Studies of Gamow-Teller transitions using Weak and Strong Interactions

Size: px
Start display at page:

Download "Studies of Gamow-Teller transitions using Weak and Strong Interactions"

Transcription

1 Studies of Gamow-Teller transitions using Weak and Strong Interactions High-resolution Spectroscopy & Tensor Nakanoshima, Osaka Nov. 16 Nov. 19, 2015 Yoshitaka FUJITA RCNP, Osaka Univ.

2 Neptune driving Waves Neptune = weak interaction decay Powerful Waves = strong interaction) Charge-Exchange Reaction

3 Gamow-Teller transitions Mediated by operator: both S &W int. has this Op. S = -1, 0, +1 and T = -1, 0, +1 ( L = 0, no change in radial w.f. ) no change in spatial w.f. Accordingly, transitions among j > and j < configurations j > j >, j < j <, j > j < example f 7/2 f 7/2, f 5/2 f 5/2, f 7/2 f 5/2 Note that Spin and Isospin are unique quantum numbers in atomic nuclei! GT transitions are sensitive to Nuclear Structure! GT transitions in each nucleus are UNIQUE!

4 **Basic common understanding of -decay and Charge-Exchange reaction decays : Absolute B(GT) values, but usually the study is limited to low-lying states (p,n), ( 3 He,t) reaction at 0 o : Relative B(GT) values, but Highly Excited States ** Both are important for the study of GT transitions!

5 -decay & Nuclear Reaction 1 2 f B(GT) t1/ 2 K B(GT) : reduced GT transition strength (matrix element) 2 = <f i> 2 -decay GT tra. rate = *Nuclear (CE) reaction rate (cross-section) = reaction mechanism x operator x structure =(matrix element) 2 *At intermediate energies (100 < E in < 500 MeV) d /d (q=0) : proportional to B(GT)

6 Counts β intensity (relative) Simulation of -decay spectrum g.s.(ias), , , Cr( 3 He,t) 50 Mn E=140 MeV/nucleon θ=0 o Q EC =8.152 MeV E in 50 Mn (MeV) x g.s.(ias), , , Y.F, B.R, W.G, PPNP, 66 (2011) 549 E in 50 Mn (MeV) x 3.392,1 + β-decay: 50 Fe --> 50 Mn *expected spectrum assuming isospin symmetry 3.392,1 + Q EC =8.152 MeV f-factor (normalied)

7 Comparison of (p, n) and ( 3 He,t) 0 o spectra Counts GT IAS 58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u GTR J. Rapaport et al. NPA ( 83) Y. Fujita et al., EPJ A 13 ( 02) 411. H. Fujita et al., PRC 75 ( 07) Excitation Energy (MeV)

8 ( 3 He,t) CE RCNP (Osaka) θlab = 0 (3He,t) CE reaction Stable Target 3He WS course (beam line) Commissioning: 2000 T. Wakasa, K. Hatanaka, Y. Fujita, G.P.A. Berg, H. Fujimura, H. Fujita, M. Itoh, J. Kamiya, T. Kawabata et al., N.I.M. A 482 (2002) He triton

9 Matching Techniques a) b) c) Y. Fujita et al., N.I.M. B 126 (1997) 274. H. Fujita et al., N.I.M. A 484 (2002) 17. Focal plane Magnetic Spectrometer Target -Δp 0 +Δp -Δp 0 +Δp Achromatic beam transportation E ~200 kev for 140MeV/u 3 He beam Lateral dispersion matching E ~ 35 kev Horiz. angle resolution sc > 15mrad Angular dispersion matching sc ~ 5mrad

10 E=30 kev RCNP, Osaka Univ. Dispersion Matching Techniques were applied! Y. Fujita et al, NIM B 126 (1997) 274. H. Fujita et al, NiM A 484 (2002) 17. E=150 kev

11 Connection: Charge Exchange & decay 0 + & 1 + relationship in A=58 Nuclei (in real energy space) (p,n)-type (stable) 58 Ni T z = , IAS 58 Cu -decay Tz=0 Q EC =8.56 ** 0 + & 1 + relationship of g.s log ft 58 Ni 62 Ni 68 Zn 78 Se 104 Ru 118 Sn 120 Sn 136 Ba 140 Ce 178 Hf Cu 62 Ni 68 Ga 78 Br 104 Rh 118 Sb 120 Sb 136 La 140 Pr 178 Ta

12 ***Isospin Symmetry an important idea to see the connection of decays and excitations caused by Strong, EM and Weak interactions! There are many cases that the operators are the same in transitions caused by strong, EM and weak int.

13 T=1/2 Isospin Symmetry Koelner Dom Koeln, Germany (157m high)

14 T=1/2 Mirror Nuclei : Structures & Transitions (e,e') M1 (p,n)-type V -decay M1 -d ecay M1 ( 3 He,t) GT -decay (Z,N+1) Tz=+1/2 V V GT + Fermi (Z+1,N) Tz=-1/ Al Si 13

15 Symmetry in A=27 System d d q 0 KN J 2 B GT 2J π J π ( 3 He,t) decay g.s. g.s Good proportionality between both B(GT)s! Al Si 13 T z =1/2 T z =-1/2

16 Analogous relationship: A=9, 13 system 3/2-9 Li 9 C log ft = B log ft =4.0 3/ g.s. 9 Be 9 B 13 C 13 N log ft = O log ft =4.1 T =1/2 T =3/2 log ft =3.7 All of them are T z =+3/2 T z = +1/2 T z = -1/2 T z = analogous -3/2! *Small isospin asymmetry can be seen for T z =+3/2 +1/2 and T z =-1/2-3/2 GT transitions.

