1 DV is normally distributed in the population for each level of the within-subjects factor 2 The population variances of the difference scores

Size: px
Start display at page:

Download "1 DV is normally distributed in the population for each level of the within-subjects factor 2 The population variances of the difference scores"

Transcription

1 One-way Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang

2 The purpose is to test the effect of within-subject factor on the dependent variable Use in experiment in which the same subject is measured under all levels trials Trial is referred to as repeated-measure factor or withinsubjects factor Next

3 1 DV is normally distributed in the population for each level of the within-subjects factor The population variances of the difference scores computed between any two levels of a within-subjects factor are the same value regardless of which two levels are chosen. This assumption is also known as the sphericity assumption or homogeneity of variance of differences assumption 3 The cases represent a random samples from the populations, and the scores are independent of each other

4 Use partial eta squared (η ) as a measure of effect size Formula to calculate partial η Partial factor SS SS factor factor SS error Partial η indicated relationship between repeatedmeasures factor and the dependent variable Partial η ranges between 0 to 1 0 indicates no relationship; 1 constitutes highest possible relationship between factor and the dependent variable

5

6 Manual Calculate F-ratio Criteria F cal F critical F cal < F critical Decision Reject H O Fail to reject H O State H O and H A Decision Conclusion Critical value Effect size (Partial Eta ) Next

7

8 1 State H O and H A 4 3 Calculate Test Statistics Determine Critical Value Decision 5 Conclusion Next

9 H O : μ 1 = μ = μ 3 H A : Not all means are equal Next

10 1. Calculate Sum of Squares Total Sum of Squares S S Between Subjects S S Between Factor Sum of Squares Error ( Y ) SST Y N Ts ( Y ) SSBs n N SSB SSE f T n f f s ( Y ) N SST SSB s SSB f

11 . Determine Degrees of Freedom Total df T N 1 Subject Factor Error df s n df df f error s n f 1 1 ( n 1) ( n 1) s f Where: n s Number of subjects n f Number/levels of factors

12 Source SS df MS F Subject SSB s n s -1 MSB s F s Factor SSB f n f -1 MSB f F f Error SSE (n s -1) (n f -1) MSE TOTAL SST N-1

13 3. Critical value F n n f 1 ( ) ( 1)( n 1) s f

14 4. Decision and Conclusion Reject H O There is a significant difference in DV among different levels of withinsubjects factors Fail to reject H O There is no significant difference in DV among different level of within-subjects factor Decision criteria Criteria Decision F cal F critical F cal < F critical Reject H O Fail to reject H O

15 In a study to determine the effectiveness of relaxation techniques in controlling migraine headaches, nine migraine sufferers were selected. They were asked to record the frequency and duration of their migraine headaches for a five week period. Data for the first two weeks were based on no training and act as baseline while the third to fifth weeks were given relaxation training.

16 Baseline Training week week week week week Subject Subject total Total Mean

17 H O : μ 1 = μ = μ 3 = μ 4 = μ 5 H A : Not all means are equal

18 Sum of Squares SST Y ( Y ) N , ,060 1, ,

19 ) ( N Y n T SS f s S , , , ,380.4

20 ) ( N Y n T SSB s f f , ,086, , , SSB s SSB f SST SSE, , , , f s SSB SSB SST

21 Total Subjects Factor Error df T N df S n s df df f error n f ( n 1) ( n 1) s 4 ( 9 1) (5 1) (8) (4) 3 f Where: n s Number of subjects n f Number/levels of factors

22 Source SS df MS F Subject Factor, Error TOTAL 3,

23 F 4 3 (.05).69

24 F cal (85.08) is bigger than F critical (.69) Reject H O There is a significant factor (relaxation training) effect on duration of migraine at.05 level of significance Decision criteria Criteria F cal F critical F cal < F critical Decision Reject H O Fail to reject H O

25

26 1. Click Analyze General Linear Model Repeated Measures

27 . At the dialog box below, type training as within-subject factor name. and type 5 for the number of levels. Click Add button. Then click Define button.

