Maximize: x (1.1) Where s is slack variable vector of size m 1. This is a maximization problem. Or (1.2)

Size: px
Start display at page:

Download "Maximize: x (1.1) Where s is slack variable vector of size m 1. This is a maximization problem. Or (1.2)"

Transcription

1 A ew Algorth for er Progrg Dhy P. ehedle Deprtet of Eletro See, Sr Prhurhu College, lk Rod, Pue-00, d dhy.p.ehedle@gl.o Atrt- th pper we propoe ew lgorth for ler progrg. h ew lgorth ed o tretg the oetve futo preter. We trfor the tr of oeffet repreetg th yte of equto the redued row ehelo for otg oly oe vrle, ely, the oetve futo telf, preter whoe optl vlue to e detered. We lyze th tr d develop ler ethod to fd the optl vlue for the oetve futo treted preter. We ee tht the etre optzto proe evolve through the proper ly of the d tr the redued row ehelo for. t wll e ee tht the optl vlue e oted ) y olvg ert uyte of th yte of equto through proper utfto for th t, or ) By kg pproprte d legl row trforto o th tr the redued row ehelo for o tht ll the etre the utr of th tr, oted y olletg row whh the oeffet of o lled ukow preter d whoe optl vlue to e detered, eoe oegtve d th ew tr ut e equvlet to orgl tr the ee tht the oluto et of the tr equto wth orgl tr d tr equto wth trfored tr re e. We the proeed to how tht th de turlly eted to del wth oler d teger progrg prole. For oler d teger progrg prole we ue the tehque of Groer e e Groer equvlet of redued row ehelo for for yte of oler equto, d the ethod of olvg ler Dophte equto repetvely. Key Word: Oetve futo preter, oetve equto, oetve ple, otrt ple, ehelo for, Groer e, Dophte equto. RODUCO here re two type of ler progr (ler progrg prole):. ze: C Suet to: A 0 Or. ze: C Suet to: A 0 where olu vetor of ze of ukow. Where C olu vetor of ze of proft (for zto prole or ot (for zto prole oeffet, d C row vetor of ze oted y tr trpoto of C. Where A tr of otrt oeffet of ze. Where olu vetor of ott of ze repreetg the oudre of otrt. By trodug the pproprte lk vrle (for zto prole d urplu vrle (for zto prole, the ove etoed ler progr get overted to tdrd for : ze: Suet to: A + = (.) 0, 0 Where lk vrle vetor of ze. h zto prole. Or C ze: C Suet to: A = (.) 0, 0 Where urplu vrle vetor of ze. h zto prole. geoetrl lguge, the otrt defed y the equlte for rego ouded y ove polyhedro, rego ouded y the otrt ple A =, lled fele rego d t trghtforwrd to hek tht there et t let oe verte of th polyhedro t whh the optl oluto for the prole tuted whe the prole t hd ot uouded or fele. here y e uque optl oluto d oete there y e ftely y optl oluto, e.g. whe oe of the otrt ple prllel to the oetve ple we y hve ulttude of optl oluto. A etre ple or etre edge ottute the optl oluto et. We eg wth oe oo oto d defto tht re prevlet the lterture. A vrle lled vrle gve equto f t pper wth ut oeffet tht equto d wth zero oeffet ll other equto. A vrle whh ot lled o vrle. A equee of eleetry row operto tht hge gve yte of ler equto to equvlet yte (hvg the e oluto et) d whh gve o vrle e de vrle lled pvot operto. A equvlet yte otg d o vrle oted y pplto of utle eleetry row operto lled ol yte. At te, the troduto of lk vrle for otg tdrd for utotlly produe ol yte, otg t let oe vrle eh equto. Soete equee of pvot operto eeded to e perfored to get ol yte. he oluto oted fro ol yte y ettg the o vrle to zero d olvg for the vrle lled oluto d ddto whe ll the vrle hve oegtve vlue the oluto tfyg ll the poed otrt lled fele oluto. Beue of the fr gret prtl porte of the ler progr d other lr prole the operto reerh t ot dered thg to hve lgorth whh work gle tep, f ot, few tep pole. o

