Technische Universität München Zentrum Mathematik

Size: px
Start display at page:

Download "Technische Universität München Zentrum Mathematik"

Transcription

1 Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 2016 www-m10.ma.tum.de/projektivegeometriess16 Solutions for Worksheet 6 ( ) Question 1. Bracket polynomials Classwork (For this exercise,) A bracket poynomial is a real polynomial in 3 3-determinants, in which the columns are indeterminate/variable points of RP 2. I.e. expression which are build via addition, multiplication and scalar multiplication from determinants of the form [XY Z] with X, Y, Z P R. The easiest example for them is, of course, [ABC] for arbitrary A, B, C P R. This bracket polynomial is zero if and only if the points A, B, Care collinear. a) Let A through F be six points in general position. The equation [ABC][DEF ] [ABD][CEF ] = 0 is satisfied if and only if the lines (A B), (C D) and (E F ) meet in a common point. Prove this connection by dealing with the special case where at least two of the lines are collinear and the determinants can be interpreted as oriented triangle areas. Argue why this special case does not restrict the generality of the proof. b) Find a bracket polynomial which is zero if and only if the point K lies on the line ( (A B) (C D) ) ( (E F ) (G H) ). You may assume that the points are in sufficiently general position so that this line is uniquely defined. c) In the preceding subtasks, degenerated situations have been explicitely excluded by the assumption of a general position of points. What significance does the polynomial retain if this assumption no longer holds and degenerate situations do occur? a) We can shift the intersection point on the line at infinity with an adequate projective transformation, making the lines in question parallel. This allows us to reformulate the geometric statement: The third line shall be parallel to the given two. In order to be able to talk about oriented triangle areas, we should additionally assume that all points are finite and are represented by vectors with z = 1. Let A B and E F be parallel lines with distance h. We denote the distance of point C to A B by c, the distance of D to this line by d. Then the determinants are 0 = [ABC][DEF ] [ABD][CEF ] = A B c E F (h d) A B d E F (h c) = c(h d) d(h c) = ch cd dh + dc = (c d)h As h is not zero, because of the general position of all points, the equation is true iff c = d. I.e. the points C and D have the same distance to A B and their Join is parallel to that line. The bracket polynomial is multi-homogeneous, i.e. the choice of representatives does not restrict the generality of the setup. Furthermore, shifting one point onto the line at infinity is achievable by a projective transformation, which does not change the validity of the equation. So the proof holds in general. 1

2 b) The expression in part a) can be inferred from the following consideration: The Meet P = (A B) (C D) is exactly the linear combination of A and B that is collinear to C and D. P = λa + µb 0 = [CDP ] = λ[cda] + µ[cdb] λ = [CDB] µ = [CDA] P = [CDB]A [CDA]B We can express the second intersection point Q in the same way and formulate the collinearity as an additional determinant: P = [CDB]A [CDA]B Q = [GHF ]E [GHE]F 0 = [P QK] = [[CDB]A [CDA]B, [GHF ]E [GHE]F, K] = [CDB][GHF ][AEK] [CDB][GHE][AF K] [CDA][GHF ][BEK] + [CDA][GHE][BF K] c) The variant which represents a construction might not be true anymore, as Meets and Joins do not need to be unique. Al that is left is an existential quantification: There are points taking on the roles of P and Q and with which all 5 collinearities in the instruction are fulfilled. But they are note necessarily unique. Question 2. Quadrilateral sets This task deals with so-called quadrilateral sets, often abbreviated as quad sets. The construction to the right will result in six points A through F on a line which satisfy the quad set relation: One starts with 4 points in general position P, Q, R, S, draws all 6 Joins and intersects them with an additional line. The pairs in the quad set are then the intersection points of the last line with the opposite edges of the quadrangle P QRS. The condition for 6 points to form a quad set (A, D; B, E; C, F ) can also be written as an equation using determinants: S R Q P A D F B E C [AE][BF ][CD] = [AF ][BD][CE] a) The von-staudt constructions introduced in the lecture can be seen as a special case of quadrilateral sets. Explicitely name the quad sets in question, and verify the determinant equation by simple computation using standard coordinates. b) Which condition must be satisfied by a bracket polynomial equation in order to make it invariant under both the choice of representatives and projective transformations? c) Dualize the depicted construction to obtain a set of six lines in quad set relation. Note: In the scope of this worksheet, the figure above will be called primal and the one you constructed here will be dual. This choice has no relevance beyond the scope of this worksheet; often the terms are used in exactly the opposite way. d) Intersect the six concurrent lines in the dual construction with another line g in such a way that you obtain six distinct points of intersection. Claim: these six points again form a quadrilateral set. Verify this claim by drawing the primal construction for these points, preferrably in a different color. How many real degrees of freedom do you have in creating this construction? 2