17 T=1 Isospin Symmetry Byodoin-temple, Uji, Kyoto

18 T=1 Isospin Symmetry GT GT Mg Al Si 12 T z = +1 T z = 0 T z = -1

19 Tz= Symmetry -direction (p,n)-type + direction (n,p)-type [e-capture]

20 Super-Byodoin 平等院 T=2 Isospin Symmetry GT CE-reaction GT + -decay 52 Cr 52 Mn 52 Fe 52 Co 52 Ni

21 Isospin Structure of T=2 system Talk by S. Orrigo: 48 Fe, 52 Ni, 56 Zn decay

22 **GT transitions in each nucleus are UNIQUE! - pf-shell nuclei -

23 Z rp -process Path (T=1 system) 54 Ni 58 Zn 50 Fe 58 Ni 42 Ti 46 Cr N=Z line 50 Co 54 Fe 46 Ti 42 Ca N

24 Z rp -process path nuclei (T = 1 symmetry) 58 Ni N=Z line 54 Fe 50 Cr 46 Ti Talk: B. Rubio 42 Ca N

25 Fe( 3 He,t) 54 Co E = 140 MeV/u, θ = 0 ο E (MeV) x 54 Ni -decay measurement Ni + decay Sp =4.35 Q =8.800 Energy Resolution : 21 kev at GSI (FRS facility) RISING (stopped beam campaign) Measurement of delayed- is important 0.937, 1! + Counts IAS g.s. IAS

26 GSI RISING set up Active Beam Stopper Campaign July-August, 2007

27 ( 3 He,t), RCNP Osaka, T. Adachi et al. Talk: B. Rubio Newly observed! Corresponding Transitions were observed in a wide E x range! decay, GSI, Rising 2007 F. Molina et al., PRC 91, ( 15)

28 42 Ca( 3 He,t) 42 Sc in 2 scales B(F)=2 B(GT) = 2.2 (from mirror decay) 80% of the total B(GT) strength is concentrated in the excitation of the MeV state.

29 GT states in A=42-54 T z =0 nuclei Y. Fujita et al. PRL 2014 PRC 2015 B(F)=N-Z Peak heights are proportional to B(GT) values T. Adachi et al. PRC 2006 Y. Fujita et al. PRL 2005 T. Adachi et al. PRC 2012

30 SM Configurations of GT transitions particle-hole configuration + IV-type int. = REPULSIVE

31 Role of Residual Int. (repulsive) Single particle-hole strength distribution Graphical solution of the RPA dispersive eigen-equation positive = repulsive strength p-h configuration + IV excitation = repulsive Collective excitation formed by the repulsive residual interaction strength 1p-1h strength collective strength (GR) Ex Ex Ex

32 Role of Residual Int. (repulsive) Collective excitation formed by the repulsive residual interaction strength 1p-1h strength Ex Ex strength collective strength (GR) Ex

33 42 Ca( 3 He,t) 42 Sc in 2 scales B(GT) = 2.2 (from mirror decay)

34 SM Configurations of GT transitions p - -p configurations sensitive to IS pairing int. attractive (spin-triplet, IS int. is stronger than spin-singlet, IV int.) particle-hole configurations + IV-type excitation ( ) repulsive by Engel, Bertsch, Macchiavelli

35 SM Configurations of GT transitions particle-particle int. (attractive) (IS p-n int. is attractive) Overwhelming Isoscalarthe interaction repulsive can nature play of Important int.! roles! particle-hole int. (repulsive)

36 QRPA-cal. GT-strength (with IS-int.) Bai, Sagawa, Colo et al., PRC 90 (2014) Ca 42 Ca 42 Sc (Q-value)

37 QRPA cal. including IS int. Bai, Sagawa, Colo et al., PRC 90 (2014) Configurations are in phase! Low-energy collective GT excitation! (collectivity is from IS p-n int.!)

38 Role of Residual Int. (attractive) Collective excitation formed by the attractive IS residual interaction strength Ex 42 Ca( 3 He,t) 42 Sc Ex strength collective strength (GR) Ex

39 42Ca 42Sc: Shell Model Cal.: Transition Matrix Elements SM cal: M. Honma Matrix Elements are in-phase!

40 42 Ca( 3 He,t) 42 Sc in 2 scales GT IAS Low-energy collective GT excitation! (collectivity is from IS p-n int.!) B(GT) = 2.2 Low Energy Super GT state Suggestion in p-prpa calculation (K. Yoshida) Precursory soft mode of the IS pairing condensation! Phys. Rev. C 90, (R) (2014). Y. Fujita, et al., PRL 112, (2014). PRC 91, (2015).

41 Super-allowed GT transitions in decay GT (smaller log ft larger B(GT)) Fermi log ft 6 He, Li, 1 + log ft = Ne, F, 1 + log ft = Ti, Sc, 1 + log ft = 3.2 Super-allowed GT transitions

42 Super-Multiplet State *proposed by Wigner (1937) In the limit of null L S force, SU(4) symmetry exists. We expect: a) GT excitation strength is concentrated in a low-energy GT state. b) excitation energies of both the IAS and the GT state are identical. Super-Multiplet State In 54 Co, we see a broken SU(4) symmetry. In 42 Sc, we see a good SU(4) symmetry. attractive IS residual int. restores the symmetry! MeV state in 42 Sc has a character close to Super-Multiplet State! We call this state the Low-energy Super GT state!