2 ethod h ee foud whh wll yeld optl oluto to ler progr gle tep ([], Pge 9). We to propoe lgorth for ler progrg whh t fulfllg th requreet et pole d ovel wy.. A EW AGORH FOR EAR PROGRAG We trt wth the followg equto: C = d (.) d ll t oetve equto. he (pretr) ple defed y th equto wll e lled oetve ple. hu, we hve tke the oetve futo ew ukow preter lled d d the prole of ler progrg to fd the optl vlue of th ukow preter. We du frt the zto prole. A lr pproh for zto prole wll e dued et. Gve zto prole, we frt otrut the oed yte of equto otg the oetve equto (.) d the equto defed y the otrt poed y the prole uder oderto, oed to gle tr equto follow: ( 0( et E= ( ( 0( = d (.) ( d, d let F = R=rref([E,F]) (.) ote tht the ugeted tr [E, F] well t redued row ehelo for R ot oly oe vrle, ely, d d ll other etre re ott. Fro R we detere the oluto et S for every fed d, S = { /( fed) d rel}. he uet of th oluto et of vetor whh lo tfe the oegtvty otrt the et of ll fele oluto for tht d. t ler tht th uet e epty for prtulr hoe of d tht de. he zto prole of ler progrg to detere the uque d whh provde fele oluto d h u vlue for d,.e., to detere the uque d whh provde optl oluto. the e of uouded ler progr there o upper (lower, the e of zto prole lt for the vlue of d, whle the e of fele ler progr the et of fele oluto epty. he tep tht wll e eeuted to detere the optl oluto hould lo tell y plto whe uh optl oluto doe ot et the e of uouded or fele prole. he geerl for of the tr R repreetg the redued row ehelo for et [E, F] deote the ugeted tr oted y ppedg the olu vetor F to tr E lt olu. We the fd R, the redued row ehelo for ([], pge 7-75) of the ove ugeted tr [E, F]. hu, R = ( d + e d + e d + e d + e d + e + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) Aog frt ( + olu of R ert frt olu orrepod to vrle (olu tht re ut vetor) d the reg oe to o vrle (olu tht re ot ut vetor). For olvg ler progr we eed to detere the vlue of o vrle uh tht the vlue of d optl, fro whh we detere the vlue of ll the vrle y uttuto d the ler progr thu olved opletely. ote tht the row of R tully repreet equto wth vrle, =,, d vrle, =,, o left de d epreo of type kd + ek, k =,, ( + ) otg the vrle d o the rght de. he row wth potve oeffet for the preter d repreet thoe equto whh the preter d e reed rtrrly wthout voltg the oegtvty otrt o vrle,. So, thee equto wth potve oeffet for the preter d re ot plyg y upper oud o the u pole vlue of preter d however; thee row re ueful ert tuto. he row wth egtve oeffet for the preter d repreet thoe equto whh the preter d ot e reed rtrrly wthout voltg the oegtvty otrt o vrle,. So, thee equto wth egtve oeffet for the preter d re plyg upper oud o the u pole vlue of preter d d o portt oe th repet. So, we ow proeed to fd out the utr of R, ely, R, de up of ll olu of R d otg thoe row of R for whh the oeffet of the preter d re egtve. et,,, k re ll d re oly egtve rel uer the row of R olleted R d the oeffet of d ll other row of R re greter th or equl to zero. Our ethod for olvg ler progrg prole eetlly ot of olvg ert uyte of equto repreeted