3 It is advisable to use the notation (A, D; B, E; C, F ) for quad sets to express clearly which points form pairs. a) Addition is the quad set (X, Y ; 0, X + Y ;, ). Multiplication is the quad set (X, Y ; 1, X Y ; 0, ). [X, X + Y ][0, ][, Y ] = [X, ][0, Y ][, X + Y ] x x + y y 0 1 = x 1 0 y x + y 0 1 (x x y) ( 1) 1 = ( 1) ( y) 1 y = y [X, X Y ][1, ][0, Y ] = [X, ][1, Y ][0, X Y ] x x y y 1 1 = x 1 1 y x y 1 1 (x xy) ( 1) ( y) = ( 1) (1 y) ( xy) y(x xy) = xy(1 y) Both quad sets do fulfil the given determinant equation. b) For the equation to be independent from the choice of representatives, every point must occur for the same number of times in every summand on every side. Then, the scalar multiple will occur on both sides with the same power and, thus, can be cancelled. To be invariant under projective transformations, every summand has to have the same number of determinants, as every determinant will be multiplied with the determinant of the transformation matrix. When every point occurs for the same number of times on both sides, the number of determinants have be the same, too. So, the invariance under projective transformations will hold automatically. Such a bracket polynomial equation is called multi-homogeneous. c) The primal configuration starts with 4 arbitrary points and their 6 connecting lines, intersecting these with an additional line. Dually, this results in 4 arbitrary lines p, q, r, s (in red), their 6 intersetion points (again, red), connecting them with an additional point G (blue). F g p s E c b C B P Q D a A q A B r G d e f D S R E C F 3

4 d) In the above drawing you already find the intersection line g (magenta) and the corresponding verification construction (green). For this construction we have 3 degrees of freedom e.g. choosing one point arbitrarily and another point on a given line. The rest is predetermined. One particular point to bear in mind is the correct assignment. I.e. points form a pair in the dual construction, when they do not lie on a common configuration line. They determine lines which also form a pair. Finally, their intersections with the additional line form new pairs of point. And these have to be treated as such by the verification construction. Another assignment, in general, does not result in a quad set. The pairs in the dual drawing are (A, D; B, E; C, F ), just as in the primal one. Question 3. Quadrilateral sets (continued) Homework If some subtasks from question 2 were not completed in your tutorial, please consider them homework. e) Algebraically, the quad set relation is an equation of bracket polynomials (in 2 2-determinants). Write the condition for a harmonic set in the form of a bracket polynomial equation as well. f) Describe a harmonic set as a special case of a quadrilateral set. Investigate this equivalence algebraically, and also pay attention to any special cases which arise. g) The quad set relation was given as a equation for points in RP 1. How can this be turned into an equation for collinear points in RP 2? Use an approach analogous to that used for the computation of cross ratios of collinear points in the plane. a) Simply expanding the known equation: (A, B; C, D) = [AC][BD] [AD][BC] = 1 [AC][BD] = [AD][BC] b) The verification construction for an harmonic point set is a special case of the given construction in which to pairs of lines intersect on the number line. Thus, we can rewrite the harmonic point set (A, B; C, D) as the quad set (A, A; B, B; C, D). [AC][BD] [AD][BC] = 1 [AC][BD] = [AD][BC] [AB][BD][CA] = [AD][BA][CB] [AB] [AC][BD] = [AB] [AD][BC] When the determinant [AB] does not vanish, both equations are equivalent. When it does vanish, 2 points forming a pair in the harmonic set collapse in the quad set relation even 4 points collapse. In that case, the equation for harmonic points might not hold anymore. The quad set equation, however, does still hold with this zero determinant. c) Every property that is well-defined as a bracket polynomial in RP 1 has to be multi-homogeneous and is therefore projectively invariant. In the primal construction, a certain expression in 2 2-determinants is true and it can be reformulated with 3 3-determinants by looking from an additional point at the given ones. In the dual construction, the same expression is true for 3 3-determinants when we insert an additional line in each bracket. The reason is, that primal and dual computations are identical. When the concurrent lines run through the origin and we when we look at them from the line at infinity, applying Laplace s formula results in the original 2 2-determinants. given the same situation and considering the intersections with the line at infinity, they fulfil the exact same 2 2-expression on the line at infinity. Because of the projective invariance we can let go of the special roles of origin and line at infinity. We get the result, that it does not matter whether we look at a pencil of lines from an additional line i.e. adding this line into all brackets or intersect the pencil with an additional line and express the determinant in terms of homogeneous coordinates on this line. 4

5 Question 4. CP 2 vs. RP 2 Find an incidence configuration that is realisable in CP 2, but not in RP 2. Use at least one von-staudt construction to do this. Of course, there are arbitrarily many such constructions. The easiest one is the verification that i is the square root of 1 or rather, that 1 is the square of i. Constructing square roots with von-staudt constructions is not possible, as they are not unique. Only given the starting points 0, 1, and i, a possible construction is solely schematically(!) given by: That i 2 is indeed 1, can be shown with an additional von-staudt construction or an harmonic-point-construction (as above). As this is a real representation of a complex construction, on line, sooner or later, has to be bent. That this construction is not realisable over R is due to the following fact: The von-staudt construction guarantees that the point labelled with i is always a square root of 1. No matter over which field one wants to depict this configuration. 5

