 1 R 2 1 k! 250 k! Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?

More information

2nd-order filters. EE 230 second-order filters 1

2nd-order filters. EE 230 second-order filters 1 nd-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polyinomials in the numerator. Use two reactive

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

Second-order filters. EE 230 second-order filters 1

Second-order filters. EE 230 second-order filters 1 Second-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polynomials in the numerator. Use two

More information

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Op-amp Circuits 2. Differential Amplifiers 3. Comparator Circuits

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions Problem 1 A Butterworth lowpass filter is to be designed having the loss specifications given below. The limits of the the design specifications are shown in the brick-wall characteristic shown in Figure

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

EE-202 Exam III April 13, 2015

EE-202 Exam III April 13, 2015 EE-202 Exam III April 3, 205 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo-7:30-8:30 Furgason 3:30-4:30 DeCarlo-:30-2:30 202 2022 2023 INSTRUCTIONS There are 2 multiple choice

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

ECE3050 Assignment 7

ECE3050 Assignment 7 ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude

More information

Biquad Filter. by Kenneth A. Kuhn March 8, 2013

Biquad Filter. by Kenneth A. Kuhn March 8, 2013 by Kenneth A. Kuhn March 8, 201 The biquad filter implements both a numerator and denominator quadratic function in s thus its name. All filter outputs have identical second order denominator in s and

More information

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1 Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and

More information

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13 RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration EE 508 Lecture 24 Sensitivity Functions - Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 second-order lowpass filters (all can realize same T(s) within a gain factor)

More information

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

EE 321 Analog Electronics, Fall 2013 Homework #3 solution EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [

More information

DC CIRCUIT ANALYSIS. Loop Equations

DC CIRCUIT ANALYSIS. Loop Equations All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent

More information

UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH / LeClair Fall Circuits Exercises

UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH / LeClair Fall Circuits Exercises UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 106-4 / LeClair Fall 008 Circuits Exercises 1. Are the two headlights of a car wired in series or in parallel? How can you tell? Have you ever

More information

Input and Output Impedances with Feedback

Input and Output Impedances with Feedback EE 3 Lecture Basic Feedback Configurations Generalized Feedback Schemes Integrators Differentiators First-order active filters Second-order active filters Review from Last Time Input and Output Impedances

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 27: State Space Filters 1 Review Q enhancement of passive RC using negative and positive feedback Effect of finite GB of the active device on

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Feedback concept Feedback in emitter follower Stability One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

EE -213 BASIC CIRCUIT ANALYSIS LAB MANUAL

EE -213 BASIC CIRCUIT ANALYSIS LAB MANUAL EE -213 BASIC CIRCUIT ANALYSIS LAB MANUAL EE 213 Spring 2008 LABORATORY #1 INTRODUCTION TO MATLAB INTRODUCTION The purpose of this laboratory is to introduce you to Matlab and to illustrate some of its

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current. AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150

More information

Op-Amp Circuits: Part 3

Op-Amp Circuits: Part 3 Op-Amp Circuits: Part 3 M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay Introduction to filters Consider v(t) = v

More information

Active Filter Design by Carsten Kristiansen Napier University. November 2004

Active Filter Design by Carsten Kristiansen Napier University. November 2004 by Carsten Kristiansen November 2004 Title page Author: Carsten Kristiansen. Napier No: 0400772. Assignment partner: Benjamin Grydehoej. Assignment title:. Education: Electronic and Computer Engineering.

More information

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters Lecture 6, ATIK Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters What did we do last time? Switched capacitor circuits The basics Charge-redistribution analysis Nonidealties

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Week 05 Module - 05 Tutorial No.4 Welcome everyone my name is Basudev Majumder, I am

More information

Analogue Filters Design and Simulation by Carsten Kristiansen Napier University. November 2004

Analogue Filters Design and Simulation by Carsten Kristiansen Napier University. November 2004 Analogue Filters Design and Simulation by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Analogue Filters Design and

More information

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz.