3 y ert tow of R or R, or ltertvely pultg etre the olu of R through ert utle row trforto o tht the trfored tr tll repreet the e yte of equto eee d ow the etre the olu orrepodg to ll o vrle R re oegtve. Algorth. (zto: Step : Epre the gve prole tdrd for: ze: C Suet to: A + = 0, 0 Step : Cotrut the ugeted tr [E F], where E = C ( ) 0 d (, d F = ( d ot the redued row ehelo for: R = rref ([E, F]). ote: () We ll tht vrle vrle for whh the orrepodg olu (olu vetor) of R repreetg oeffet for tht vrle ut vetor. () We ll tht vrle o vrle for whh the orrepodg olu (olu vetor) of R repreetg oeffet for tht vrle ot ut vetor. Step : f there row (or row) of zeroe t the otto of R the frt olu d otg ozero ott the lt olu the delre tht the prole otet d top. Step : Ele f the oeffet of d the lt olu re ll potve or f there et olu of R orrepodg to oe o vrle wth ll etre egtve the delre tht the prole t hd uouded d top. Step 5: Ele f for y hoe vlue of d oe oerve tht oegtvty otrt for oe vrle get volted y t let oe of the vrle the delre tht the prole t hd fele d top. ote: () felty of ler progrg prole lo e deded y uouded ture of t dul prole Step 6: Ele fd the utr of R, y R de up of thoe row of R for whh the oeffet of d the lt olu egtve. Step 7: Solve r d + e r = 0 for eh uh ter the lt olu of R d fd the vlue of d = for d r r =,,, k d fd d = { } d d r d = { d }. r ote: (d) he optl vlue of d optl, le etwee d = { } d d = { } d r d r Step 8: Chek the olu of R orrepodg to o vrle. Fd out the olu wth ll etre oegtve d et thee o vrle to zero. Step 9: f ll thee olu orrepodg to o vrle ot oly oegtve etre the ( per Step 7) et ll o vrle to zero. Suttute d = d the lt olu of R. Detere the fele oluto (whh wll e the optl oluto for the prole d top. Step 0: Flly, whe there et olu R orrepodg to oe o vrle otg potve etre oe row d oe egtve etre oe other row d the tl d vlue re uh tht they pproh eh other whe the vlue of thee o vrle re reed fro zero the we tke followg two pprohe: (A) We for d olve utle uyte of equto ly otg thee o vrle d y oete otg oe vrle tht led to l vlue for d d thu olve the prole opletely. uh e we y requre to hek optlty y eprtely ppedg eh vrle. (B) We rry out ert utle row trforto o the tr R o tht the ewly trfored tr equvlet to R d ow ll the etre the olu of ewly trfored R ( effet of thee trforto rred out o R ) orrepodg to o vrle re oegtve. We lo del wth zto prole o lr le d develop lr lgorth for ther oluto. Eple.: We ow oder prole for whh the ple terto re epoetl futo of the ze of the prole. A prole elogg to the l dered y Klee d ty otg vrle requre ple tep. We ee tht the ew ethod doe t requre y pel effort ze: Suet to: ,, 0 Soluto: he followg the tr R :

4 0 0 0 /0 / (/00)d / (/ 5) d R = d /0 /00 9 (/00) d So lerly, / (/ 5) d R = /0 /00 9 (/00) d he frt four olu of R, R orrepod to vrle, whle the et two olu orrepod to o vrle. he lt olu orrepod to etre of type d + e r r. he olu for vrle, of R ot ll potve etre o we et = 0. he olu for vrle ot etre wth egtve g, o for thee row the vlue of preter d uouded, e y gg y lrge (potve) vlue to th o vrle we ree the vlue of preter d thee row to y hgh vlue wthout voltg the oegtvty otrt. So, etoed ove, we eed to pped row fro R wth potve g for d d otrut the yte Pz = Q. So, y ppedg frt row of R d ut vetor for we hve 0 /0 /00 P = 0 / 5, z =, d /0 /00 d 90 Q = he oluto for th yte yeld =, = 00, d = he uttuto of thee vlue d the lredy fed vlue of, ely, = 0, we get the oplete oluto follow: = 0, = 0, = 0000, =, = 00, = 0, d the u vlue of d = R k repreet k-th row of R. Altertve Soluto: et Wth the of hevg the oegtvty of etre the olu orrepodg to o vrle R we perfor followg utle row trforto o R, ely, R 0 R + R, R R + R. Wth thee trforto o R we get the ew (trfored) R follow: R /0 (000 (/ 0) d) = ow, ug oegtvty of d d 6 th olu fro frt row we hve = 0, = 0, d o, d = Further ug thee vlue ewly trfored R we fd the oplete oluto d hek tht t tur out e we oted ove y olvg uyte of equto.. A EW AGORH FOR OEAR PROGRAG We ow how tht we del wth oler progrg prole ug the lr tehque. Here the ethod developed y Bruo Buherger whh trfored the trt oto of Groer to fudetl tool oputtol lger wll e utlzed. he tehque of Groer e eetlly vero of redued row ehelo for (ued ove to hdle the ler progr de up of ler equto) for hgher degree equto []. A typl oler progr e tted follow: ze: f () Suet to: h ( ) = 0, =,,, g ( ) 0, = +, +,, p k 0, k =,,, Gve oler optzto prole we frt otrut the followg oler yte of equto: f ( ) d = 0 (.) h ( ) = 0, =,,, (.) g ( ) + = 0, = +, +,, p (.) where d the ukow preter whoe optl vlue to e detered uet to oegtvty odto o prole vrle d lk vrle. For th to heve we frt trfor the yte of equto to equvlet yte of equto erg the e oluto et uh tht the yte eer to olve. We hve ee o fr tht the effetve wy to del wth ler progr to ot the redued row ehelo for for the oed yte of equto orportg oetve equto d otrt equto. We wll ee tht for the oler e the effetve wy to del wth to ot the equvlet of redued row ehelo for, ely, the Groer repreetto for th yte of equto (.)-(.). We the et up the equto oted y equtg the prtl dervtve of d wth repet to prole vrle d lk vrle to zero d utlze the tdrd theory d ethod ued lulu. We deotrte the eee of th ethod y olvg eple: Eple.: ze:

