Classical Mechanics Lecture 22

Size: px
Start display at page:

Download "Classical Mechanics Lecture 22"

Transcription

1 Classical Mechanics Lecture 22 Today s Concept: Siple Haronic Mo7on: Mo#on of a Pendulu Mechanics Lecture 8, Slide 1

2 Grading Unit 14 and 15 Ac7vity Guides will not be graded Please turn in:! Unit 14 WriEen Hoework on Mon, Dec 5! The Mini-labbook on your SHM or Karate Project, Dec 9 The last FlipItPhysics lecture is a bonus.! not on exa! use it if you issed any points earlier Final Exa 7e: Fri., Dec. 9, 12 p Final exa roo: 2600

3 Announceents Pizza Party next Monday and Review! D200 students can coe at 1 or eat cold pizza at 2:30. Midter 2 solu7ons will be published Wednesday.! Turn in your rewrites before then if you want. (kara points) Friday you will do a project on! Siple Haronic o7on (any way you want) or! Karate! Unit 14 AG will not be graded. Keep it for exa! Turn in spreadsheets, WH14 etc Do Online Course Evalua7on and you can s7ll do the IOLab Survey (extra credit)

4 I don't like radians. When people say pi, I say 180 degrees. Or even ore pro, I say 200 gon. this is kind of fro the last lecture but how do you get the equafon of x= Asin(wt+phi) fro a word proble? (ie. How do you know waht phi is? and is it cos or sin? ) Who's the genius who decided oega should have two eanings? Did they run out of Greek leqers? Why don't they fly over there and get soe ore? It would probably help boost their econoy at this point. I a finding it difficult to understand how the oent of inerfa and the radius are both being used in the equafon. Isn't the oent of inerfa dependent on the radius? Is the period proporfonal to Rc then? Your Coents talking about haronic ofons, Lets all dance "GANGNOM style ", its a perfect pracfcal exaple! For the torsion pendulu, what did the lower case kappa (κ, κ) represent? What causes that constant? Thanks. How do you know when to use what forula? In the prelecture they didn't explain clearly if you can use the sae forula for a pendulu with a ass aqached to the end as for a pendulu without a ass aqached to it. Mechanics Lecture 8, Slide 2

5 There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by soething even ore bizarre and inexplicable. Text There is another theory which states that this has already happened. Douglas Adas Mechanics Lecture 8, Slide 3

6 I want to know why the answer to life is 42! Drill a hole through the earth and jup in what happens? Just for fun you don t need to know this.

7 I want to know why the answer to life is 42! Drill a hole through the earth and jup in what happens? You will oscillate like a ass on a spring with a period of 84 inutes. It takes 42 inutes to coe out the other side! k = g/r E Mechanics Lecture 8, Slide 5

8 I want to know why the answer to life is 42! Drill a hole through the earth and jup in what happens? You will oscillate like a ass on a spring with a period of 84 inutes. It takes 42 inutes to coe out the other side! The hole doesn t even have to go through the iddle you get the sae answer anyway as long as there is no fricfon. Mechanics Lecture 8, Slide 6

9 I want to know why the answer to life is 42! This is also the sae period of an object orbi7ng the earth right at ground level. Just for fun you don t need to know this. Mechanics Lecture 8, Slide 7

10 Panic! Is there such a thing as Rota7onal Haronic Mo7on? There beeer not be... Yes there is. Are you ready?

11 Torsion Pendulu wire τ θ I Q: In the prelecture the equafon for restoring torque is given as τ=-κθ in clockwise direcfon..so if the restoring torque is in counter clockwise direcfons then would τ be posifve? Mechanics Lecture 8, Slide 8

12 CheckPoint A torsion pendulu is used as the 7ing eleent in a clock as shown. The speed of the clock is adjusted by changing the distance of two sall disks fro the rota7on axis of the pendulu. If we adjust the disks so that they are closer to the rota7on axis, the clock runs: A) Faster B) Slower Sall disks Mechanics Lecture 8, Slide 9

13 CheckPoint If we adjust the disks so that they are closer to the rota7on axis, the clock runs A) Faster B) Slower A) The oent of inerfa decreases, so the angular frequency increases, which akes the period shorter and thus the clock faster. B) T = 2pi * sqrt(i/mgrc). If Rc decreases, T will increase, aking the clock run slower. Mechanics Lecture 8, Slide 10