43 18 O( 3 He,t) 18 F at 0 o Talk: H. Fujita Low-energy collective GT excitation: B(GT)=3.1 Low Energy Super GT state

44 J = O n 2 H (d) GT transitions forming Low-Energy Super GT state g.s. (Sum rule) = 3 x N-Z = 6 B(GT) = 6.0? Large! 6 He 6 Li g.s. B(GT) = O 18 F g.s. B(GT) = Ca 42 Sc B(GT) = 2.17 Smaller! 1 st E x state (IAS is the g.s.)

45 ***from p-p to p-h configuration LESGT stae GTR structure in A= 42 to 48 Ca isotopes

46 GT Configurations in Sc isotopes particle-particle int. (attractive) particle-hole int. (repulsive)

47 42 Ca( 3 He,t) 42 Sc

48 44 Ca( 3 He,t) 44 Sc Y. Fujita et al., PRC 88, (2013)

49 48 Ca( 3 He,t) 48 Sc H.F analysis

50 GT Configurations in Sc isotopes particle-particle int. (attractive) Low-Energy Super GT state Is formed! particle-hole int. (repulsive) Gamow-Teller Resonance Is formed!

51 Summary GT ( ) operator : a simple operator! * GT transitions: sensitive to the structure of i> and f> High resolution of the ( 3 He,t) reaction * Fine structures of GT transitions Mirror decays and Isospin Symmetry * Giving the Absolute GT strength GT transitions in each nucleus are UNIQUE! Low-energy Super GT state (LESGT state) Assuming T-symmetry GT in unstable nuclei! We can learn a lot by the comparison of analogous GT transitions!

52 GT-study Collaborations Bordeaux (France) : decay GANIL (France) : decay Gent (Belgium) : ( 3 He, t), (d, 2 He), ( ), theory GSI, Darmstadt (Germany) : decay, theory ISOLDE, CERN (Switzerland) : decay ithemba LABS. (South Africa) : (p, p ), ( 3 He, t) Istanbul (Turkey): ( 3 He, t), decay Jyvaskyla (Finland) : decay Koeln (Germany) : decay, ( 3 He, t), theory KVI, Groningen (The Netherlands) : (d, 2 He) Leuven (Belgium) : decay LTH, Lund (Sweden) : theory Milano : theory Osaka University (Japan) : (p, p ), ( 3 He, t), theory RIKEN : decay, theory Surrey (GB) : decay TU Darmstadt (Germany) : (e, e ), ( 3 He, t) Valencia (Spain) : decay Michigan State University (USA) : theory, (t, 3 He) Muenster (Germany) : (d, 2 He), ( 3 He,t) Univ. Tokyo and CNS (Japan) : theory, decay

53 Advertisement PPNP 66 (2011) 549

Gamow-Teller Transitions studied by (3He,t) reactions and the comparison with analogous transitions

Gamow-Teller Transitions studied by (3He,t) reactions and the comparison with analogous transitions Gamow-Teller Transitions studied by (3He,t) reactions and the comparison with analogous transitions Yoshitaka FUJITA (Osaka Univ.) Spin-Isospin excitations probed by Strong, Weak and EM interactions ECT*,

More information

High-resolution Study of Gamow-Teller Transitions

High-resolution Study of Gamow-Teller Transitions High-resolution Study of Gamow-Teller Transitions Yoshitaka Fujita, Osaka Univ. @CNS-SS, 04.Aug.17-20 Nucleus : 3 active interactions out of 4 Strong, Weak, EM Comparison of Analogous Transitions High

More information

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI High-resolution study of Gamow- Teller transitions in pf-shell nuclei Tatsuya ADACHI Type II supernova Electron Capture (EC) & β decay Neutrino induced reaction A Z-1X N+1 daughter EC β A ZX N parent (A,Z)

More information

Isospin symmetry structure of J π =1 + states in 58 Ni and 58 Cu studied by high-resolution 58 Ni( 3 He,t) and 58 Ni(p,p ) measurements

Isospin symmetry structure of J π =1 + states in 58 Ni and 58 Cu studied by high-resolution 58 Ni( 3 He,t) and 58 Ni(p,p ) measurements Workshop at ECT*, Torento, 27/09/09-02/10/09 Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations Isospin symmetry structure of J π =1 + states in 58 Ni and 58 Cu studied by

More information

Isospin symmetry of T z =±3/2\ ±1/2 Gamow-Teller transitions in A=41 nuclei

Isospin symmetry of T z =±3/2\ ±1/2 Gamow-Teller transitions in A=41 nuclei PHYSICAL REVIEW C 70, 054311 (2004) Isospin symmetry of T z =±3/2\ ±1/2 Gamow-Teller transitions in A=41 nuclei Y. Fujita, 1, * Y. Shimbara, 1, T. Adachi, 1 G. P. A. Berg, 2,3 B. A. Brown, 4 H. Fujita,