28 3. Block all the within-subjects factor, Click Arrow button

29 4. Finally, click the OK button

30

31 Use of this Multivariate tests does not require the assumption of sphericity

32 Sig-value (.537) > α indicates meeting the sphericity assumption

33 Tests of Within-Subjects Effects Use this value if the test meets the sphericity assumption Measure: MEASURE_1 Source TRAINING Error(TRAINING) Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound Type III Sum of Squares df Mean Square F Sig Use any of the other three values if the sphericity assumption is violated

34 If the ANOVA reveals a significant result, proceed with the pairwise comparisons to assess which means differ from each other

35 Click the first factor, displays as Variable 1 Click the second factor, displays as Variable Click Arrow button

36

37 Pair 1 Pair Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 W1 - W W1 - W3 W1 - W4 W1 - W5 W - W3 W - W4 W - W5 W3 - W4 W3 - W5 W4 - W5 Paired Samples Test Paired Differences 95% Confidence Interval of the Std. Error Difference Mean Std. Deviation Mean Lower Upper t df Sig. (-tailed) Use the Holm s sequential Bonferroni procedure to control for familywise error rate across the 10 pairs /10 = /5 = /9 = /4 = /8 = /3 = /7 = / = /6 = /1 =.05

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang Use in experiment, quasi-experiment

More information

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each participant, with the repeated measures entered as separate

More information

Prepared by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies

Prepared by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Prepared by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang Participants to be able to:

More information

ANOVA continued. Chapter 10

ANOVA continued. Chapter 10 ANOVA continued Chapter 10 Zettergren (003) School adjustment in adolescence for previously rejected, average, and popular children. Effect of peer reputation on academic performance and school adjustment

More information

8/28/2017. Repeated-Measures ANOVA. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions

8/28/2017. Repeated-Measures ANOVA. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1 Rationale of Repeated Measures ANOVA One-way and two-way Benefits Partitioning Variance Statistical Problems with Repeated- Measures

More information

ANOVA continued. Chapter 10

ANOVA continued. Chapter 10 ANOVA continued Chapter 10 Zettergren (003) School adjustment in adolescence for previously rejected, average, and popular children. Effect of peer reputation on academic performance and school adjustment

More information

ANOVA continued. Chapter 11

ANOVA continued. Chapter 11 ANOVA continued Chapter 11 Zettergren (003) School adjustment in adolescence for previously rejected, average, and popular children. Effect of peer reputation on academic performance and school adjustment

More information

Independent Samples ANOVA

Independent Samples ANOVA Independent Samples ANOVA In this example students were randomly assigned to one of three mnemonics (techniques for improving memory) rehearsal (the control group; simply repeat the words), visual imagery

More information

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts Statistical methods for comparing multiple groups Lecture 7: ANOVA Sandy Eckel seckel@jhsph.edu 30 April 2008 Continuous data: comparing multiple means Analysis of variance Binary data: comparing multiple

More information

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Prepared by: Prof Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang M L Regression is an extension to

More information

Psy 420 Final Exam Fall 06 Ainsworth. Key Name

Psy 420 Final Exam Fall 06 Ainsworth. Key Name Psy 40 Final Exam Fall 06 Ainsworth Key Name Psy 40 Final A researcher is studying the effect of Yoga, Meditation, Anti-Anxiety Drugs and taking Psy 40 and the anxiety levels of the participants. Twenty

More information

Analysis of Variance: Repeated measures

Analysis of Variance: Repeated measures Repeated-Measures ANOVA: Analysis of Variance: Repeated measures Each subject participates in all conditions in the experiment (which is why it is called repeated measures). A repeated-measures ANOVA is

More information

1 The Randomized Block Design

1 The Randomized Block Design 1 The Randomized Block Design When introducing ANOVA, we mentioned that this model will allow us to include more than one categorical factor(explanatory) or confounding variables in the model. In a first