14 Pendulu θ R CM For sall θ X CM Mg θ R CM X CM arc-length = R CM θ Mechanics Lecture 8, Slide 11

15 pivot The Siple Pendulu θ R CM CM θ L The siple case The general case Mechanics Lecture 8, Slide 12

16 CheckPoint If the clock is running too fast, the weight needs to be oved A) Up B) Down If the clock is running too fast then we want to reduce it's period, T, and to do that we need to increase oega, the frequency it oves with and to do that we need the posi7on of the center of ass to be further fro the pivot, which is achieved by oving the weight down. Mechanics Lecture 8, Slide 14

17 The Stick Pendulu pivot θ R CM CM M Sae period Mechanics Lecture 8, Slide 15

18 Case 1 Case 2 CheckPoint In Case 1 a s7ck of ass and length L is pivoted at one end and used as a pendulu. In Case 2 a point par7cle of ass is aeached to the center of the sae s7ck. In which case is the period of the pendulu the longest? A) Case 1 B) Case 2 C) Sae C is not the right answer. Lets work through it Mechanics Lecture 8, Slide 16

19 Case 1 Case 2 In Case 1 a s7ck of ass and length L is pivoted at one end and used as a pendulu. In Case 2 a point par7cle of ass is aeached to a string of length L/2? In which case is the period of the pendulu longest? A) Case 1 B) Case 2 C) Sae T = 2 s 2 3 L g T = 2 s 1 2 L g Mechanics Lecture 8, Slide 17

20 T 2 Suppose you start with 2 different pendula, one having period T 1 and the other having period T 2. T 1 T 1 > T 2 Now suppose you ake a new pendulu by hanging the first two fro the sae pivot and gluing the together. What is the period of the new pendulu? A) T 1 B) T 2 C) In between Mechanics Lecture 8, Slide 18

21 Case 1 Case 2 In Case 1 a s7ck of ass and length L is pivoted at one end and used as a pendulu. In Case 2 a point par7cle of ass is aeached to the center of the sae s7ck. In which case is the period of the pendulu the longest? A) Case 1 B) Case 2 C) Sae Now lets work through it in detail Mechanics Lecture 8, Slide 19

22 Case 1 Case 2 Lets copare for each case. Mechanics Lecture 8, Slide 20

23 Case 1 Case 2 Lets copare for each case. (A) (B) (C) Mechanics Lecture 8, Slide 21

24 So we can work out Case 1 Case 2 In which case is the period longest? A) Case 1 B) Case 2 C) They are the sae Mechanics Lecture 8, Slide 22

25 The Sall Angle Approxiation θ R CM - Exact expression X CM arc-length = R CM θ % difference between θ and sinθ Angle (degrees) Mechanics Lecture 8, Slide 23

26 Clicker Question A pendulu is ade by hanging a thin hoola-hoop of diaeter D on a sall nail. What is the angular frequency of oscilla7on of the hoop for sall displaceents? (I CM = R 2 for a hoop) A) pivot (nail) B) D C) Mechanics Lecture 8, Slide 24

27 The angular frequency of oscilla7on of the hoop for sall displaceents will be given by Use parallel axis theore: I = I CM + R 2 = R 2 + R 2 = 2R 2 pivot (nail) R So X CM Mechanics Lecture 8, Slide 25

Classical Mechanics Lecture 22

Classical Mechanics Lecture 22 Classical Mechanics Lecture 22 Today s Concept: Siple Haronic Mo7on: Mo#on of a Pendulu Mechanics Lecture 8, Slide 1 Grading Unit 14 and 15 Ac7vity Guides will not be graded Please turn in:! Unit 14 WriIen

More information

Classical Mechanics Lecture 22

Classical Mechanics Lecture 22 Classical Mechanics Lecture 22 Today s Concept: Siple Haronic Mo7on: Mo#on of a Pendulu Mechanics Lecture 8, Slide 1 Your Coents so the oega can stand for both the oscilla7on frequency or angular velocity

More information

Announcements. Last year s final exam has been posted. Final exam is worth 200 points and is 2 hours: Quiz #9 this Wednesday:

Announcements. Last year s final exam has been posted. Final exam is worth 200 points and is 2 hours: Quiz #9 this Wednesday: Announceents sartphysics hoework deadlines have been reset to :0 PM on eceber 15 (beinnin of final exa). You can et 100% credit if you o back and correct ANY proble on the HW fro the beinnin of the seester!