5 Suet to: , 0 Soluto: We uld the followg yte of equto: d = = = 0 + = 0 We ow trfor the ove yte of equto d ot t Groer repreetto follow: 50 9d = 0 (..) = 0 (..) = 0 (..) = 0 (..) fro frt equto (..), order to ze d, we detere the vlue of, follow: d f we et = 0 we get the vlue of tht ze d, d ely, =. Slrly, f we et = 0 we get the 7 vlue of tht ze d, ely, =. Puttg thee vlue of, the frt d eod equto we get repetvely the u vlue of d = 67 d the vlue of =. Ug further thee vlue the thrd d fourth equto we get =.5,. 75. = ote: t trutve to ote tht the optl oluto tht we hve oted ot o the oudry of fele rego ( oe lwy get the e of ler progrg prole ut the teror of the fele rego. V. A EW AGORH FOR EGER PROGRAG We ow proeed to del wth teger progrg prole ug the lr tehque. he eetl dfferee th e tht we ot teger oluto y tretg the yte of equto et of Dophte equto We eg ( doe prevouly for ler progrg prole) wth the followg equto: C = d (.) where d ukow preter, d ll t oetve equto. he (pretr) ple defed y th equto wll e lled oetve ple. et C e row vetor of ze d de up of teger opoet,,,, ot ll zero. t ler tht the oetve equto wll hve teger oluto f d oly f gd (gretet oo dvor) of,,, dvde d. We ow proeed to for the followg Dophte yte of equto gle tr equto: We du the zto prole. A lr pproh for zto prole e developed. Gve zto prole, we frt otrut the oed yte of equto otg the oetve equto d the equto defed y the otrt poed y the prole uder oderto, oed to gle tr equto, vz., ( 0( ( d = (.) d ot P-relto oluto. h P-relto oluto provde the upper oud tht ut e tfed y the optl teger oluto. he we proeed to olve the yte yte Dophte yte of equto follow: order to olve th yte Dophte yte of equto we ue the tdrd tehque gve ([], pge -). Frt y ppedg ew vrle u, u,, u( + d rryg out pproprte row d olu trforto dued ([], pge 7, ) we ot the pretr oluto for the yte. hu, we trt wth the followg tle: ( 0( (( + ( + ( d d trfor the yte of equto to equvlet yte tht dgol. hu, we hve the followg pretr oluto: u k = d (for oe k ) (.) u = h r r (where h r re ott for r = to, r k ), d = α + δ r= r= u r r = β + η u r r (where (where α, δ re ott.) r r β, η re ott.) We etup proedure to lyze th pretr oluto d detere the optl tegrl oluto. Eple.: ze: + 0 5