More information

Using SPSS for One Way Analysis of Variance

Using SPSS for One Way Analysis of Variance Using SPSS for One Way Analysis of Variance This tutorial will show you how to use SPSS version 12 to perform a one-way, between- subjects analysis of variance and related post-hoc tests. This tutorial

More information

Repeated Measures Analysis of Variance

Repeated Measures Analysis of Variance Repeated Measures Analysis of Variance Review Univariate Analysis of Variance Group A Group B Group C Repeated Measures Analysis of Variance Condition A Condition B Condition C Repeated Measures Analysis

More information

ANCOVA. Psy 420 Andrew Ainsworth

ANCOVA. Psy 420 Andrew Ainsworth ANCOVA Psy 420 Andrew Ainsworth What is ANCOVA? Analysis of covariance an extension of ANOVA in which main effects and interactions are assessed on DV scores after the DV has been adjusted for by the DV

More information

SPSS Guide For MMI 409

SPSS Guide For MMI 409 SPSS Guide For MMI 409 by John Wong March 2012 Preface Hopefully, this document can provide some guidance to MMI 409 students on how to use SPSS to solve many of the problems covered in the D Agostino

More information

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions Introduction to Analysis of Variance 1 Experiments with More than 2 Conditions Often the research that psychologists perform has more conditions than just the control and experimental conditions You might

More information

We need to define some concepts that are used in experiments.

We need to define some concepts that are used in experiments. Chapter 0 Analysis of Variance (a.k.a. Designing and Analysing Experiments) Section 0. Introduction In Chapter we mentioned some different ways in which we could get data: Surveys, Observational Studies,

More information

H0: Tested by k-grp ANOVA

H0: Tested by k-grp ANOVA Pairwise Comparisons ANOVA for multiple condition designs Pairwise comparisons and RH Testing Alpha inflation & Correction LSD & HSD procedures Alpha estimation reconsidered H0: Tested by k-grp ANOVA Regardless

More information

IEOR165 Discussion Week 12

IEOR165 Discussion Week 12 IEOR165 Discussion Week 12 Sheng Liu University of California, Berkeley Apr 15, 2016 Outline 1 Type I errors & Type II errors 2 Multiple Testing 3 ANOVA IEOR165 Discussion Sheng Liu 2 Type I errors & Type

More information

Chapter 10. Design of Experiments and Analysis of Variance

Chapter 10. Design of Experiments and Analysis of Variance Chapter 10 Design of Experiments and Analysis of Variance Elements of a Designed Experiment Response variable Also called the dependent variable Factors (quantitative and qualitative) Also called the independent

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

Factorial Independent Samples ANOVA

Factorial Independent Samples ANOVA Factorial Independent Samples ANOVA Liljenquist, Zhong and Galinsky (2010) found that people were more charitable when they were in a clean smelling room than in a neutral smelling room. Based on that

More information

The independent-means t-test:

The independent-means t-test: The independent-means t-test: Answers the question: is there a "real" difference between the two conditions in my experiment? Or is the difference due to chance? Previous lecture: (a) Dependent-means t-test:

More information

Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis

Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis Sometimes researchers make multiple measurements on the same experimental unit.

More information

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS 1 WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS I. Single-factor designs: the model is: yij i j ij ij where: yij score for person j under treatment level i (i = 1,..., I; j = 1,..., n) overall mean βi treatment

More information

If we have many sets of populations, we may compare the means of populations in each set with one experiment.