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 8 https://www-m.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for Worksheet

More information

Conics and perspectivities

Conics and perspectivities 10 Conics and perspectivities Some people have got a mental horizon of radius zero and call it their point of view. Attributed to David Hilbert In the last chapter we treated conics more or less as isolated

More information

More on Bracket Algebra

More on Bracket Algebra 7 More on Bracket Algebra Algebra is generous; she often gives more than is asked of her. D Alembert The last chapter demonstrated, that determinants (and in particular multihomogeneous bracket polynomials)

More information

The complex projective line

The complex projective line 17 The complex projective line Now we will to study the simplest case of a complex projective space: the complex projective line. We will see that even this case has already very rich geometric interpretations.

More information

Conics and their duals

Conics and their duals 9 Conics and their duals You always admire what you really don t understand. Blaise Pascal So far we dealt almost exclusively with situations in which only points and lines were involved. Geometry would

More information

Concurrency and Collinearity

Concurrency and Collinearity Concurrency and Collinearity Victoria Krakovna vkrakovna@gmail.com 1 Elementary Tools Here are some tips for concurrency and collinearity questions: 1. You can often restate a concurrency question as a

More information

Power Round: Geometry Revisited

Power Round: Geometry Revisited Power Round: Geometry Revisited Stobaeus (one of Euclid s students): But what shall I get by learning these things? Euclid to his slave: Give him three pence, since he must make gain out of what he learns.

More information

Modern Geometry Homework.

Modern Geometry Homework. Modern Geometry Homework 1 Cramer s rule We now wish to become experts in solving two linear equations in two unknowns over our field F We first recall that a 2 2 matrix a b A = c b its determinant is

More information

Factoring and Algebraic Fractions

Factoring and Algebraic Fractions Worksheet. Algebraic Fractions Section Factoring and Algebraic Fractions As pointed out in worksheet., we can use factoring to simplify algebraic expressions, and in particular we can use it to simplify

More information

LECTURE 5, FRIDAY

LECTURE 5, FRIDAY LECTURE 5, FRIDAY 20.02.04 FRANZ LEMMERMEYER Before we start with the arithmetic of elliptic curves, let us talk a little bit about multiplicities, tangents, and singular points. 1. Tangents How do we

More information

2. Introduction to commutative rings (continued)

2. Introduction to commutative rings (continued) 2. Introduction to commutative rings (continued) 2.1. New examples of commutative rings. Recall that in the first lecture we defined the notions of commutative rings and field and gave some examples of

More information

Homework 2. Solutions T =

Homework 2. Solutions T = Homework. s Let {e x, e y, e z } be an orthonormal basis in E. Consider the following ordered triples: a) {e x, e x + e y, 5e z }, b) {e y, e x, 5e z }, c) {e y, e x, e z }, d) {e y, e x, 5e z }, e) {

More information

Two applications of the theorem of Carnot

Two applications of the theorem of Carnot Two applications of the theorem of Carnot Zoltán Szilasi Abstract Using the theorem of Carnot we give elementary proofs of two statements of C Bradley We prove his conjecture concerning the tangents to

More information

1.1 Line Reflections and Point Reflections

1.1 Line Reflections and Point Reflections 1.1 Line Reflections and Point Reflections Since this is a book on Transformation Geometry, we shall start by defining transformations of the Euclidean plane and giving basic examples. Definition 1. A

More information

Perspectives on Projective Geometry

Perspectives on Projective Geometry Perspectives on Projective Geometry A Guided Tour Through Real and Complex Geometry Bearbeitet von Jürgen Richter-Gebert 1. Auflage 2011. Buch. xxii, 571 S. Hardcover ISBN 978 3 642 17285 4 Format (B x

More information

DUALITY AND INSCRIBED ELLIPSES

DUALITY AND INSCRIBED ELLIPSES DUALITY AND INSCRIBED ELLIPSES MAHESH AGARWAL, JOHN CLIFFORD, AND MICHAEL LACHANCE Abstract. We give a constructive proof for the existence of inscribed family of ellipses in convex n-gons for 3 n 5 using

More information

Conics. Chapter 6. When you do this Exercise, you will see that the intersections are of the form. ax 2 + bxy + cy 2 + ex + fy + g =0, (1)

Conics. Chapter 6. When you do this Exercise, you will see that the intersections are of the form. ax 2 + bxy + cy 2 + ex + fy + g =0, (1) Chapter 6 Conics We have a pretty good understanding of lines/linear equations in R 2 and RP 2. Let s spend some time studying quadratic equations in these spaces. These curves are called conics for the

More information

Definition: A vector is a directed line segment which represents a displacement from one point P to another point Q.