More information

Exam 3 Results !"#$%&%'()*+(,-./0% 123+#435%%6789:% Approximate Grade Cutoffs Ø A Ø B Ø C Ø D Ø 0 24 F

Exam 3 Results !#$%&%'()*+(,-./0% 123+#435%%6789:% Approximate Grade Cutoffs Ø A Ø B Ø C Ø D Ø 0 24 F Exam 3 Results Approximate Grade Cutos Ø 75-1 A Ø 55 74 B Ø 35 54 C Ø 5 34 D Ø 4 F '$!" '#!" '!!" &!" %!" $!" #!"!"!"#$%&%'()*+(,-./% 13+#435%%6789:%!()" )('!" '!(')" ')(#!" #!(#)" #)(*!" *!(*)" *)($!"

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page 5/09/06 PHYSICS 13 Exa #1 NAME FEYNMAN Please write down your nae also on the back side of the last page 1 he figure shows a horizontal planks of length =50 c, and ass M= 1 Kg, pivoted at one end. he planks

More information

Unit 14 Harmonic Motion. Your Comments

Unit 14 Harmonic Motion. Your Comments Today s Concepts: Periodic Motion Siple - Mass on spring Daped Forced Resonance Siple - Pendulu Unit 1, Slide 1 Your Coents Please go through the three equations for siple haronic otion and phase angle

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω =

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω = Thur Oct 9 Assignent 10 Mass-Spring Kineatics (x, v, a, t) Dynaics (F,, a) Tie dependence Energy Pendulu Daping and Resonances x Acos( ωt) = v = Aω sin( ωt) a = Aω cos( ωt) ω = spring k f spring = 1 k

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Physics 201 Lecture 29

Physics 201 Lecture 29 Phsics 1 ecture 9 Goals ecture 9 v Describe oscillator otion in a siple pendulu v Describe oscillator otion with torques v Introduce daping in SHM v Discuss resonance v Final Ea Details l Sunda, Ma 13th

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

Classical Mechanics Lecture 21

Classical Mechanics Lecture 21 Classical Mechanics Lecture 21 Today s Concept: Simple Harmonic Mo7on: Mass on a Spring Mechanics Lecture 21, Slide 1 The Mechanical Universe, Episode 20: Harmonic Motion http://www.learner.org/vod/login.html?pid=565

More information

More Oscillations! (Today: Harmonic Oscillators)

More Oscillations! (Today: Harmonic Oscillators) More Oscillations! (oday: Haronic Oscillators) Movie assignent reinder! Final due HURSDAY April 20 Subit through ecapus Different rubric; reeber to chec it even if you got 00% on your draft: http://sarahspolaor.faculty.wvu.edu/hoe/physics-0

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position Physics 3: ecture Today s genda Siple haronic otion Deinition Period and requency Position, velocity, and acceleration Period o a ass on a spring Vertical spring Energy and siple haronic otion Energy o

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds)

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds) 05/07/03 HYSICS 3 Exa #1 Use g 10 /s in your calculations. NAME Feynan lease write your nae also on the back side of this exa 1. 1A A unifor thin stick of ass M 0. Kg and length 60 c is pivoted at one

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

3. Period Law: Simplified proof for circular orbits Equate gravitational and centripetal forces

3. Period Law: Simplified proof for circular orbits Equate gravitational and centripetal forces Physics 106 Lecture 10 Kepler s Laws and Planetary Motion-continued SJ 7 th ed.: Chap 1., 1.6 Kepler s laws of planetary otion Orbit Law Area Law Period Law Satellite and planetary orbits Orbits, potential,

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

P235 Midterm Examination Prof. Cline

P235 Midterm Examination Prof. Cline P235 Mier Exaination Prof. Cline THIS IS A CLOSED BOOK EXAMINATION. Do all parts of all four questions. Show all steps to get full credit. 7:00-10.00p, 30 October 2009 1:(20pts) Consider a rocket fired

More information

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information

Student Book pages

Student Book pages Chapter 7 Review Student Boo pages 390 39 Knowledge. Oscillatory otion is otion that repeats itself at regular intervals. For exaple, a ass oscillating on a spring and a pendulu swinging bac and forth..