If we have many sets of populations, we may compare the means of populations in each set with one experiment. Statistical Methods in Business Lecture 3. Factorial Design: If we have many sets of populations we may compare the means of populations in each set with one experiment. Assume we have two factors with

More information

An inferential procedure to use sample data to understand a population Procedures

An inferential procedure to use sample data to understand a population Procedures Hypothesis Test An inferential procedure to use sample data to understand a population Procedures Hypotheses, the alpha value, the critical region (z-scores), statistics, conclusion Two types of errors

More information

1. What does the alternate hypothesis ask for a one-way between-subjects analysis of variance?

1. What does the alternate hypothesis ask for a one-way between-subjects analysis of variance? 1. What does the alternate hypothesis ask for a one-way between-subjects analysis of variance? 2. What is the difference between between-group variability and within-group variability? 3. What does between-group

More information

Descriptive Statistics

Descriptive Statistics *following creates z scores for the ydacl statedp traitdp and rads vars. *specifically adding the /SAVE subcommand to descriptives will create z. *scores for whatever variables are in the command. DESCRIPTIVES

More information

WELCOME! Lecture 13 Thommy Perlinger

WELCOME! Lecture 13 Thommy Perlinger Quantitative Methods II WELCOME! Lecture 13 Thommy Perlinger Parametrical tests (tests for the mean) Nature and number of variables One-way vs. two-way ANOVA One-way ANOVA Y X 1 1 One dependent variable

More information

ANOVA Analysis of Variance

ANOVA Analysis of Variance ANOVA Analysis of Variance ANOVA Analysis of Variance Extends independent samples t test ANOVA Analysis of Variance Extends independent samples t test Compares the means of groups of independent observations

More information

General Linear Model

General Linear Model GLM V1 V2 V3 V4 V5 V11 V12 V13 V14 V15 /WSFACTOR=placeholders 2 Polynomial target 5 Polynomial /METHOD=SSTYPE(3) /EMMEANS=TABLES(OVERALL) /EMMEANS=TABLES(placeholders) COMPARE ADJ(SIDAK) /EMMEANS=TABLES(target)

More information

16.3 One-Way ANOVA: The Procedure

16.3 One-Way ANOVA: The Procedure 16.3 One-Way ANOVA: The Procedure Tom Lewis Fall Term 2009 Tom Lewis () 16.3 One-Way ANOVA: The Procedure Fall Term 2009 1 / 10 Outline 1 The background 2 Computing formulas 3 The ANOVA Identity 4 Tom

More information

ANOVA: Comparing More Than Two Means

ANOVA: Comparing More Than Two Means 1 ANOVA: Comparing More Than Two Means 10.1 ANOVA: The Completely Randomized Design Elements of a Designed Experiment Before we begin any calculations, we need to discuss some terminology. To make this

More information

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication CHAPTER 4 Analysis of Variance One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication 1 Introduction In this chapter, expand the idea of hypothesis tests. We

More information

Statistics For Economics & Business

Statistics For Economics & Business Statistics For Economics & Business Analysis of Variance In this chapter, you learn: Learning Objectives The basic concepts of experimental design How to use one-way analysis of variance to test for differences

More information

ECO220Y Simple Regression: Testing the Slope

ECO220Y Simple Regression: Testing the Slope ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5) Winter 2012 Lecture 19 (Winter 2012) Simple Regression Lecture 19 1 / 32 Simple Regression Model y i = β 0 + β 1 x

More information

Analysis of Variance ANOVA. What We Will Cover in This Section. Situation

Analysis of Variance ANOVA. What We Will Cover in This Section. Situation Analysis of Variance ANOVA 8//007 P7 Analysis of Variance What We Will Cover in This Section Introduction. Overview. Simple ANOVA. Repeated Measures ANOVA. Factorial ANOVA 8//007 P7 Analysis of Variance

More information

GLM Repeated-measures designs: One within-subjects factor

GLM Repeated-measures designs: One within-subjects factor GLM Repeated-measures designs: One within-subjects factor Reading: SPSS dvanced Models 9.0: 2. Repeated Measures Homework: Sums of Squares for Within-Subject Effects Download: glm_withn1.sav (Download

More information

T. Mark Beasley One-Way Repeated Measures ANOVA handout

T. Mark Beasley One-Way Repeated Measures ANOVA handout T. Mark Beasley One-Way Repeated Measures ANOVA handout Profile Analysis Example In the One-Way Repeated Measures ANOVA, two factors represent separate sources of variance. Their interaction presents an