Definition: A vector is a directed line segment which represents a displacement from one point P to another point Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH Algebra Section : - Introduction to Vectors. You may have already met the notion of a vector in physics. There you will have

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

Two applications of the theorem of Carnot

Two applications of the theorem of Carnot Annales Mathematicae et Informaticae 40 (2012) pp. 135 144 http://ami.ektf.hu Two applications of the theorem of Carnot Zoltán Szilasi Institute of Mathematics, MTA-DE Research Group Equations, Functions

More information

Harmonic quadrangle in isotropic plane

Harmonic quadrangle in isotropic plane Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math (018) 4: 666 678 c TÜBİTAK doi:10.3906/mat-1607-35 Harmonic quadrangle in isotropic plane Ema JURKIN

More information

Factorizing Algebraic Expressions

Factorizing Algebraic Expressions 1 of 60 Factorizing Algebraic Expressions 2 of 60 Factorizing expressions Factorizing an expression is the opposite of expanding it. Expanding or multiplying out a(b + c) ab + ac Factorizing Often: When

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

Intermediate Tier - Algebra revision

Intermediate Tier - Algebra revision Intermediate Tier - Algebra revision Contents : Collecting like terms Multiplying terms together Indices Expanding single brackets Expanding double brackets Substitution Solving equations Finding nth term

More information

Correctness of depiction in planar diagrams of spatial figures

Correctness of depiction in planar diagrams of spatial figures arxiv:1403.3621v1 [math.gm] 12 Mar 2014 Correctness of depiction in planar diagrams of spatial figures P. L. Robinson This study was motivated in part by the following question: is it possible to decide

More information

1 Overview. CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992

1 Overview. CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992 CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992 Original Lecture #1: 1 October 1992 Topics: Affine vs. Projective Geometries Scribe:

More information

This pre-publication material is for review purposes only. Any typographical or technical errors will be corrected prior to publication.

This pre-publication material is for review purposes only. Any typographical or technical errors will be corrected prior to publication. This pre-publication material is for review purposes only. Any typographical or technical errors will be corrected prior to publication. Copyright Pearson Canada Inc. All rights reserved. Copyright Pearson

More information

MATH 12 CLASS 2 NOTES, SEP Contents. 2. Dot product: determining the angle between two vectors 2

MATH 12 CLASS 2 NOTES, SEP Contents. 2. Dot product: determining the angle between two vectors 2 MATH 12 CLASS 2 NOTES, SEP 23 2011 Contents 1. Dot product: definition, basic properties 1 2. Dot product: determining the angle between two vectors 2 Quick links to definitions/theorems Dot product definition

More information

Algebra 1. Predicting Patterns & Examining Experiments. Unit 5: Changing on a Plane Section 4: Try Without Angles

Algebra 1. Predicting Patterns & Examining Experiments. Unit 5: Changing on a Plane Section 4: Try Without Angles Section 4 Examines triangles in the coordinate plane, we will mention slope, but not angles (we will visit angles in Unit 6). Students will need to know the definition of collinear, isosceles, and congruent...

More information

Linear Algebra. Mark Dean. Lecture Notes for Fall 2014 PhD Class - Brown University

Linear Algebra. Mark Dean. Lecture Notes for Fall 2014 PhD Class - Brown University Linear Algebra Mark Dean Lecture Notes for Fall 2014 PhD Class - Brown University 1 Lecture 1 1 1.1 Definition of Linear Spaces In this section we define the concept of a linear (or vector) space. The

More information

Introduction. Chapter Points, Vectors and Coordinate Systems

Introduction. Chapter Points, Vectors and Coordinate Systems Chapter 1 Introduction Computer aided geometric design (CAGD) concerns itself with the mathematical description of shape for use in computer graphics, manufacturing, or analysis. It draws upon the fields

More information

Exercises for Unit V (Introduction to non Euclidean geometry)

Exercises for Unit V (Introduction to non Euclidean geometry) Exercises for Unit V (Introduction to non Euclidean geometry) V.1 : Facts from spherical geometry Ryan : pp. 84 123 [ Note : Hints for the first two exercises are given in math133f07update08.pdf. ] 1.

More information

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017 Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have

More information

A Geometric Characterization of the Perfect Ree-Tits Generalized Octagons.

A Geometric Characterization of the Perfect Ree-Tits Generalized Octagons. A Geometric Characterization of the Perfect Ree-Tits Generalized Octagons. H. Van Maldeghem Dedicated to Prof. J. Tits on the occasion of his 65th birthday 1 Introduction The world of Tits-buildings, created

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes 12.5 Equations of Lines and Planes Equation of Lines Vector Equation of Lines Parametric Equation of Lines Symmetric Equation of Lines Relation Between Two Lines Equations of Planes Vector Equation of

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

Modeling and Simulation with ODE for MSE

Modeling and Simulation with ODE for MSE Zentrum Mathematik Technische Universität München Prof. Dr. Massimo Fornasier WS 6/7 Dr. Markus Hansen Sheet 7 Modeling and Simulation with ODE for MSE The exercises can be handed in until Wed, 4..6,.