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

Announcements. Civil and Mechanical engineers: This week is for you!

Announcements. Civil and Mechanical engineers: This week is for you! Announcements Civil and echanical engineers: his week is for you! Ø Sta;cs: Oooh, so exci;ng! Ø Please pay aaen;on: We want you to build bridges that don t fall down! Exam 3 next Wednesday!!! (November

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition Physics HW Set Chapter 5 Serway 7 th Edition Conceptual Questions:, 3, 5,, 6, 9 Q53 You can take φ = π, or equally well, φ = π At t= 0, the particle is at its turning point on the negative side of equilibriu,

More information

Oscillations: Review (Chapter 12)

Oscillations: Review (Chapter 12) Oscillations: Review (Chapter 1) Oscillations: otions that are periodic in tie (i.e. repetitive) o Swinging object (pendulu) o Vibrating object (spring, guitar string, etc.) o Part of ediu (i.e. string,

More information

Math 1600A Lecture 3, Section 002

Math 1600A Lecture 3, Section 002 Math 1600 Lecture 3 1 of 5 Math 1600A Lecture 3, Section 002 Announceents: More texts, solutions anuals and packages coing soon. Read Section 1.3 for next class. Work through recoended hoework questions.

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of Chapter 14 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 14 Due: 11:59p on Sunday, Noveber 27, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves

Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves Sang-Wook Cheong Friday, February 16 th, 2017 Two Exam 1 Questions with errors Correct answer: L = r X p = (2000

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

Classical Mechanics Lecture 16

Classical Mechanics Lecture 16 Classical Mechanics Lecture 16 Today s Concepts: a) Rolling Kine6c Energy b) Angular Accelera6on Physics 211 Lecture 16, Slide 1 Thoughts from the Present & Past Can we do that cookie 6n demo again, but

More information

Classical Mechanics Lecture 17

Classical Mechanics Lecture 17 Classical Mechanics Lecture 17 Today s Concept: Angular Momentum Mechanics Lecture 19, Slide 1 So does L=r x p or L= Iω? Your Comments I would appreciate if I was not treated as a point par8cle, Why does

More information

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006 Nae: Solve the following probles in the space provided Use the back of the page if needed Each proble is worth 0 points You ust show your work in a logical fashion starting with the correctly applied physical

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis. Instructor(s): Acosta, inzler PHYSICS DEPATMENT PHY 048, Spring 04 Final Exa March 4, 04 Nae (print, last first): Signature: On y honor, I have neither given nor received unauthorized aid on this exaination.

More information

WileyPLUS Assignment 3. Next Week

WileyPLUS Assignment 3. Next Week WileyPLUS Assignent 3 Chapters 6 & 7 Due Wednesday, Noveber 11 at 11 p Next Wee No labs of tutorials Reebrance Day holiday on Wednesday (no classes) 24 Displaceent, x Mass on a spring ωt = 2π x = A cos

More information

Your Comments. That s the plan

Your Comments. That s the plan Your Comments I love physics as much as the next gal, but I was wondering. Why don't we get class off the day after an evening exam? What if the ladder has friction with the wall? Things were complicated

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

Assignment 2. Tyler Shendruk October 8, Hamilton s Principle - Lagrangian and Hamiltonian dynamics.

Assignment 2. Tyler Shendruk October 8, Hamilton s Principle - Lagrangian and Hamiltonian dynamics. Assignent Tyler Shendruk October 8, 010 1 Marion and Thornton Chapter 7 Hailton s Principle - Lagrangian and Hailtonian dynaics. 1.1 Proble 7.9 y z x l θ α Figure 1: A disk rolling down an incline plane.

More information

Chapter 11. Today. Last Wednesday. Precession from Pre- lecture. Solving problems with torque

Chapter 11. Today. Last Wednesday. Precession from Pre- lecture. Solving problems with torque Chapter 11 Last Wednesday Solving problems with torque Work and power with torque Angular momentum Conserva5on of angular momentum Today Precession from Pre- lecture Study the condi5ons for equilibrium

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Electricity & Magnetism Lecture 13

Electricity & Magnetism Lecture 13 Electricit & Magnetism Lecture 13 Toda s Concept: Torques Electricit & Magne9sm Lecture 13, Slide 1 Extra Deadlines Extra deadlines have been set up for Prelectures and Checkpoints that happened last week.