More information

Chapter 14: Repeated-measures designs

Chapter 14: Repeated-measures designs Chapter 14: Repeated-measures designs Oliver Twisted Please, Sir, can I have some more sphericity? The following article is adapted from: Field, A. P. (1998). A bluffer s guide to sphericity. Newsletter

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal yuppal@ysu.edu Sampling Distribution of b 1 Expected value of b 1 : Variance of b 1 : E(b 1 ) = 1 Var(b 1 ) = σ 2 /SS x Estimate of

More information

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Notes for Wee 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Exam 3 is on Friday May 1. A part of one of the exam problems is on Predictiontervals : When randomly sampling from a normal population

More information

Analysis of Variance and Design of Experiments-I

Analysis of Variance and Design of Experiments-I Analysis of Variance and Design of Experiments-I MODULE VIII LECTURE - 35 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS MODEL Dr. Shalabh Department of Mathematics and Statistics Indian

More information

Analysis of variance

Analysis of variance Analysis of variance Tron Anders Moger 3.0.007 Comparing more than two groups Up to now we have studied situations with One observation per subject One group Two groups Two or more observations per subject

More information

Research Design - - Topic 12 MRC Analysis and Two Factor Designs: Completely Randomized and Repeated Measures 2010 R.C. Gardner, Ph.D.

Research Design - - Topic 12 MRC Analysis and Two Factor Designs: Completely Randomized and Repeated Measures 2010 R.C. Gardner, Ph.D. esearch Design - - Topic MC nalysis and Two Factor Designs: Completely andomized and epeated Measures C Gardner, PhD General overview Completely andomized Two Factor Designs Model I Effect Coding egression

More information

Compiled by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Developmentand Continuing Education Faculty of Educational Studies

Compiled by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Developmentand Continuing Education Faculty of Educational Studies Compiled by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Developmentand Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang Structural Equation Modeling

More information

Lecture 5: ANOVA and Correlation

Lecture 5: ANOVA and Correlation Lecture 5: ANOVA and Correlation Ani Manichaikul amanicha@jhsph.edu 23 April 2007 1 / 62 Comparing Multiple Groups Continous data: comparing means Analysis of variance Binary data: comparing proportions

More information

Introduction to Business Statistics QM 220 Chapter 12

Introduction to Business Statistics QM 220 Chapter 12 Department of Quantitative Methods & Information Systems Introduction to Business Statistics QM 220 Chapter 12 Dr. Mohammad Zainal 12.1 The F distribution We already covered this topic in Ch. 10 QM-220,

More information

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ 1 = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F Between Groups n j ( j - * ) J - 1 SS B / J - 1 MS B /MS

More information

Econ 3790: Business and Economic Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economic Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal Email: yuppal@ysu.edu Chapter 13, Part A: Analysis of Variance and Experimental Design Introduction to Analysis of Variance Analysis

More information

same hypothesis Assumptions N = subjects K = groups df 1 = between (numerator) df 2 = within (denominator)

same hypothesis Assumptions N = subjects K = groups df 1 = between (numerator) df 2 = within (denominator) compiled by Janine Lim, EDRM 61, Spring 008 This file is copyrighted (010) and a part of my Leadership Portfolio found at http://www.janinelim.com/leadportfolio. It is shared for your learning use only.

More information

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA:

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: 1. Cell sizes : o

More information

Research Methodology Statistics Comprehensive Exam Study Guide

Research Methodology Statistics Comprehensive Exam Study Guide Research Methodology Statistics Comprehensive Exam Study Guide References Glass, G. V., & Hopkins, K. D. (1996). Statistical methods in education and psychology (3rd ed.). Boston: Allyn and Bacon. Gravetter,

More information

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique

More information

STATISTICAL ANALYSIS. Repeated Measures and (M)ANOVA designs

STATISTICAL ANALYSIS. Repeated Measures and (M)ANOVA designs STATISTICAL ANALYSIS Repeated Measures and (M)ANOVA designs Why repeated measures? What is the greatest source of variance in a (psycholinguistic response time) experiment? Why repeated measures? What

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Repeated-Measures ANOVA 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

ANOVA in SPSS. Hugo Quené. opleiding Taalwetenschap Universiteit Utrecht Trans 10, 3512 JK Utrecht.