More information

Congruence. Chapter The Three Points Theorem

Congruence. Chapter The Three Points Theorem Chapter 2 Congruence In this chapter we use isometries to study congruence. We shall prove the Fundamental Theorem of Transformational Plane Geometry, which states that two plane figures are congruent

More information

Linear Algebra I. Ronald van Luijk, 2015

Linear Algebra I. Ronald van Luijk, 2015 Linear Algebra I Ronald van Luijk, 2015 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents Dependencies among sections 3 Chapter 1. Euclidean space: lines and hyperplanes 5 1.1. Definition

More information

Solving and Graphing Inequalities Joined by And or Or

Solving and Graphing Inequalities Joined by And or Or Solving and Graphing Inequalities Joined by And or Or Classwork 1. Zara solved the inequality 18 < 3x 9 as shown below. Was she correct? 18 < 3x 9 27 < 3x 9 < x or x> 9 2. Consider the compound inequality

More information

Berkeley Math Circle, May

Berkeley Math Circle, May Berkeley Math Circle, May 1-7 2000 COMPLEX NUMBERS IN GEOMETRY ZVEZDELINA STANKOVA FRENKEL, MILLS COLLEGE 1. Let O be a point in the plane of ABC. Points A 1, B 1, C 1 are the images of A, B, C under symmetry

More information

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

Automated Geometric Reasoning with Geometric Algebra: Practice and Theory

Automated Geometric Reasoning with Geometric Algebra: Practice and Theory Automated Geometric Reasoning with Geometric Algebra: Practice and Theory Key Laboratory of Mathematics Mechanization Academy of Mathematics and Systems Science Chinese Academy of Sciences, Beijing 2017.07.25

More information

2 Homework. Dr. Franz Rothe February 21, 2015 All3181\3181_spr15h2.tex

2 Homework. Dr. Franz Rothe February 21, 2015 All3181\3181_spr15h2.tex Math 3181 Dr. Franz Rothe February 21, 2015 All3181\3181_spr15h2.tex Name: Homework has to be turned in this handout. For extra space, use the back pages, or blank pages between. The homework can be done

More information

Vector Spaces and Projective Geometry

Vector Spaces and Projective Geometry Vector Spaces and Projective Geometry Lou de Boer December 20, 2009 Vector spaces are of fundamental importance, not only in Mathematics, but in many applied sciences as well, especially in Physics. Less

More information

Exercises for Unit I (Topics from linear algebra)

Exercises for Unit I (Topics from linear algebra) Exercises for Unit I (Topics from linear algebra) I.0 : Background Note. There is no corresponding section in the course notes, but as noted at the beginning of Unit I these are a few exercises which involve

More information

Lesson 12-13: Properties of Similarity Transformations

Lesson 12-13: Properties of Similarity Transformations Lesson 12-13: Properties of Similarity Transformations Learning Target I can define a similarity transformation as the composition of basic rigid motions and dilations. I can define two figures to be similar

More information

THE THEOREM OF DESARGUES

THE THEOREM OF DESARGUES THE THEOREM OF DESARGUES TIMOTHY VIS 1. Introduction In this worksheet we will be exploring some proofs surrounding the Theorem of Desargues. This theorem plays an extremely important role in projective

More information

Exercises for Unit I (Topics from linear algebra)

Exercises for Unit I (Topics from linear algebra) Exercises for Unit I (Topics from linear algebra) I.0 : Background This does not correspond to a section in the course notes, but as noted at the beginning of Unit I it contains some exercises which involve

More information

10. Noether Normalization and Hilbert s Nullstellensatz

10. Noether Normalization and Hilbert s Nullstellensatz 10. Noether Normalization and Hilbert s Nullstellensatz 91 10. Noether Normalization and Hilbert s Nullstellensatz In the last chapter we have gained much understanding for integral and finite ring extensions.

More information

Syllabus. + + x + n 1 n. + x + 2

Syllabus. + + x + n 1 n. + x + 2 1. Special Functions This class will cover problems involving algebraic functions other than polynomials, such as square roots, the floor function, and logarithms. Example Problem: Let n be a positive

More information

USA Mathematics Talent Search

USA Mathematics Talent Search ID#: 036 16 4 1 We begin by noting that a convex regular polygon has interior angle measures (in degrees) that are integers if and only if the exterior angle measures are also integers. Since the sum of

More information

Geometry in the Complex Plane

Geometry in the Complex Plane Geometry in the Complex Plane Hongyi Chen UNC Awards Banquet 016 All Geometry is Algebra Many geometry problems can be solved using a purely algebraic approach - by placing the geometric diagram on a coordinate

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

Wed Feb The vector spaces 2, 3, n. Announcements: Warm-up Exercise:

Wed Feb The vector spaces 2, 3, n. Announcements: Warm-up Exercise: Wed Feb 2 4-42 The vector spaces 2, 3, n Announcements: Warm-up Exercise: 4-42 The vector space m and its subspaces; concepts related to "linear combinations of vectors" Geometric interpretation of vectors