More information

Course Information. Physics 1C Waves, optics and modern physics. Grades. Class Schedule. Clickers. Homework

Course Information. Physics 1C Waves, optics and modern physics. Grades. Class Schedule. Clickers. Homework Course Inforation Physics 1C Waves, optics and odern physics Instructor: Melvin Oaura eail: oaura@physics.ucsd.edu Course Syllabus on the web page http://physics.ucsd.edu/ students/courses/fall2009/physics1c

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

Your Comments. Mechanics Lecture 19, Slide 1

Your Comments. Mechanics Lecture 19, Slide 1 Your Comments i studied so hard for exam... and i did so bad :'( why physics u no love me. When we say a system will conserve angular momentum, does the solar system count? Say the sun suddenly expands

More information

Physics 207: Lecture 26. Announcements. Make-up labs are this week Final hwk assigned this week, final quiz next week.

Physics 207: Lecture 26. Announcements. Make-up labs are this week Final hwk assigned this week, final quiz next week. Torque due to gravit Rotation Recap Phsics 07: ecture 6 Announceents Make-up labs are this week Final hwk assigned this week, final quiz net week Toda s Agenda Statics Car on a Hill Static Equilibriu Equations

More information

Last 6 lectures are easier

Last 6 lectures are easier Your Comments I love you. Seriously. I do. And you never post it. I felt really bad whilst completing the checkpoint for this. This stuff is way above my head and I struggled with the concept of precession.

More information

Astro 7B Midterm 1 Practice Worksheet

Astro 7B Midterm 1 Practice Worksheet Astro 7B Midter 1 Practice Worksheet For all the questions below, ake sure you can derive all the relevant questions that s not on the forula sheet by heart (i.e. without referring to your lecture notes).

More information

Physics 8 Monday, October 28, 2013

Physics 8 Monday, October 28, 2013 Physics 8 Monday, October 28, 2013 Turn in HW8 today. I ll make them less difficult in the future! Rotation is a hard topic. And these were hard problems. HW9 (due Friday) is 7 conceptual + 8 calculation

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

Classical Mechanics Lecture 23

Classical Mechanics Lecture 23 Classical Mechanics Lecture 23 Toda s Concept: Harmonic Waves Mechanics Lecture 23, Slide 1 Your comments are ver important to us... Your comments are still ver important to us... So, the tension in a

More information

Name: Partner(s): Date: Angular Momentum

Name: Partner(s): Date: Angular Momentum Nae: Partner(s): Date: Angular Moentu 1. Purpose: In this lab, you will use the principle of conservation of angular oentu to easure the oent of inertia of various objects. Additionally, you develop a

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

Physics 41 Homework #2 Chapter 16. fa. Here v is the speed of the wave. 16. The speed of a wave on a massless string would be infinite!

Physics 41 Homework #2 Chapter 16. fa. Here v is the speed of the wave. 16. The speed of a wave on a massless string would be infinite! Physics 41 Hoewor # Chapter 1 Serway 7 th Conceptual: Q: 3,, 8, 11, 1, Probles P: 1, 3, 5, 9, 1, 5, 31, 35, 38, 4, 5, 57 Conceptual 3. (i) d=e, f, c, b, a (ii) Since, the saller the (the coefficient of

More information

Simple Harmonic Motion

Simple Harmonic Motion Siple Haronic Motion Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and Departent of Physics, HKBU Departent of Physics Siple haronic otion In echanical physics,

More information

Physics 202H - Introductory Quantum Physics I Homework #12 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/12/13

Physics 202H - Introductory Quantum Physics I Homework #12 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/12/13 Physics 0H - Introctory Quantu Physics I Hoework # - Solutions Fall 004 Due 5:0 PM, Monday 004//3 [70 points total] Journal questions. Briefly share your thoughts on the following questions: What aspects

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

PHYS 154 Practice Final Test Spring 2018

PHYS 154 Practice Final Test Spring 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise and enjoyent, this practice test includes18 questions and 4 probles. Questions: N.. ake sure that you justify