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

np Spin-Correlation in the Ground State Studied by Spin-M1 Transitions

np Spin-Correlation in the Ground State Studied by Spin-M1 Transitions np Spin-Correlation in the Ground State Studied by Spin-M1 Transitions Atsushi Tamii Research Center for Nuclear Physics (RCNP) Osaka University, Japan for RCNP-E299 Collaborations 2nd International Workshop

More information

Charge Exchange and Weak Strength for Astrophysics

Charge Exchange and Weak Strength for Astrophysics Charge Exchange and Weak Strength for Astrophysics Sam Austin STANfest-July 16 2004 Charge Exchange and Weak Strength for Astrophysics Interesting phenomena Electron capture strength (GT) (Langanke talk)

More information

Giant Resonances Wavelets, Scales and Level Densities

Giant Resonances Wavelets, Scales and Level Densities Giant resonances Damping mechanisms, time and energy scales Fine structure Wavelets and characteristic scales Application: GQR TU DARMSTADT Many-body nuclear models and damping mechanisms Relevance of

More information

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG Beta-decay studies with proton-rich rich nuclei Super-allowed Fermi transitions Mirror decays proton-rich nuclei in the calcium-to-nickel region branching ratios, half-lives, decay schemes, masses isospin

More information

Contents / Key words. Self-consistent deformed pnqrpa for spin-isospin responses

Contents / Key words. Self-consistent deformed pnqrpa for spin-isospin responses Contents / Key words Self-consistent deformed pnqrpa for spin-isospin responses Self-consistency: T=1 pairing and IAS Collectivity of GT giant resonance Possible new type of collective mode: T= proton-neutron

More information

arxiv: v2 [nucl-ex] 21 May 2014

arxiv: v2 [nucl-ex] 21 May 2014 Observation of the -delayed γ-proton decay of Zn and its impact on the Gamow Teller strength evaluation arxiv:141.768v2 [nucl-ex] 21 May 214 S. E. A. Orrigo, 1, B. Rubio, 1 Y. Fujita, 2, 3 B. Blank, 4

More information

Neutrino Nuclear Responses For Double Beta Decays And Supernova Neutrinos

Neutrino Nuclear Responses For Double Beta Decays And Supernova Neutrinos Neutrino Nuclear Responses For Double Beta Decays And Supernova Neutrinos Hidetoshi Akimune Konan University INPC016 Collaborators Hidetoshi Akimune Konan University Hiro Ejiri RCNP, Osaka Dieter Frekers

More information

Charge Exchange reactions with Unstable Nuclei

Charge Exchange reactions with Unstable Nuclei Charge Exchange reactions with Unstable Nuclei Sam Austin and Remco Zegers Sam Austin, Daniel Bazin, Alex Brown, Christian Diget, Alexandra Gade, Carol Guess, Marc Hausmann, Wes Hitt, Meredith Howard,

More information

proton-neutron pairing vibrations

proton-neutron pairing vibrations proton-neutron pairing vibrations Outline of this lecture: Basics of the vibrational modes of excitation in nuclei surface vibration, like-particle pairing vibration, and then Microscopic framework to

More information

D. Frekers. Novel approaches to the nuclear physics of bb-decay: INT chargex reactions, mass-measurements,m-capture

D. Frekers. Novel approaches to the nuclear physics of bb-decay: INT chargex reactions, mass-measurements,m-capture D. Frekers Novel approaches to the nuclear physics of bb-decay: chargex reactions, mass-measurements,m-capture b n n INT- 2018 b GT? Gentle Touch: q tr = 0 l = 0 dσ dσ 5 10 0 hω excitation σ n n Where

More information

Overview of Nuclear Structure and Excitations

Overview of Nuclear Structure and Excitations Overview of Nuclear Structure and Excitations MAJOR FEATURES OF OUR SUN -the 3rd lecture- SS Jyvaskyla August 06-12, 2014 T= ~10 7 K at the core = ~1 kev Yoshitaka Fujita Osaka University Layer Structure

More information

Isoscalar spin-triplet pairing and tensor correla1ons on Spin-Isospin response Osaka,Japan, November 16-19,

Isoscalar spin-triplet pairing and tensor correla1ons on Spin-Isospin response Osaka,Japan, November 16-19, Isoscalar spin-triplet pairing and tensor correla1ons on Spin-Isospin response ------------- Osaka,Japan, November 16-19, 2015 ----------------- Hiroyuki Sagawa RIKEN/University of Aizu Skyrme tensor interac1ons

More information

Double-beta decay matrix elements and charge exchange reactions

Double-beta decay matrix elements and charge exchange reactions Double-beta decay matrix elements and charge exchange reactions M. Sasano, Spin-Isospin Laboratory, RIKEN Nishina Center K. Yako, Center for Nuclear Physics, University of Tokyo E Double beta decay Double

More information

Spin-isospin responses by charge-exchange reactions and implications for astrophysics

Spin-isospin responses by charge-exchange reactions and implications for astrophysics Spin-isospin responses by charge-exchange reactions and implications for astrophysics Muhsin N. Harakeh KVI, Groningen & GANIL, Caen The 4 th International Symposium on Neutrinos and Dark Matter in Nuclear

More information

Alpha inelastic scattering and cluster structures in 24 Mg. Takahiro KAWABATA Department of Physics, Kyoto University

Alpha inelastic scattering and cluster structures in 24 Mg. Takahiro KAWABATA Department of Physics, Kyoto University Alpha inelastic scattering and cluster structures in 24 Mg Takahiro KAWABATA Department of Physics, Kyoto University Introduction Contents Alpha cluster structure in light nuclei. Alpha condensed states.