ANOVA in SPSS. Hugo Quené. opleiding Taalwetenschap Universiteit Utrecht Trans 10, 3512 JK Utrecht. ANOVA in SPSS Hugo Quené hugo.quene@let.uu.nl opleiding Taalwetenschap Universiteit Utrecht Trans 10, 3512 JK Utrecht 7 Oct 2005 1 introduction In this example I ll use fictitious data, taken from http://www.ruf.rice.edu/~mickey/psyc339/notes/rmanova.html.

More information

The t-statistic. Student s t Test

The t-statistic. Student s t Test The t-statistic 1 Student s t Test When the population standard deviation is not known, you cannot use a z score hypothesis test Use Student s t test instead Student s t, or t test is, conceptually, very

More information

Notes on Maxwell & Delaney

Notes on Maxwell & Delaney Notes on Maxwell & Delaney PSY710 12 higher-order within-subject designs Chapter 11 discussed the analysis of data collected in experiments that had a single, within-subject factor. Here we extend those

More information

Unit 27 One-Way Analysis of Variance

Unit 27 One-Way Analysis of Variance Unit 27 One-Way Analysis of Variance Objectives: To perform the hypothesis test in a one-way analysis of variance for comparing more than two population means Recall that a two sample t test is applied

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Exam 2 Review 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region 3. Compute

More information

Analyses of Variance. Block 2b

Analyses of Variance. Block 2b Analyses of Variance Block 2b Types of analyses 1 way ANOVA For more than 2 levels of a factor between subjects ANCOVA For continuous co-varying factor, between subjects ANOVA for factorial design Multiple

More information

Table 1: Fish Biomass data set on 26 streams

Table 1: Fish Biomass data set on 26 streams Math 221: Multiple Regression S. K. Hyde Chapter 27 (Moore, 5th Ed.) The following data set contains observations on the fish biomass of 26 streams. The potential regressors from which we wish to explain

More information

T-Test QUESTION T-TEST GROUPS = sex(1 2) /MISSING = ANALYSIS /VARIABLES = quiz1 quiz2 quiz3 quiz4 quiz5 final total /CRITERIA = CI(.95).

T-Test QUESTION T-TEST GROUPS = sex(1 2) /MISSING = ANALYSIS /VARIABLES = quiz1 quiz2 quiz3 quiz4 quiz5 final total /CRITERIA = CI(.95). QUESTION 11.1 GROUPS = sex(1 2) /MISSING = ANALYSIS /VARIABLES = quiz2 quiz3 quiz4 quiz5 final total /CRITERIA = CI(.95). Group Statistics quiz2 quiz3 quiz4 quiz5 final total sex N Mean Std. Deviation

More information

PSY 216. Assignment 12 Answers. Explain why the F-ratio is expected to be near 1.00 when the null hypothesis is true.

PSY 216. Assignment 12 Answers. Explain why the F-ratio is expected to be near 1.00 when the null hypothesis is true. PSY 21 Assignment 12 Answers 1. Problem 1 from the text Explain why the F-ratio is expected to be near 1.00 when the null hypothesis is true. When H0 is true, the treatment had no systematic effect. In

More information

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs)

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs) The One-Way Independent-Samples ANOVA (For Between-Subjects Designs) Computations for the ANOVA In computing the terms required for the F-statistic, we won t explicitly compute any sample variances or

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Lecture 3: Analysis of Variance II