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

Torque and Simple Harmonic Motion

Torque and Simple Harmonic Motion Torque and Simple Harmonic Motion Recall: Fixed Axis Rotation Angle variable Angular velocity Angular acceleration Mass element Radius of orbit Kinematics!! " d# / dt! " d 2 # / dt 2!m i Moment of inertia

More information

Lecture 16: Rotational Dynamics

Lecture 16: Rotational Dynamics Lecture 6: otational Dynamics Today s Concepts: a) olling Kine6c Energy b) Angular Accelera6on Mechanics Lecture 6, Slide I felt like every slide just had a ton of equa6ons just being used to find new

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Monday Ch 9 examples Rota:on of a rigid body Torque and angular accelera:on Today Solving problems with torque Work and power with torque Angular momentum

More information

Lecture 22: Harmonic Waves. Physics 2210 Fall Semester 2014

Lecture 22: Harmonic Waves. Physics 2210 Fall Semester 2014 Lecture 22: Harmonic Waves Physics 2210 Fall Semester 2014 Announcements Unit 21 Simple and Physical Pendula (Nov 24th ) HW Due 11/25 th as usual No new material Wednesday November 26th. In-class discussion

More information

Waves Unit I Activity: Kinematic Equations for SHM

Waves Unit I Activity: Kinematic Equations for SHM Nae Date Period Waves Unit I Activity: Kineatic Equations for SHM You have seen four different graphs in the wor you have done on ass-spring systes oscillating in siple haronic otion (SHM). Now we will

More information

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011 EN40: ynaics and Vibrations Final Exaination Tuesday May 15, 011 School of Engineering rown University NME: General Instructions No collaboration of any ind is peritted on this exaination. You ay use double

More information

Your Comments. Nutcracker

Your Comments. Nutcracker Nutcracker Your Comments I don't understand the pressure differences in different sized pipes. To me, I would think that a pipe with a larger diameter has the smaller pressure and a skinnier pipe has a

More information

Physics 231 Lecture 13

Physics 231 Lecture 13 Physics 3 Lecture 3 Mi Main points it o td today s lecture: Elastic collisions in one diension: ( ) v = v0 + v0 + + ( ) v = v0 + v0 + + Multiple ipulses and rocket propulsion. F Δ t = Δ v Δ v propellant

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Torque Rotational Dynamics Current assignments Prelecture Thursday, Nov 20th at 10:30am HW#13 due this Friday at 5 pm. Clicker.1 What is the center of mass of

More information

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm.

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm. 1. (a) The aplitude is half the range of the displaceent, or x = 1.0. (b) The axiu speed v is related to the aplitude x by v = ωx, where ω is the angular frequency. Since ω = πf, where f is the frequency,

More information

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1 PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque

More information

Welcome back to Physics 215. Review gravity Oscillations Simple harmonic motion

Welcome back to Physics 215. Review gravity Oscillations Simple harmonic motion Welcome back to Physics 215 Review gravity Oscillations Simple harmonic motion Physics 215 Spring 2018 Lecture 14-1 1 Final Exam: Friday May 4 th 5:15-7:15pm Exam will be 2 hours long Have an exam buddy

More information

Note-A-Rific: Mechanical

Note-A-Rific: Mechanical Note-A-Rific: Mechanical Kinetic You ve probably heard of inetic energy in previous courses using the following definition and forula Any object that is oving has inetic energy. E ½ v 2 E inetic energy

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

LECTURE 1- ROTATION. Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler

LECTURE 1- ROTATION. Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler LECTURE 1- ROTATION Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler CLASS MATERIALS Your Attention (but attendance is OPTIONAL) i-clicker OPTIONAL- EXTRA CREDIT ONLY Homework

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

OSCILLATIONS CHAPTER FOURTEEN 14.1 INTRODUCTION

OSCILLATIONS CHAPTER FOURTEEN 14.1 INTRODUCTION CHAPTER FOURTEEN OSCILLATIONS 14.1 INTRODUCTION 14.1 Introduction 14. Periodic and oscilatory otions 14.3 Siple haronic otion 14.4 Siple haronic otion and unifor circular otion 14.5 Velocity and acceleration

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information