More information

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova First results from the AGATA Demonstrator Francesco Recchia Università di Padova XCVII Congresso Nazionale SIF L'Aquila, 26-30 Settembre, 2011 Challenges in Nuclear Structure Shell structure in nuclei

More information

C NS. Direct reactions of Borromean nuclei FM50. S. Shimoura CNS, University of Tokyo

C NS. Direct reactions of Borromean nuclei FM50. S. Shimoura CNS, University of Tokyo C NS Direct reactions of Borromean nuclei S. Shimoura CNS, University of Tokyo FM50 Introduction 3N force in neutron-rich nuclei U1X IL2/4 B.E. Importance of T=3/2 3N force in the PRC 64 014001 (2001)

More information

Extracting information from charge exchange reactions the tools we have--what we need Sam Austin 28 September 2009, ECT

Extracting information from charge exchange reactions the tools we have--what we need Sam Austin 28 September 2009, ECT Extracting information from charge exchange reactions the tools we have--what we need Sam Austin 28 September 2009, ECT Contexts: Type Ia (Thermonuclear) Supernovae: SN1006 Arizona Petroglyph Core Collapse

More information

Spin-isospin correlation in 8 He and 12 Be(p,n)

Spin-isospin correlation in 8 He and 12 Be(p,n) Mini-workshop 18 November 2014 Spin-isospin correlation in 8 He and Be(p,n) H. Sakai 1, H. Sagawa 1,2, M. Kobayashi 3, S. Shimoura 3, T. Suzuki 4 and K. Yako 3 For the SHARAQ Collaboration 1 RIKEN Nishina

More information

Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering

Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt Gamma strength

More information

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: decay mirror decay future work

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: decay mirror decay future work Bertram Blank CEN Bordeaux-Gradignan Germanium detector calibration experimental studies: 0 + -0 + decay mirror decay future work 20 th Colloque de GANIL, Amboise, October 15th 20th, 2017 Nuclear beta

More information

Mass measurements of n-rich nuclei with A~70-150

Mass measurements of n-rich nuclei with A~70-150 Mass measurements of n-rich nuclei with A~70-150 Juha Äystö Helsinki Institute of Physics, Helsinki, Finland in collaboration with: T. Eronen, A. Jokinen, A. Kankainen & IGISOL Coll. with theory support

More information

Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK. in collaboration with. Dave Warner

Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK. in collaboration with. Dave Warner DDW Symposium CCLRC Daresbury February 2006 1 Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK in collaboration with Dave Warner Overview Overview DDW Symposium CCLRC

More information

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Christoph Langer (JINA/NSCL) INT Workshop: Reactions and Structure of Exotic Nuclei March 2015 1 Understanding

More information

QRPA calculations of stellar weak decay rates

QRPA calculations of stellar weak decay rates QRPA calculations of stellar weak decay rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain E. Moya de Guerra, R. Alvarez-Rodriguez, O. Moreno Universidad Complutense Madrid International

More information

Decay properties of neutron-rich nuclei on the r-process path

Decay properties of neutron-rich nuclei on the r-process path Nuclear science frontier explored by ultra-high power lasers, Feb. 03 Osaka Decay properties of neutron-rich nuclei on the r-process path Shunji NISHIMURA ( RIKEN Nishina Center / NAOJ) Nuclear Parameters

More information

Self-consistent study of spin-isospin resonances and its application in astrophysics

Self-consistent study of spin-isospin resonances and its application in astrophysics Tensor Interaction in Nuclear and Hadron Physics November 1 3, Beihang University, Beijing, China Self-consistent study of spin-isospin resonances and its application in astrophysics Haozhao Liang School

More information

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations Toshio Suzuki (Nihon University) New shell model calculations in p-shell modified shell model Hamiltonian (SFO) with improved

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Isospin-symmetry breaking in nuclei around the N=Z line

Isospin-symmetry breaking in nuclei around the N=Z line Isospin-symmetry breaking in nuclei around the N=Z line Yang Sun Shanghai Jiao Tong University University of Hong Kong, July. 6-9, 2015 The concept of isospin Isospin of a nucleon: Projection of isospin:

More information

Shell-model description for beta decays of pfg-shell nuclei

Shell-model description for beta decays of pfg-shell nuclei Shell-model description for beta decays of pfg-shell nuclei Workshop on New Era of Nuclear Physics in the Cosmos the r-process nucleosynthesis Sep. 25-26, 2008 @RIKEN M. Honma (Univ. of Aizu) T. Otsuka

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei R.Avigo 1,2, O.Wieland 1, A.Bracco 1,2, F.Camera 1,2 on behalf of the AGATA and DALI2 collaborations 1 INFN, sezione di Milano 2 Università

More information

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique A. Jungclaus 1, J. Leske 2, K.-H. Speidel 3, V. Modamio 1, J. Walker 1, P. Doornenbal

More information

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7 Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7 Outline 1. Background 1.1 Decay for proton-rich nuclei 1.2 Astrophysical implications 2. Experiments 2.1 Introduction 2.2 Experimental