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz. ECE 34 Experiment 6 Active Filter Design. Design a 3rd order Butterworth low-pass ilters having a dc gain o unity and a cuto requency, c, o.8 khz. c :=.8kHz K:= The transer unction is given on page 7 j

More information

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 Paper Number(s): E1.1 IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART I: MEng, BEng and ACGI

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Guest Lectures for Dr. MacFarlane s EE3350

Guest Lectures for Dr. MacFarlane s EE3350 Guest Lectures for Dr. MacFarlane s EE3350 Michael Plante Sat., -08-008 Write name in corner.. Problem Statement Amplifier Z S Z O V S Z I Z L Transducer, Antenna, etc. Coarse Tuning (optional) Amplifier

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

The Approximating Impedance

The Approximating Impedance Georgia Institute of Technology School of Electrical and Computer Engineering ECE 4435 Op Amp Design Laboratory Fall 005 DesignProject,Part A White Noise and Pink Noise Generator The following explains

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

Deliyannis, Theodore L. et al "Two Integrator Loop OTA-C Filters" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999

Deliyannis, Theodore L. et al Two Integrator Loop OTA-C Filters Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999 Deliyannis, Theodore L. et al "Two Integrator Loop OTA-C Filters" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999 Chapter 9 Two Integrator Loop OTA-C Filters 9.1 Introduction As discussed

More information

Problem Set 5 Solutions

Problem Set 5 Solutions University of California, Berkeley Spring 01 EE /0 Prof. A. Niknejad Problem Set 5 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different

More information

FEEDBACK AND STABILITY

FEEDBACK AND STABILITY FEEDBCK ND STBILITY THE NEGTIVE-FEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x

More information

EE 508 Lecture 29. Integrator Design. Metrics for comparing integrators Current-Mode Integrators

EE 508 Lecture 29. Integrator Design. Metrics for comparing integrators Current-Mode Integrators EE 508 Lecture 29 Integrator Design Metrics for comparing integrators urrent-mode Integrators eview from last time nti-aliasing filter often required to limit frequency content at input to S filters ontinuous-time

More information

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 4 NODAL ANALYSIS OBJECTIVES 1) To develop Nodal Analysis of Circuits without Voltage Sources 2) To develop Nodal Analysis of Circuits with Voltage

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

analyse and design a range of sine-wave oscillators understand the design of multivibrators.

analyse and design a range of sine-wave oscillators understand the design of multivibrators. INTODUTION In this lesson, we investigate some forms of wave-form generation using op amps. Of course, we could use basic transistor circuits, but it makes sense to simplify the analysis by considering

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below EXAMPLE 2 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

More information

Physics 102: Lecture 06 Kirchhoff s Laws

Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 6, Slide 1 Today Last Lecture Last Time Resistors in series: R eq = R 1 R 2 R 3 Current through each is same; Voltage drop is IR i Resistors

More information

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2) Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.

More information

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1. Problem ) RLC Parallel Circuit R L C E-4 E-0 V a. What is the resonant frequency of the circuit? The transfer function will take the form N ( ) ( s) N( s) H s R s + α s + ω s + s + o L LC giving ωo sqrt(/lc)

More information

EE-202 Exam III April 13, 2006

EE-202 Exam III April 13, 2006 EE-202 Exam III April 13, 2006 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION DeCarlo 2:30 MWF Furgason 3:30 MWF INSTRUCTIONS There are 10 multiple choice worth 5 points each and there is

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation Low-Sensitivity, Highpass Filter Design with Parasitic Compensation Introduction This Application Note covers the design of a Sallen-Key highpass biquad. This design gives low component and op amp sensitivities.

More information

H(s) = 2(s+10)(s+100) (s+1)(s+1000)

H(s) = 2(s+10)(s+100) (s+1)(s+1000) Problem 1 Consider the following transfer function H(s) = 2(s10)(s100) (s1)(s1000) (a) Draw the asymptotic magnitude Bode plot for H(s). Solution: The transfer function is not in standard form to sketch

More information

Complex Numbers. Essential Question What are the subsets of the set of complex numbers? Integers. Whole Numbers. Natural Numbers

Complex Numbers. Essential Question What are the subsets of the set of complex numbers? Integers. Whole Numbers. Natural Numbers 3.4 Complex Numbers Essential Question What are the subsets of the set of complex numbers? In your study of mathematics, you have probably worked with only real numbers, which can be represented graphically

More information

Lecture 14 Date:

Lecture 14 Date: Lecture 14 Date: 18.09.2014 L Type Matching Network Examples Nodal Quality Factor T- and Pi- Matching Networks Microstrip Matching Networks Series- and Shunt-stub Matching L Type Matching Network (contd.)