6 Suet to: , 0, d teger. Soluto: We frt fd the P-relto optl vlue, whh for th prole. Ad the oplete Prelto optl oluto,, ) = (8.66, 6.77, 0, 0) (, hu, the upper lt for optl vlue for teger progr, d, e 58. Strtg wth the tle (.5) etoed y opt. ove d rryg out the pproprte row-olu trforto we get the followg pretr oluto: u = d (..) u = 5 (..) u = (..) = d + 0u (..) = u (..5) = d + 5u + 5 (..6) = d u + (..7) Ug the upper lt o the optl vlue, ely, d = d opt. = 58 the lt equto ove we ee tht the u vlue tht u tke (to t oegtvty of ) 6. he forth d th equto gve ove for d repetvely ot d wth egtve oeffet ( = ). o uttutg = 0 d u = 6 equto (..6) we get the dered optl oluto d = 55, = 0, =, = 5, = u = 6 Akowledgeet thkful to Dr.. R. odk d Dr. P. S. Jog for ueful duo. Referee [] Hdley G., er Progrg, ro Pulhg Houe, ew Delh 0 07, Eghth Reprt, 997. [] Golderg Jk., tr heory wth Applto, Grw-Hll, tertol Edto, 99. [] Wll W. Ad, Phlppe outuu, A troduto to Groer Be, Grdute Stude thet, Volue, Aer thetl Soety. [] ve., Zuker H., otgoery H., A troduto to the heory of uer, Joh Wley & So, Pvt. td., 99. 6

Dual-Matrix Approach for Solving the Transportation Problem

Dual-Matrix Approach for Solving the Transportation Problem Itertol Jourl of Mthets Tres Tehology- Volue Nuer Jue 05 ul-mtr Aroh for Solvg the Trsortto Prole Vy Shr r Chr Bhus Shr ertet of Mthets, BBM College r, Jeh, (MU), INIA E-Prl, SS College Jeh, (MU), INIA

More information

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 6, Jue 3 ISSN 5-353 A Altertve Method to Fd the Soluto of Zero Oe Iteger Ler Frctol Progrg Prole wth the Help of -Mtr VSeeregsy *, DrKJeyr ** *

More information

The linear system. The problem: solve

The linear system. The problem: solve The ler syste The prole: solve Suppose A s vertle, the there ests uue soluto How to effetly opute the soluto uerlly??? A A A evew of dret ethods Guss elto wth pvotg Meory ost: O^ Coputtol ost: O^ C oly

More information

Current Programmed Control (i.e. Peak Current-Mode Control) Lecture slides part 2 More Accurate Models

Current Programmed Control (i.e. Peak Current-Mode Control) Lecture slides part 2 More Accurate Models Curret Progred Cotrol.e. Pek Curret-Mode Cotrol eture lde prt More Aurte Model ECEN 5807 Drg Mkovć Sple Frt-Order CPM Model: Sury Aupto: CPM otroller operte delly, Ueful reult t low frequee, well uted

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

2. Elementary Linear Algebra Problems

2. Elementary Linear Algebra Problems . Eleety e lge Pole. BS: B e lge Suoute (Pog pge wth PCK) Su of veto opoet:. Coputto y f- poe: () () () (3) N 3 4 5 3 6 4 7 8 Full y tee Depth te tep log()n Veto updte the f- poe wth N : ) ( ) ( ) ( )

More information

International Journal of Scientific and Research Publications, Volume 3, Issue 5, May ISSN

International Journal of Scientific and Research Publications, Volume 3, Issue 5, May ISSN Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 5, My 13 1 A Effcet Method for Esy Coputto y Usg - Mtr y Cosderg the Iteger Vlues for Solvg Iteger Ler Frctol Progrg Proles VSeeregsy *, DrKJeyr

More information

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008 Alele Uverstăţ d Orde Fsul: Proteţ Medulu Vol. XIII 00 THEORETICAL AND COMPARATIVE STUDY REGARDING THE MECHANICS DISPLASCEMENTS UNDER THE STATIC LOADINGS FOR THE SQUARE PLATE MADE BY WOOD REFUSE AND MASSIF

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1 LOCUS 33 Seto - 3 PAIR OF STRAIGHT LINES Cosder two les L L Wht do ou thk wll L L represet? It s ovous tht pot lg o L d L wll stsf L L, d thus L L represets the set of pots osttutg oth the les,.e., L L