More information

An Introduction to the Ion-Optics of Magnet Spectrometers

An Introduction to the Ion-Optics of Magnet Spectrometers An Introduction to the Ion-Optics of Magnet Spectrometers U. Tokyo, RIKEN The 14 th RIBF Nuclear Physics Seminar Series of Three Lectures CNS, University of Tokyo February 27, 2006 Georg P. Berg University

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

D. Frekers. Charge-exchange reactions GT-transitions, bb-decay b b. and things beyond. n n 13 N 15 O 17F. 7Be. pep. hep

D. Frekers. Charge-exchange reactions GT-transitions, bb-decay b b. and things beyond. n n 13 N 15 O 17F. 7Be. pep. hep Flux @ 1 AU [cm-1 s-1 MeV-1)] for lines [cm -1 s-1 ] D. Frekers n n Charge-exchange reactions GT-transitions, bb-decay b b and things beyond 10 1 10 10 10 8 10 6 10 4 10 pp 13 N 15 O 17F 7Be pep 0.1 0.

More information

Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects. Tomotsugu Wakasa. Department of Physics, Kyushu University

Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects. Tomotsugu Wakasa. Department of Physics, Kyushu University Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects Tomotsugu Wakasa Department of Physics, Kyushu University Outline Residual interaction effects of spin-isospin responses

More information

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Nuclear Physics and Supernova Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Tribute to Gerry - Stony Brook, November 26, 2013 Hans Bethe s Centennial at Caltech

More information

Charge exchange reactions and photo-nuclear reactions

Charge exchange reactions and photo-nuclear reactions Charge exchange reactions and photo-nuclear reactions σ( 7 Li, 7 Be) and σ(γ,n) S. Nakayama (Univ of Tokushima) Determination of σ(γ,n) from CE reactions (CE reaction = Charge Exchange reaction) Application

More information

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution 2012 4 12 16 Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution Yifei Niu Supervisor: Prof. Jie Meng School of Physics, Peking University, China April 12, 2012 Collaborators:

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Remarks about weak-interaction processes

Remarks about weak-interaction processes Remarks about weak-interaction processes K. Langanke GSI Darmstadt and TUD, Darmstadt March 9, 2006 K. Langanke (GSI and TUD, Darmstadt)Remarks about weak-interaction processes March 9, 2006 1 / 35 Nuclear

More information

Double Charge-Exchange Reactions and Double Beta- Decay. N. Auerbach, Tel Aviv University and Michigan State University

Double Charge-Exchange Reactions and Double Beta- Decay. N. Auerbach, Tel Aviv University and Michigan State University Double Charge-Exchange Reactions and Double Beta- Decay N. Auerbach, Tel Aviv University and Michigan State University D.C. Zheng, L. Zamick and NA, Annals of Physics 197, 343 (1990). Nuclear Structure

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yu-Min Zhao (Speaker: Yi-Yuan Cheng) 2 nd International Workshop & 12 th RIBF Discussion on Neutron-Proton Correlations, Hong Kong July 6-9, 2015 Outline

More information

-Strength Determination Using Total Absorption -Ray Spectroscopy

-Strength Determination Using Total Absorption -Ray Spectroscopy -Strength Determination Using Total Absorption -Ray Spectroscopy J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Existing TAS data

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

M1 Excitations in (p,p ) Reactions

M1 Excitations in (p,p ) Reactions M1 Excitations in (p,p ) Reactions A. Tamii Research Center for Nuclear Physics, Osaka University Strong, Weak and Electromagnetic Interactions to Probe Spin-Isospin Excitations, September 28th October

More information

I. 2. Reduction of the Gamow-Teller Matrix Element for the β-decay in 70 Ga- 70 Zn by the 35-MeV (p,n) Reaction on 70 Zn

I. 2. Reduction of the Gamow-Teller Matrix Element for the β-decay in 70 Ga- 70 Zn by the 35-MeV (p,n) Reaction on 70 Zn CYRIC Annual Report 2003 I. 2. Reduction of the Gamow-Teller Matrix Element for the β-decay in Ga- Zn by the 35-MeV (p,n) Reaction on Zn Orihara H., Terakawa A. *, Suzuki H. *, Kikuchi Y. *, Kumagai K.

More information

I. 1. Nuclear Structure Study of 50 Mn by Charge-exchange (p,n) Reaction on 50 Cr

I. 1. Nuclear Structure Study of 50 Mn by Charge-exchange (p,n) Reaction on 50 Cr CYRIC Annual Report 2002 I. 1. Nuclear Structure Study of 50 Mn by Charge-exchange (p,n) Reaction on 50 Cr Kamurai G., Orihara H., Terakawa A., Yamamoto A., Suzuki H., Mizuno H., Kikuchi Y., Kumagai K.,

More information

Introduction to REX-ISOLDE concept and overview of (future) European projects

Introduction to REX-ISOLDE concept and overview of (future) European projects Introduction to REX-ISOLDE concept and overview of (future) European projects Thanks to: Y. Blumenfeld, P. Butler, M. Huyse, M. Lindroos, K. Riisager, P. Van Duppen Energetic Radioactive Beam Facilities

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

* On leave from FLNR / JINR, Dubna

* On leave from FLNR / JINR, Dubna * On leave from FLNR / JINR, Dubna 1 Introduction: Keywords of this experimental program Search for new isotopes The limits of nuclear stability provide a key benchmark of nuclear models The context of

More information

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: b decay mirror b decay future work