More information

Chapter 19 Lecture Notes

Chapter 19 Lecture Notes Chapter 19 Lecture Notes Physics 2424 - Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1-e -t/(rc) ] q = q 0 e -t/(rc τ = RC

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

Chapter 7. Chapter 7

Chapter 7. Chapter 7 Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important

More information

Problem Set 4 Solutions

Problem Set 4 Solutions University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different

More information

3-3 Complex Numbers. Simplify. SOLUTION: 2. SOLUTION: 3. (4i)( 3i) SOLUTION: 4. SOLUTION: 5. SOLUTION: esolutions Manual - Powered by Cognero Page 1

3-3 Complex Numbers. Simplify. SOLUTION: 2. SOLUTION: 3. (4i)( 3i) SOLUTION: 4. SOLUTION: 5. SOLUTION: esolutions Manual - Powered by Cognero Page 1 1. Simplify. 2. 3. (4i)( 3i) 4. 5. esolutions Manual - Powered by Cognero Page 1 6. 7. Solve each equation. 8. Find the values of a and b that make each equation true. 9. 3a + (4b + 2)i = 9 6i Set the

More information

A tricky node-voltage situation

A tricky node-voltage situation A tricky node-voltage situation The node-method will always work you can always generate enough equations to determine all of the node voltages. The method we have outlined well in almost all cases, but

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 5: Output t

More information

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters Lecture 7, ATIK Continuous-time filters 2 Discrete-time filters What did we do last time? Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system

More information

FEEDBACK, STABILITY and OSCILLATORS

FEEDBACK, STABILITY and OSCILLATORS FEEDBACK, STABILITY and OSCILLATORS à FEEDBACK, STABILITY and OSCILLATORS - STABILITY OF FEEDBACK SYSTEMS - Example : ANALYSIS and DESIGN OF PHASE-SHIFT-OSCILLATORS - Example 2: ANALYSIS and DESIGN OF

More information

Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION INSTRUCTIONS

Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION INSTRUCTIONS EE 202 Exam III April 13 2011 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION Morning 7:30 MWF Furgason INSTRUCTIONS Afternoon 3:30 MWF DeCarlo There are 10 multiple choice worth 5 points

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers. Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers. Objectives To analyze and understand STC circuits with

More information

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH ) Lecture 30 Compensation of Op AmpsII (/26/04) Page 30 LECTURE 30 COMPENSATION OF OP AMPSII (READING: GHLM 638652, AH 260269) INTRODUCTION The objective of this presentation is to continue the ideas of

More information

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5. Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

More information

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions Ver 8 E. Analysis of Circuits (0) E. Circuit Analysis Problem Sheet - Solutions Note: In many of the solutions below I have written the voltage at node X as the variable X instead of V X in order to save

More information

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration EE 58 Lecture Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 second-order lowpass filters (all can realize same

More information

Exploring Operations Involving Complex Numbers. (3 + 4x) (2 x) = 6 + ( 3x) + +

Exploring Operations Involving Complex Numbers. (3 + 4x) (2 x) = 6 + ( 3x) + + Name Class Date 11.2 Complex Numbers Essential Question: What is a complex number, and how can you add, subtract, and multiply complex numbers? Explore Exploring Operations Involving Complex Numbers In

More information

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 ) Exercise 7 Ex: 7. A 0 log T [db] T 0.99 0.9 0.8 0.7 0.5 0. 0 A 0 0. 3 6 0 Ex: 7. A max 0 log.05 0 log 0.95 0.9 db [ ] A min 0 log 40 db 0.0 Ex: 7.3 s + js j Ts k s + 3 + j s + 3 j s + 4 k s + s + 4 + 3

More information

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA AA-3 LEZIONI DI FILTI ANALOGICI Danilo Manstretta AA -3 AA-3 High Order OA-C Filters H() s a s... a s a s a n s b s b s b s b n n n n... The goal of this lecture is to learn how to design high order OA-C

More information

Castle Rocktronics 005 R-2R. Two simple 4-bit analog to digital converters

Castle Rocktronics 005 R-2R. Two simple 4-bit analog to digital converters Castle Rocktronics 005 R-2R Two simple 4-bit analog to digital converters Comments, suggestions, questions and corrections are welcomed & encouraged: contact@castlerocktronics.com 1 castlerocktronics.com

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 2

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information