More information

SMT 2018 Geometry Test Solutions February 17, 2018

SMT 2018 Geometry Test Solutions February 17, 2018 SMT 018 Geometry Test Solutions February 17, 018 1. Consider a semi-circle with diameter AB. Let points C and D be on diameter AB such that CD forms the base of a square inscribed in the semicircle. Given

More information

STEP Support Programme. STEP 2 Complex Numbers: Solutions

STEP Support Programme. STEP 2 Complex Numbers: Solutions STEP Support Programme STEP Complex Numbers: Solutions i Rewriting the given relationship gives arg = arg arg = α. We can then draw a picture as below: The loci is therefore a section of the circle between

More information

Lecture 5: Efficient PAC Learning. 1 Consistent Learning: a Bound on Sample Complexity

Lecture 5: Efficient PAC Learning. 1 Consistent Learning: a Bound on Sample Complexity Universität zu Lübeck Institut für Theoretische Informatik Lecture notes on Knowledge-Based and Learning Systems by Maciej Liśkiewicz Lecture 5: Efficient PAC Learning 1 Consistent Learning: a Bound on

More information

SMT Power Round Solutions : Poles and Polars

SMT Power Round Solutions : Poles and Polars SMT Power Round Solutions : Poles and Polars February 18, 011 1 Definition and Basic Properties 1 Note that the unit circles are not necessary in the solutions. They just make the graphs look nicer. (1).0

More information

The Love for the Three Conics

The Love for the Three Conics Forum Geometricorum Volume 18 (2018) 419 430. FORUM GEOM ISSN 1534-1178 The Love for the Three Conics Stefan Liebscher and Dierck-E. Liebscher Abstract. Neville s theorem of the three focus-sharing conics

More information

Symmetries and Polynomials

Symmetries and Polynomials Symmetries and Polynomials Aaron Landesman and Apurva Nakade June 30, 2018 Introduction In this class we ll learn how to solve a cubic. We ll also sketch how to solve a quartic. We ll explore the connections

More information

arxiv:math/ v1 [math.ag] 3 Mar 2002

arxiv:math/ v1 [math.ag] 3 Mar 2002 How to sum up triangles arxiv:math/0203022v1 [math.ag] 3 Mar 2002 Bakharev F. Kokhas K. Petrov F. June 2001 Abstract We prove configuration theorems that generalize the Desargues, Pascal, and Pappus theorems.

More information

Finish section 3.6 on Determinants and connections to matrix inverses. Use last week's notes. Then if we have time on Tuesday, begin:

Finish section 3.6 on Determinants and connections to matrix inverses. Use last week's notes. Then if we have time on Tuesday, begin: Math 225-4 Week 7 notes Sections 4-43 vector space concepts Tues Feb 2 Finish section 36 on Determinants and connections to matrix inverses Use last week's notes Then if we have time on Tuesday, begin

More information

MORE EXERCISES FOR SECTIONS II.1 AND II.2. There are drawings on the next two pages to accompany the starred ( ) exercises.

MORE EXERCISES FOR SECTIONS II.1 AND II.2. There are drawings on the next two pages to accompany the starred ( ) exercises. Math 133 Winter 2013 MORE EXERCISES FOR SECTIONS II.1 AND II.2 There are drawings on the next two pages to accompany the starred ( ) exercises. B1. Let L be a line in R 3, and let x be a point which does

More information

International Mathematics TOURNAMENT OF THE TOWNS

International Mathematics TOURNAMENT OF THE TOWNS International Mathematics TOURNAMENT OF THE TOWNS Senior A-Level Paper Fall 2011 1 Pete has marked at least 3 points in the plane such that all distances between them are different A pair of marked points

More information

Solutions to Laplace s Equations- II

Solutions to Laplace s Equations- II Solutions to Laplace s Equations- II Lecture 15: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Laplace s Equation in Spherical Coordinates : In spherical coordinates

More information

17. C M 2 (C), the set of all 2 2 matrices with complex entries. 19. Is C 3 a real vector space? Explain.

17. C M 2 (C), the set of all 2 2 matrices with complex entries. 19. Is C 3 a real vector space? Explain. 250 CHAPTER 4 Vector Spaces 14. On R 2, define the operation of addition by (x 1,y 1 ) + (x 2,y 2 ) = (x 1 x 2,y 1 y 2 ). Do axioms A5 and A6 in the definition of a vector space hold? Justify your answer.

More information

0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION 0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

More information

Mathematics: Year 12 Transition Work

Mathematics: Year 12 Transition Work Mathematics: Year 12 Transition Work There are eight sections for you to study. Each section covers a different skill set. You will work online and on paper. 1. Manipulating directed numbers and substitution

More information

Chapter 5 Vocabulary:

Chapter 5 Vocabulary: Geometry Week 11 ch. 5 review sec. 6.3 ch. 5 review Chapter 5 Vocabulary: biconditional conclusion conditional conjunction connective contrapositive converse deductive reasoning disjunction existential

More information

Coordinates for Projective Planes

Coordinates for Projective Planes Chapter 8 Coordinates for Projective Planes Math 4520, Fall 2017 8.1 The Affine plane We now have several eamples of fields, the reals, the comple numbers, the quaternions, and the finite fields. Given

More information

LECTURE NOTE #8 PROF. ALAN YUILLE. Can we find a linear classifier that separates the position and negative examples?