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2. Chter Chter Syste of Rel uers Tertg Del frto: The del frto whh Gve fte uers of dgts ts del rt s lled tertg del frto. Reurrg ( o-tertg )Del frto: The del frto (No tertg) whh soe dgts re reeted g d g the

More information

Discrete random walk with barriers on a locally infinite graph

Discrete random walk with barriers on a locally infinite graph Drete rdo wl wth rrer o loll fte grh Theo Ue Aterd Shool of Teholog Weeerde 9 97 DZ Aterd The etherld El: te@hl Atrt We ot eeted er of rrl orto rolte d eeted te efore orto for etr drete rdo wl o loll fte

More information

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as. Lplce Trfor The Lplce Trfor oe of he hecl ool for olvg ordry ler dfferel equo. - The hoogeeou equo d he prculr Iegrl re olved oe opero. - The Lplce rfor cover he ODE o lgerc eq. σ j ple do. I he pole o

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS

APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS Pweł Pędzch Jerzy Blcerz Wrsw Uversty of Techology Fculty of Geodesy d Crtogrphy Astrct Usully to pproto of

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Math 1313 Final Exam Review

Math 1313 Final Exam Review Mth 33 Fl m Revew. The e Compy stlled ew mhe oe of ts ftores t ost of $0,000. The mhe s depreted lerly over 0 yers wth srp vlue of $,000. Fd the vlue of the mhe fter 5 yers.. mufturer hs mothly fed ost

More information

A Study on New Sequence of Functions Involving the Generalized Contour Integral

A Study on New Sequence of Functions Involving the Generalized Contour Integral Globl Jourl of Scece Froter Reerch Mthetc d Deco Scece Volue 3 Iue Vero. Yer 23 Type : Double Bld Peer Revewed Itertol Reerch Jourl Publher: Globl Jourl Ic. (USA Ole ISS: 2249-4626 & Prt ISS: 975-5896

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Module 2: Introduction to Numerical Analysis

Module 2: Introduction to Numerical Analysis CY00 Itroducto to Computtol Chemtr Autum 00-0 Module : Itroducto to umercl Al Am of the preet module. Itroducto to c umercl l. Developg mple progrm to mplemet the umercl method opc of teret. Iterpolto:

More information

The Z-Transform in DSP Lecture Andreas Spanias

The Z-Transform in DSP Lecture Andreas Spanias The Z-Trsform DSP eture - Adres Ss ss@su.edu 6 Coyrght 6 Adres Ss -- Poles d Zeros of I geerl the trsfer futo s rtol; t hs umertor d deomtor olyoml. The roots of the umertor d deomtor olyomls re lled the

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

AN ALGEBRAIC APPROACH TO M-BAND WAVELETS CONSTRUCTION

AN ALGEBRAIC APPROACH TO M-BAND WAVELETS CONSTRUCTION AN ALGEBRAIC APPROACH TO -BAN WAELETS CONSTRUCTION Toy L Qy S Pewe Ho Ntol Lotoy o e Peeto Pe Uety Be 8 P. R. C Att T e eet le o to ott - otool welet e. A yte of ott eto ote fo - otool flte te olto e o

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

11. Ideal Gas Mixture

11. Ideal Gas Mixture . Ideal Ga xture. Geeral oderato ad xture of Ideal Gae For a geeral xture of N opoet, ea a pure ubtae [kg ] te a for ea opoet. [kol ] te uber of ole for ea opoet. e al a ( ) [kg ] N e al uber of ole (

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM S. Res. Chem. Commu.: (3 8-88 ISSN 77-669 GENERLIZED OPERTIONL RELTIONS ND PROPERTIES OF FRCTIONL NKEL TRNSFORM R. D. TYWDE *. S. GUDDE d V. N. MLLE b Pro. Rm Meghe Isttute o Teholog & Reserh Bder MRVTI