Lecture 3: Analysis of Variance II Lecture 3: Analysis of Variance II http://www.stats.ox.ac.uk/ winkel/phs.html Dr Matthias Winkel 1 Outline I. A second introduction to two-way ANOVA II. Repeated measures design III. Independent versus

More information

STAT Chapter 10: Analysis of Variance

STAT Chapter 10: Analysis of Variance STAT 515 -- Chapter 10: Analysis of Variance Designed Experiment A study in which the researcher controls the levels of one or more variables to determine their effect on the variable of interest (called

More information

Inferences About the Difference Between Two Means

Inferences About the Difference Between Two Means 7 Inferences About the Difference Between Two Means Chapter Outline 7.1 New Concepts 7.1.1 Independent Versus Dependent Samples 7.1. Hypotheses 7. Inferences About Two Independent Means 7..1 Independent

More information

PSY 216. Assignment 9 Answers. Under what circumstances is a t statistic used instead of a z-score for a hypothesis test

PSY 216. Assignment 9 Answers. Under what circumstances is a t statistic used instead of a z-score for a hypothesis test PSY 216 Assignment 9 Answers 1. Problem 1 from the text Under what circumstances is a t statistic used instead of a z-score for a hypothesis test The t statistic should be used when the population standard

More information

1. The (dependent variable) is the variable of interest to be measured in the experiment.

1. The (dependent variable) is the variable of interest to be measured in the experiment. Chapter 10 Analysis of variance (ANOVA) 10.1 Elements of a designed experiment 1. The (dependent variable) is the variable of interest to be measured in the experiment. 2. are those variables whose effect

More information

Simple Linear Regression: One Quantitative IV

Simple Linear Regression: One Quantitative IV Simple Linear Regression: One Quantitative IV Linear regression is frequently used to explain variation observed in a dependent variable (DV) with theoretically linked independent variables (IV). For example,

More information

Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures

Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures 12.1 Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures 12.9 Repeated measures analysis Sometimes researchers make multiple measurements on the same experimental unit. We have

More information

Analysis of repeated measurements (KLMED8008)

Analysis of repeated measurements (KLMED8008) Analysis of repeated measurements (KLMED8008) Eirik Skogvoll, MD PhD Professor and Consultant Institute of Circulation and Medical Imaging Dept. of Anaesthesiology and Emergency Medicine 1 Day 2 Practical

More information

Postgraduate course: Anova and Repeated measurements Day 2 (part 2) Mogens Erlandsen, Department of Biostatistics, Aarhus University, November 2010

Postgraduate course: Anova and Repeated measurements Day 2 (part 2) Mogens Erlandsen, Department of Biostatistics, Aarhus University, November 2010 30 CVP (mean and sd) Postgraduate course in ANOVA and Repeated Measurements Day Repeated measurements (part ) Mogens Erlandsen Deptartment of Biostatistics Aarhus University 5 0 15 10 0 1 3 4 5 6 7 8 9

More information

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants.

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants. The idea of ANOVA Reminders: A factor is a variable that can take one of several levels used to differentiate one group from another. An experiment has a one-way, or completely randomized, design if several

More information

Chapter 14 Simple Linear Regression (A)

Chapter 14 Simple Linear Regression (A) Chapter 14 Simple Linear Regression (A) 1. Characteristics Managerial decisions often are based on the relationship between two or more variables. can be used to develop an equation showing how the variables

More information

Two-Way ANOVA. Chapter 15

Two-Way ANOVA. Chapter 15 Two-Way ANOVA Chapter 15 Interaction Defined An interaction is present when the effects of one IV depend upon a second IV Interaction effect : The effect of each IV across the levels of the other IV When

More information

N J SS W /df W N - 1

N J SS W /df W N - 1 One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F J Between Groups nj( j * ) J - SS B /(J ) MS B /MS W = ( N