LECTURE NOTE #8 PROF. ALAN YUILLE. Can we find a linear classifier that separates the position and negative examples? LECTURE NOTE #8 PROF. ALAN YUILLE 1. Linear Classifiers and Perceptrons A dataset contains N samples: { (x µ, y µ ) : µ = 1 to N }, y µ {±1} Can we find a linear classifier that separates the position

More information

Isogonal Conjugates. Navneel Singhal October 9, Abstract

Isogonal Conjugates. Navneel Singhal October 9, Abstract Isogonal Conjugates Navneel Singhal navneel.singhal@ymail.com October 9, 2016 Abstract This is a short note on isogonality, intended to exhibit the uses of isogonality in mathematical olympiads. Contents

More information

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 Here are the solutions to the additional exercises in betsepexercises.pdf. B1. Let y and z be distinct points of L; we claim that x, y and z are not

More information

Quantitative Techniques (Finance) 203. Polynomial Functions

Quantitative Techniques (Finance) 203. Polynomial Functions Quantitative Techniques (Finance) 03 Polynomial Functions Felix Chan October 006 Introduction This topic discusses the properties and the applications of polynomial functions, specifically, linear and

More information

4.6 Bases and Dimension

4.6 Bases and Dimension 46 Bases and Dimension 281 40 (a) Show that {1,x,x 2,x 3 } is linearly independent on every interval (b) If f k (x) = x k for k = 0, 1,,n, show that {f 0,f 1,,f n } is linearly independent on every interval

More information

Lax embeddings of the Hermitian Unital

Lax embeddings of the Hermitian Unital Lax embeddings of the Hermitian Unital V. Pepe and H. Van Maldeghem Abstract In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital U of PG(2, L), L a quadratic

More information

UNDERSTANDING THE DIAGONALIZATION PROBLEM. Roy Skjelnes. 1.- Linear Maps 1.1. Linear maps. A map T : R n R m is a linear map if

UNDERSTANDING THE DIAGONALIZATION PROBLEM. Roy Skjelnes. 1.- Linear Maps 1.1. Linear maps. A map T : R n R m is a linear map if UNDERSTANDING THE DIAGONALIZATION PROBLEM Roy Skjelnes Abstract These notes are additional material to the course B107, given fall 200 The style may appear a bit coarse and consequently the student is

More information

EXERCISES IN QUATERNIONS. William Rowan Hamilton. (The Cambridge and Dublin Mathematical Journal, 4 (1849), pp ) Edited by David R.

EXERCISES IN QUATERNIONS. William Rowan Hamilton. (The Cambridge and Dublin Mathematical Journal, 4 (1849), pp ) Edited by David R. EXERCISES IN QUATERNIONS William Rowan Hamilton (The Cambridge and Dublin Mathematical Journal, 4 (1849), pp. 161 168.) Edited by David R. Wilkins 1999 EXERCISES IN QUATERNIONS. By Sir William Rowan Hamilton.

More information

Theory of Computation 1 Sets and Regular Expressions

Theory of Computation 1 Sets and Regular Expressions Theory of Computation 1 Sets and Regular Expressions Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Theory of Computation

More information

SOLUTIONS EGMO AND UCD ENRICHMENT PROGRAMME IN MATHEMATICS SELECTION TEST 24 FEBRUARY 2018

SOLUTIONS EGMO AND UCD ENRICHMENT PROGRAMME IN MATHEMATICS SELECTION TEST 24 FEBRUARY 2018 SOLUTIONS EGMO AND UCD ENRICHMENT PROGRAMME IN MATHEMATICS SELECTION TEST FEBRUARY 08. In triangle ABC, P is a point on AB, Q is a point on AC and X is the point of intersection of the line segments PC

More information

2013 IMO Shortlist. a b c d 1

2013 IMO Shortlist. a b c d 1 IMO Shortlist 2013 Algebra A1 A2 Letnbeapositiveintegerandleta 1,...,a n 1 bearbitraryrealnumbers. Define the sequences u 0,...,u n and v 0,...,v n inductively by u 0 = u 1 = v 0 = v 1 = 1, and u k+1 =

More information

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018.