More information

The Algebraic Least Squares Fitting Of Ellipses

The Algebraic Least Squares Fitting Of Ellipses IOSR Jourl of Mthets (IOSR-JM) e-issn: 78-578 -ISSN: 39-765 Volue 4 Issue Ver II (Mr - Ar 8) PP 74-83 wwwosrjourlsorg he Algebr Lest Squres Fttg Of Ellses Abdelltf Betteb Dertet of Geerl Studes Jubl Idustrl

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD 67 CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD 7. INTRODUCTION The eso mers the setors le fl ororte lg routo lg mretg me seleto uversty lg stuet mssos

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

Note 7 Root-Locus Techniques

Note 7 Root-Locus Techniques Lecture Note of Cotrol Syte I - ME 43/Alyi d Sythei of Lier Cotrol Syte - ME862 Note 7 Root-Locu Techique Deprtet of Mechicl Egieerig, Uiverity Of Sktchew, 57 Cpu Drive, Sktoo, S S7N 5A9, Cd Lecture Note

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numerl Alss Dr Murrem Merme INTEROLATION ELM Numerl Alss Some of te otets re dopted from Luree V. Fusett Appled Numerl Alss usg MATLAB. rete Hll I. 999 ELM Numerl Alss Dr Murrem Merme Tod s leture

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder Collapg to Saple ad Reader Mea Ed Staek Collapg to Saple ad Reader Average order to collape the expaded rado varable to weghted aple ad reader average, we pre-ultpled by ( M C C ( ( M C ( M M M ( M M M,

More information

A multi-domain boundary element analysis technique based on a row elimination-backsubstitution method for solving large-scale engineering problems

A multi-domain boundary element analysis technique based on a row elimination-backsubstitution method for solving large-scale engineering problems Boudry Elemet d Other Meh Reduto Method XXXIII 153 A mult-dom oudry elemet ly tehque ed o row elmto-uttuto method for olvg lrge-le egeerg prolem X.-W. Go & J.-X. Hu Stte Key Lortory of Struturl Aly for

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

ANALYTICAL NUMBER THEORY. MM-504 and 505 (Option-P 5

ANALYTICAL NUMBER THEORY. MM-504 and 505 (Option-P 5 ANALYTICAL NUMBER THEORY M.A./M.Sc. Mthetc (Fl) MM-504 505 (Oto-P 5 ) Drectorte of Dtce Eucto Mhrh Dy Uverty ROHTAK 4 00 Coyrght 004, Mhrh Dy Uverty, ROHTAK All Rght Reerve. No rt of th ulcto y e rerouce

More information

Analysis of error propagation in profile measurement by using stitching

Analysis of error propagation in profile measurement by using stitching Ay o error propgto proe eureet y ug ttchg Ttuy KUME, Kzuhro ENAMI, Yuo HIGASHI, Kej UENO - Oho, Tuu, Ir, 35-8, JAPAN Atrct Sttchg techque whch ee oger eureet rge o proe ro eer eure proe hg prty oerppe

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chpter Vetor pes - Vetor pes Ler Comtos Vetor spe V V s set over fel F f V F! + V. Eg. R s vetor spe. For R we hek -4=-4-4R -7=-7-7R et. Eg. how tht the set of ll polomls PF wth oeffets from F s vetor

More information

A New Efficient Approach to Solve Multi-Objective Transportation Problem in the Fuzzy Environment (Product approach)

A New Efficient Approach to Solve Multi-Objective Transportation Problem in the Fuzzy Environment (Product approach) Itertol Jourl of Appled Egeerg Reserch IN 097-6 Volue, Nuer 8 (08) pp 660-66 Reserch Id Pulctos http://wwwrpulctoco A New Effcet Approch to olve Mult-Oectve Trsportto Prole the Fuzzy Evroet (Product pproch)

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

CS 4758 Robot Kinematics. Ashutosh Saxena

CS 4758 Robot Kinematics. Ashutosh Saxena CS 4758 Rt Kemt Ahuth Se Kemt tude the mt f de e re tereted tw emt tp Frwrd Kemt (ge t pt ht u re gve: he egth f eh he ge f eh t ht u fd: he pt f pt (.e. t (,, rdte Ivere Kemt (pt t ge ht u re gve: he

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

All the Laplace Transform you will encounter has the following form: Rational function X(s)