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: b decay mirror b decay future work Bertram Blank CEN Bordeaux-Gradignan Germanium detector calibration experimental studies: 0 + - 0 + b decay mirror b decay future work Beta-Decay Weak Interaction Studies in the Era of the LHC International

More information

Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy. Atsushi Tamii

Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy. Atsushi Tamii Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy Atsushi Tamii Research Center for Nuclear Physics (RCNP) Osaka University, Japan I.Poltoratska, P. von Neumann Cosel and RCNP E282

More information

Probing the evolution of shell structure with in-beam spectroscopy

Probing the evolution of shell structure with in-beam spectroscopy Probing the evolution of shell structure with in-beam spectroscopy Alexandra Gade National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy at Michigan State University, East

More information

Gamma-neutron competition above the neutron separation energy in betadelayed

Gamma-neutron competition above the neutron separation energy in betadelayed Gamma-neutron competition above the neutron separation energy in betadelayed neutron emitters Alejandro Algora IFIC (CSIC-Univ. Valencia), Spain DISCLAIMER: 1. We are only users of Level Densities and

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Fundamental interactions experiments with polarized trapped nuclei

Fundamental interactions experiments with polarized trapped nuclei Fundamental interactions experiments with polarized trapped nuclei β + DESIR meeting Leuven, 26-28 May 2010 ν e Nathal Severijns Kath. University Leuven, Belgium 5/31/2010 N. Severijns, DESIR Workshop

More information

Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions. Hiro Ejiri RCNP Osaka & CTU Praha

Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions. Hiro Ejiri RCNP Osaka & CTU Praha Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions Hiro Ejiri RCNP Osaka & CTU Praha Nuclear responses (matrix elements) for ββ ν and charge exchange reactions H. Ejiri, Phys. Report 338 (2000)

More information

Particle emission at the proton drip-line

Particle emission at the proton drip-line Particle emission at the proton drip-line Marek Pfützner M. Pfützner@PROCON 2015, Lanzhou, China, 6-10 July, 2015 1 Outline Nuclei at the proton drip-line and beyond Optical TPC Reminder of 45 Fe Decay

More information

Two-Proton Decay Experiments

Two-Proton Decay Experiments Two-Proton Decay Experiments Robert Charity Washington University, St. Louis, USA Classification of 2p decays Goldansky (190) 2p decay (like double β decay) Intermediate state not accessible to 1p decay.

More information

Physics with stopped beams at TRIP-TRAP Facility. P.D. Shidling Cyclotron Institute, Texas A&M University

Physics with stopped beams at TRIP-TRAP Facility. P.D. Shidling Cyclotron Institute, Texas A&M University Physics with stopped beams at TRIP-TRAP Facility P.D. Shidling Cyclotron Institute, Texas A&M University Physics with stopped beams Experiments require high purity low energy ions for studying various

More information

THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important ones are...

THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important ones are... Atomic Structure THE STRUCTURE OF ATOMS ATOMS Atoms consist of a number of fundamental particles, the most important ones are... Mass / kg Charge / C Relative mass Relative Charge PROTON NEUTRON ELECTRON

More information

Beta Decay Studies in nuclear structure

Beta Decay Studies in nuclear structure Beta Decay Studies in nuclear structure Escuela de doctorado de Física Nuclear Santiago 1 de Marzo de 2007 Introducción Cómo hacer una medida Un ejemplo Berta Rubio IFIC (CSIC-Univ. Valencia) B. Rubio.

More information

RCNP International Symposium on. High-resolution Spectroscopy and Tensor Interactions (HST15) First Circular (July 27th, 2015)

RCNP International Symposium on. High-resolution Spectroscopy and Tensor Interactions (HST15) First Circular (July 27th, 2015) RCNP International Symposium on High-resolution Spectroscopy and Tensor Interactions (HST15) First Circular (July 27th, 2015) An international symposium on "High-resolution Spectroscopy and Tensor interactions

More information

Charged-particle spectroscopy with the Optical TPC

Charged-particle spectroscopy with the Optical TPC Charged-particle spectroscopy with the Optical TPC Marek Pfützner 1 Outline Nuclei at the proton drip-line and beyond Two-proton radioactivity Optical TPC Decay study of 45 Fe (and 43 Cr) Decay study of

More information

Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems

Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems TU DARMSTADT Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems Qualitative nature of the M1 response Orbital M1 scissors mode: low and high Spin M1 resonance in heavy deformed nuclei Quenching

More information

Isospin Violation & Nuclear Decays

Isospin Violation & Nuclear Decays Isospin Violation & Nuclear Decays University of Jyväskylä & University of Warsaw with Wojtek Satuła, Witek Nazarewicz, Maciek Konieczka, Tomek Werner, and Maciek Zalewski Fundamental Symmetry Tests with

More information

GANIL / SPIRAL1 / SPIRAL2

GANIL / SPIRAL1 / SPIRAL2 Nuclear Structure, Reaction and Dynamics GANIL / SPIRAL1 / SPIRAL2 A huge discovery potential Exotic Nuclei Proton number Z Which force? 3-body, tensor, spin-orbit, Isospin dependence, Continuum coupling