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018. New Zealand Mathematical Olympiad Committee Camp Selection Problems 2018 Solutions Due: 28th September 2018 1. Suppose that a, b, c and d are four different integers. Explain why must be a multiple of

More information

Sample Question Paper Mathematics First Term (SA - I) Class IX. Time: 3 to 3 ½ hours

Sample Question Paper Mathematics First Term (SA - I) Class IX. Time: 3 to 3 ½ hours Sample Question Paper Mathematics First Term (SA - I) Class IX Time: 3 to 3 ½ hours M.M.:90 General Instructions (i) All questions are compulsory. (ii) The question paper consists of 34 questions divided

More information

NAME: Mathematics 133, Fall 2013, Examination 3

NAME: Mathematics 133, Fall 2013, Examination 3 NAME: Mathematics 133, Fall 2013, Examination 3 INSTRUCTIONS: Work all questions, and unless indicated otherwise give reasons for your answers. If the problem does not explicitly state that the underlying

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM 3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM Consider rigid body fixed in the x, y and z reference and is either at rest or moves with reference at constant velocity Two types of forces that act on it, the

More information

CORRESPONDENCE BETWEEN ELLIPTIC CURVES IN EDWARDS-BERNSTEIN AND WEIERSTRASS FORMS

CORRESPONDENCE BETWEEN ELLIPTIC CURVES IN EDWARDS-BERNSTEIN AND WEIERSTRASS FORMS CORRESPONDENCE BETWEEN ELLIPTIC CURVES IN EDWARDS-BERNSTEIN AND WEIERSTRASS FORMS DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF OTTAWA SUPERVISOR: PROFESSOR MONICA NEVINS STUDENT: DANG NGUYEN

More information

Worksheet 1.4: Geometry of the Dot and Cross Products

Worksheet 1.4: Geometry of the Dot and Cross Products Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products From the Toolbox (what you need from previous classes): Basic algebra and trigonometry: be able to solve quadratic equations,

More information

Finite affine planes in projective spaces

Finite affine planes in projective spaces Finite affine planes in projective spaces J. A.Thas H. Van Maldeghem Ghent University, Belgium {jat,hvm}@cage.ugent.be Abstract We classify all representations of an arbitrary affine plane A of order q

More information

Worksheet A VECTORS 1 G H I D E F A B C

Worksheet A VECTORS 1 G H I D E F A B C Worksheet A G H I D E F A B C The diagram shows three sets of equally-spaced parallel lines. Given that AC = p that AD = q, express the following vectors in terms of p q. a CA b AG c AB d DF e HE f AF

More information

5 Constructions of connections

5 Constructions of connections [under construction] 5 Constructions of connections 5.1 Connections on manifolds and the Levi-Civita theorem We start with a bit of terminology. A connection on the tangent bundle T M M of a manifold M

More information

Mathematics Paper 1. Question paper. Stage 9. Cambridge Secondary 1 Progression Test * * 55 minutes. For Teacher s Use. Name..

Mathematics Paper 1. Question paper. Stage 9. Cambridge Secondary 1 Progression Test * * 55 minutes. For Teacher s Use. Name.. *9490275461* Cambridge Secondary 1 Progression Test Question paper 55 minutes Mathematics Paper 1 Stage 9 Name.. Additional materials: Ruler Tracing paper Geometrical instruments READ THESE INSTRUCTIONS

More information

The Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality The Cauchy-Schwarz inequality Finbarr Holland, f.holland@ucc.ie April, 008 1 Introduction The inequality known as the Cauchy-Schwarz inequality, CS for short, is probably the most useful of all inequalities,

More information

PLANE PROJECTIVE GEOMETRY

PLANE PROJECTIVE GEOMETRY CHAPTER V PLANE PROJECTIVE GEOMETRY In this chapter we shall present the classical results of plane projective geometry. For the most part, we shall be working with coordinate projective planes and using

More information

LAKOTA WEST HIGH SCHOOL HONORS ALGEBRA II EXPECTATIONS ( )

LAKOTA WEST HIGH SCHOOL HONORS ALGEBRA II EXPECTATIONS ( ) LAKOTA WEST HIGH SCHOOL HONORS ALGEBRA II EXPECTATIONS (07-08) Upon entering Honors Algebra II class at Lakota West HS it will be expected that you to have an excellent understanding of certain topics

More information

The Circle. 1 The equation of a circle. Nikos Apostolakis. Spring 2017

The Circle. 1 The equation of a circle. Nikos Apostolakis. Spring 2017 The Circle Nikos Apostolakis Spring 017 1 The equation of a circle Definition 1. Given a point C in the plane and a positive number r, the circle with center C and radius r, is the locus of points that

More information

Direct Proof Universal Statements

Direct Proof Universal Statements Direct Proof Universal Statements Lecture 13 Section 4.1 Robb T. Koether Hampden-Sydney College Wed, Feb 6, 2013 Robb T. Koether (Hampden-Sydney College) Direct Proof Universal Statements Wed, Feb 6, 2013

More information

Systems of linear equations. We start with some linear algebra. Let K be a field. We consider a system of linear homogeneous equations over K,

Systems of linear equations. We start with some linear algebra. Let K be a field. We consider a system of linear homogeneous equations over K, Systems of linear equations We start with some linear algebra. Let K be a field. We consider a system of linear homogeneous equations over K, f 11 t 1 +... + f 1n t n = 0, f 21 t 1 +... + f 2n t n = 0,.

More information