All the Laplace Transform you will encounter has the following form: Rational function X(s) EE G Note: Chpter Itructor: Cheug Pge - - Iverio of Rtiol Fuctio All the Lplce Trform you will ecouter h the followig form: m m m m e τ 0...... Rtiol fuctio Dely Why? Rtiol fuctio come out turlly from

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Revised by Prof. Jang, CAU

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Revised by Prof. Jang, CAU Part 4 Capter 6 Sple ad Peewe Iterpolato PowerPot orgazed y Dr. Mael R. Gutao II Duke Uverty Reved y Pro. Jag CAU All mage opyrgt Te MGraw-Hll Compae I. Permo requred or reproduto or dplay. Capter Ojetve

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

CS537. Numerical Analysis

CS537. Numerical Analysis CS57 Numercl Alyss Lecture 4 System of Ler Equtos Professor Ju Zhg Deprtmet of Computer Scece Uversty of Ketucky Legto, KY 456 6 Ferury, 6 System of Ler Equtos where j re coeffcets, re ukows, d re rght

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

A Mean- maximum Deviation Portfolio Optimization Model

A Mean- maximum Deviation Portfolio Optimization Model A Mea- mamum Devato Portfolo Optmzato Model Wu Jwe Shool of Eoom ad Maagemet, South Cha Normal Uversty Guagzhou 56, Cha Tel: 86-8-99-6 E-mal: wujwe@9om Abstrat The essay maes a thorough ad systemat study

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

A convex hull characterization

A convex hull characterization Pue d ppled Mthets Joul 4; (: 4-48 Pulshed ole My 4 (http://www.seepulshggoup.o//p do:.648/.p.4. ove hull htezto Fo Fesh Gov Qut Deptet DISG Uvesty of Se Itly El ddess: fesh@us.t (F. Fesh qut@us.t (G.

More information

Recent Progresses on the Simplex Method

Recent Progresses on the Simplex Method Reet Progresses o the Smple Method www.stford.edu/~yyye K.T. L Professor of Egeerg Stford Uversty d Itertol Ceter of Mgemet See d Egeerg Ng Uversty Outles Ler Progrmmg (LP) d the Smple Method Mrkov Deso

More information

Design of a Three Phase Active Power Filter with Sliding Mode Control and Energy Feedback

Design of a Three Phase Active Power Filter with Sliding Mode Control and Energy Feedback Deg f Three Phe Ate Pwer Flter wth lg Me trl Eergy Feek M. Nyerr, T. Nk Atrt Nler le l three he etwrk rete hr le. Ate e flter re e fr elt r ret f thee effet. Pe flter he e ltt. Fr exle, they re ege ly

More information

CHAPTER 7 SYMMETRICAL COMPONENTS AND REPRESENTATION OF FAULTED NETWORKS

CHAPTER 7 SYMMETRICAL COMPONENTS AND REPRESENTATION OF FAULTED NETWORKS HAPTER 7 SMMETRAL OMPOETS AD REPRESETATO OF FAULTED ETWORKS A uled three-phe yte e reolved ito three led yte i the iuoidl tedy tte. Thi ethod of reolvig uled yte ito three led phor yte h ee propoed y.

More information

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs WSEAS TRANSACTIONS o MATHEMATICS Fudzh Isml Dgoll Implt Ruge-Kutt Nstrom Geerl Method Order Fve for Solvg Seod Order IVPs FUDZIAH ISMAIL Deprtmet of Mthemts Uverst Putr Mls Serdg Selgor MALAYSIA fudzh@mth.upm.edu.m

More information

STA261H1.doc. i 1 X n be a random sample. The sample mean is defined by i= 1 X 1 + ( ) X has a N ( σ ) 1 n. N distribution. Then n. distribution.

STA261H1.doc. i 1 X n be a random sample. The sample mean is defined by i= 1 X 1 + ( ) X has a N ( σ ) 1 n. N distribution. Then n. distribution. TA6Hdoc tttcl Iferece RADOM AMPLE Defto: Rdom mple clled rdom mple from dtruto wth pdf f ( (or pf ( depedet d hve detcl dtruto wth pdf f (or pf P (depedet-detcll-dtruted P f re It ofte deoted d ote Let

More information