More information

Deformation of the N=Z nucleus 72 Kr via beta decay

Deformation of the N=Z nucleus 72 Kr via beta decay Deformation of the N=Z nucleus Kr via beta decay José Antonio Briz Monago 1,2 1 Instituto de Estructura de la Materia, CSIC, 2 Subatech Laboratory, CNRS/IN2P3, University of Nantes, Ecole des Mines de

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 175 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse

'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse 'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse 7/05/2009 Mark Huyse 1 The program Laser spectroscopy Masses Theory Decay

More information

Nuclear spectroscopy using direct reactions of RI beams

Nuclear spectroscopy using direct reactions of RI beams Nuclear spectroscopy using direct reactions of RI beams Introduction Spectroscopy of exotic nuclei (inv. kin.) Recent experimental results SHARAQ project in RIBF highly excited exotic states spectroscopy

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Nuclear Structure in Astrophysics Recent Examples from the S-DALINAC

Nuclear Structure in Astrophysics Recent Examples from the S-DALINAC TU DARMSTADT 2007 Nuclear Structure in Astrophysics Recent Examples from the S-DALINAC S-DALINAC and research program an overview Selected examples: Deuteron electrodisintegration under 180 and its importance

More information

FAIR. Reiner Krücken for the NUSTAR collaboration

FAIR. Reiner Krücken for the NUSTAR collaboration NUSTAR @ FAIR Reiner Krücken for the NUSTAR collaboration Physik Department E12 Technische Universität München & Maier-Leibnitz-Laboratory for Nuclear and Particle Physics NUSTAR @ FAIR Nuclear Structure

More information

Erice, September, 2017,

Erice, September, 2017, Erice, September, 2017, Double beta (bb) decay neutrinoless double beta (0nbb) decay NME the specialties of 96 Zr/ 96 Nb for b and bb decay Mass measurements using the JYFLTRAP ion trap Results and the

More information

Physics of neutron-rich nuclei

Physics of neutron-rich nuclei Physics of neutron-rich nuclei Nuclear Physics: developed for stable nuclei (until the mid 1980 s) saturation, radii, binding energy, magic numbers and independent particle. Physics of neutron-rich nuclei

More information

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics 1. Incompressibility and Giant Resonances (ISGMR, ISGDR) 2. Charge exchange reactions 3. Photon Beams for (g,g

More information

New data on β decay of exotic nuclei close to 100 Sn:

New data on β decay of exotic nuclei close to 100 Sn: New data on β decay of exotic nuclei close to 1 Sn: 94 Ag and 1 In C. Plettner 1, I. Mukha 1, J. Döring 1, L. Batist 2, H. Grawe 1, A. Blazhev 1,3, C. R. Hoffman 4, Z. Janas 5, R. Kirchner 1, M. La Commara

More information

Properties of Nuclei deduced from the Nuclear Mass

Properties of Nuclei deduced from the Nuclear Mass Properties of Nuclei deduced from the Nuclear Mass -the 2nd lecture- @Milano March 16-20, 2015 Yoshitaka Fujita Osaka University Image of Nuclei Our simple image for Nuclei!? Nuclear Physics by Bohr and

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

Measurements of (p,n) and (n,p) reactions and planned studies of exothermic chargeexchange reactions with SHARAQ using unstable beams at RIBF

Measurements of (p,n) and (n,p) reactions and planned studies of exothermic chargeexchange reactions with SHARAQ using unstable beams at RIBF ECT*, TRENTO, September 28, 2008 Measurements of (p,n) and (n,p) reactions and planned studies of exothermic chargeexchange reactions with SHARAQ using unstable beams at RIBF H. Sakai University of Tokyo

More information

Particle decay studies: Microscopic structure of isoscalar giant resonances

Particle decay studies: Microscopic structure of isoscalar giant resonances Particle decay studies: Microscopic structure of isoscalar giant resonances Notre Dame 2005 Mátyás Hunyadi ATOMKI KVI NDU RCNP Institute of Nuclear Research Debrecen, Hungary Kerfysisch Versneller Instituut

More information

Andreas Zilges. Newest results on pygmy resonances in atomic nuclei. Institut für Kernphysik Universität zu Köln. (ZI 510/4-1 and INST 216/544-1)

Andreas Zilges. Newest results on pygmy resonances in atomic nuclei. Institut für Kernphysik Universität zu Köln. (ZI 510/4-1 and INST 216/544-1) Newest results on pygmy resonances in atomic nuclei Andreas Zilges Institut für Kernphysik Universität zu Köln supported by (ZI 510/4-1 and INST 216/544-1) Giant Dipole Resonance (GDR) 1937: Z. Phys. 106

More information

Cluster and shape in stable and unstable nuclei

Cluster and shape in stable and unstable nuclei luster and shape in stable and unstable nuclei Y. Kanada-En yo (Kyoto Univ.) ollaborators: Y. Hidaka (GOE-PD->Riken) F. Kobayashi (D2, Kyoto Univ.) T. Suhara (Kyoto Univ.->Tsukuba Univ.) Y. Taniguchi (Tsukuba

More information

In-gas cell laser spectroscopy of neutron-deficient silver isotopes

In-gas cell laser spectroscopy of neutron-deficient silver isotopes In-gas cell laser spectroscopy of neutron-deficient silver isotopes A.N. Andreyev, B. Bastin, N. Bree, J. Büscher, T.E. Cocolios, I. Darby, J. Elseviers, R. Ferrer, J. Gentens, M. Huyse, Yu. Kudryavtsev,

More information