More information

The simple linear regression model discussed in Chapter 13 was written as

The simple linear regression model discussed in Chapter 13 was written as 1519T_c14 03/27/2006 07:28 AM Page 614 Chapter Jose Luis Pelaez Inc/Blend Images/Getty Images, Inc./Getty Images, Inc. 14 Multiple Regression 14.1 Multiple Regression Analysis 14.2 Assumptions of the Multiple

More information

One- factor ANOVA. F Ra5o. If H 0 is true. F Distribu5on. If H 1 is true 5/25/12. One- way ANOVA: A supersized independent- samples t- test

One- factor ANOVA. F Ra5o. If H 0 is true. F Distribu5on. If H 1 is true 5/25/12. One- way ANOVA: A supersized independent- samples t- test F Ra5o F = variability between groups variability within groups One- factor ANOVA If H 0 is true random error F = random error " µ F =1 If H 1 is true random error +(treatment effect)2 F = " µ F >1 random

More information

ANOVA Randomized Block Design

ANOVA Randomized Block Design Biostatistics 301 ANOVA Randomized Block Design 1 ORIGIN 1 Data Structure: Let index i,j indicate the ith column (treatment class) and jth row (block). For each i,j combination, there are n replicates.

More information

The Multiple Regression Model

The Multiple Regression Model Multiple Regression The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & or more independent variables (X i ) Multiple Regression Model with k Independent Variables:

More information

STAT 115:Experimental Designs

STAT 115:Experimental Designs STAT 115:Experimental Designs Josefina V. Almeda 2013 Multisample inference: Analysis of Variance 1 Learning Objectives 1. Describe Analysis of Variance (ANOVA) 2. Explain the Rationale of ANOVA 3. Compare

More information

Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons

Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons 1. Suppose we wish to assess the impact of five treatments while blocking for study participant race (Black,

More information

COMPARING SEVERAL MEANS: ANOVA

COMPARING SEVERAL MEANS: ANOVA LAST UPDATED: November 15, 2012 COMPARING SEVERAL MEANS: ANOVA Objectives 2 Basic principles of ANOVA Equations underlying one-way ANOVA Doing a one-way ANOVA in R Following up an ANOVA: Planned contrasts/comparisons

More information

Multiple Comparisons

Multiple Comparisons Multiple Comparisons Error Rates, A Priori Tests, and Post-Hoc Tests Multiple Comparisons: A Rationale Multiple comparison tests function to tease apart differences between the groups within our IV when

More information

UV Absorbance by Fish Slime

UV Absorbance by Fish Slime Data Set 1: UV Absorbance by Fish Slime Statistical Setting This handout describes a repeated-measures ANOVA, with two crossed amongsubjects factors and repeated-measures on a third (within-subjects) factor.

More information

Review. One-way ANOVA, I. What s coming up. Multiple comparisons

Review. One-way ANOVA, I. What s coming up. Multiple comparisons Review One-way ANOVA, I 9.07 /15/00 Earlier in this class, we talked about twosample z- and t-tests for the difference between two conditions of an independent variable Does a trial drug work better than

More information

Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance ECON 509. Dr.

Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance ECON 509. Dr. Department of Economics Business Statistics Chapter 1 Chi-square test of independence & Analysis of Variance ECON 509 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should be able

More information

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES 4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES FOR SINGLE FACTOR BETWEEN-S DESIGNS Planned or A Priori Comparisons We previously showed various ways to test all possible pairwise comparisons for

More information

CBA4 is live in practice mode this week exam mode from Saturday!

CBA4 is live in practice mode this week exam mode from Saturday! Announcements CBA4 is live in practice mode this week exam mode from Saturday! Material covered: Confidence intervals (both cases) 1 sample hypothesis tests (both cases) Hypothesis tests for 2 means as

More information

CHAPTER 13: F PROBABILITY DISTRIBUTION

CHAPTER 13: F PROBABILITY DISTRIBUTION CHAPTER 13: F PROBABILITY DISTRIBUTION continuous probability distribution skewed to the right variable values on horizontal axis are 0 area under the curve represents probability horizontal asymptote

More information