1 Introduction. Control 2:

Size: px
Start display at page:

Download "1 Introduction. Control 2:"

Transcription

1 Introduction Kinematics of Wheeled Mobile Robots (No legs here. They ork like arms. We e seen arms already) For control purposes, the kinematics of heeled mobile robots (WMRs) that e care about are the rate kinematics. Of basic interest are to questions: a) Ho do desired motions of the robot translate into desired motions of the heels. b) Ho do measured motions of the heels translate into equialent motions of the robot.

2 Conentions Wheels normally hae up to to degrees of freedom (steer and drie) ith respect to the ehicle to hich they are attached. The relationship beteen heel angular elocity and the linear elocity of the contact point is: Conentions : ehicle, fixed to some point on the ehicle hose motion is of interest. s: steer, positioned at the hip/steer joint. Moes ith the boom. c: contact point, moes ith the contact point. Has orientation of heel in the plane. s c y x r Figure 4 Frames for WMR Kinematics. Figure 3 Wheel Angular and Contact Point elocity. To accomodate modelling of passie castors, e allo the steer axis to be potentially different from the the contact point. Define the folloing frames of reference: : orld, fixed to the enironment

3 3 Forard Rate Kinematics (Sensed Forard Solution) Gien the linear and angular elocity of the ehicle frame ith respect to the orld frame, the linear elocity of the contact point can be computed. Clearly: r c s r + r s +r () c Lets differentiate this in the orld frame. c c c d rs d rc s + ( ) + ( ) dt dt 0 s + s + r s + s r c s + r s + ( + s ) r c So, e also need to kno rate of rotation of the steer frame ith respect to the ehicle s. This is measureable or otherise knon. The () 3 Forard Rate Kinematics (Sensed Forard Solution) 3 other ectors and are knon ehicle dimensions. Express all ectors in ehicle coordinates: c r s and its no clear that e also need the steer/ castor angle to get R c. When the steer mechanism is oer the contact s point, align frames c and s and e hae r c 0 and the solution reduces to: Either case is of the form: cb. The notation means the elocity of frame a ith respect to b a frame b (i.e a expressed in the coordinates frame c.why such a screy notion? Contact point elocities are of the heel (a) ith respect to the orld (b) expressed in ehicle coordinates (c).. It is not unusual to find that expressing a ector equation in some coordinate system leads to a need to kno more things. That s hat the gyros are for in inertial guidance. r c s (3) c s + kˆ r s + c kˆ R crc + kˆ r (4) c (5) c h(, )

4 But, this relationship is actually linear in these ariables, so it is of the form: x y x (6) J y Where J is the forard elocity Jacobian. We can rite such an equation for each heel and easily compute the elocity of each heel contact point. If you ant to compute the angular elocity of the heel about its axle, you must first project the contact point elocity onto the forard heel direction: θ c c ŷ c (7) If the castor angle is passie and has stabilized, the heel ill be lined up ith its contact point elocity. If you ant to compute the required steer angle, just use the direction gien by the contact point elocity ector. 3 Forard Rate Kinematics (Sensed Forard Solution) 4 3.Example: Differential Steer This is the solution for the general (planar) case. 3. Example: Differential Steer The case of differential steer is pretty easy: Figure 5 Differential Steer. l y W x Let the to heel frames be called l and r for left and right. Let the forard elocity be and the angular elocity is. The dimensions are: r r W r W l r (8)

5 Equation (4) for each heel reduces to to scalar equations: r l + W ---- W ---- W W Here, the equation for the elocity in the sideays direction says it anishes (hen expressed in body coordinates), so e don t need to rite it. This eliminates one degree of freedom because there are only dof in body coordinates. e are therefore able to sole for the (normally 3 dof) motion using to measurements. (9) 4 Inerse Rate Kinematics (Actuated Inerse Solution) 5 3.Example: Differential Steer 4 Inerse Rate Kinematics (Actuated Inerse Solution) No for the opposite problem. Suppose e hae measurements of heel angular elocities θ c and steer angles. We ant to find the associated ehicle linear and angular elocity. Once again, the forard solution is: x y x J (0) y Which is in the form of an obserer. The unknons are x y T in this case There are three of them and only to constraints are proided per heel. Clearly, the linear elocity of one point on a rigid body does not constraint all 3 dof of planar motion. Therefore, e need at least to sets of heel (steer, speed) measurements in general. Then, the problem is oerdetemined and a best fit

6 solution is called for hich tolerates the ineitable inconsistency in the measurements. 4. Example: Differential Steer In body coordinates, the constraints for to heels generate to scalar equations. Equation (9) is easy to inert: r l W W W W r l () 5 Summary 6 4.Example: Differential Steer 5 Summary Rate knematics for heeled mobile robots are pretty straightforard in the general case in D. The inerse problem is often oerdetermined because the motions of n heels must ultimately be consistent ith 3 dof motion. This is soled like any oerdetermined system. 6 Notes Add something about skid steering 7 References

7 7 References 7 4.Example: Differential Steer

8 7 References 8 4.Example: Differential Steer

Chapter 3. Systems of Linear Equations: Geometry

Chapter 3. Systems of Linear Equations: Geometry Chapter 3 Systems of Linear Equations: Geometry Motiation We ant to think about the algebra in linear algebra (systems of equations and their solution sets) in terms of geometry (points, lines, planes,

More information

Announcements Wednesday, September 06

Announcements Wednesday, September 06 Announcements Wednesday, September 06 WeBWorK due on Wednesday at 11:59pm. The quiz on Friday coers through 1.2 (last eek s material). My office is Skiles 244 and my office hours are Monday, 1 3pm and

More information

Alternative non-linear predictive control under constraints applied to a two-wheeled nonholonomic mobile robot

Alternative non-linear predictive control under constraints applied to a two-wheeled nonholonomic mobile robot Alternatie non-linear predictie control under constraints applied to a to-heeled nonholonomic mobile robot Gaspar Fontineli Dantas Júnior *, João Ricardo Taares Gadelha *, Carlor Eduardo Trabuco Dórea

More information

The Dot Product

The Dot Product The Dot Product 1-9-017 If = ( 1,, 3 ) and = ( 1,, 3 ) are ectors, the dot product of and is defined algebraically as = 1 1 + + 3 3. Example. (a) Compute the dot product (,3, 7) ( 3,,0). (b) Compute the

More information

Announcements Wednesday, September 06. WeBWorK due today at 11:59pm. The quiz on Friday covers through Section 1.2 (last weeks material)

Announcements Wednesday, September 06. WeBWorK due today at 11:59pm. The quiz on Friday covers through Section 1.2 (last weeks material) Announcements Wednesday, September 06 WeBWorK due today at 11:59pm. The quiz on Friday coers through Section 1.2 (last eeks material) Announcements Wednesday, September 06 Good references about applications(introductions

More information

1 :: Mathematical notation

1 :: Mathematical notation 1 :: Mathematical notation x A means x is a member of the set A. A B means the set A is contained in the set B. {a 1,..., a n } means the set hose elements are a 1,..., a n. {x A : P } means the set of

More information

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008 Robotics & Automation Lecture 06 Serial Kinematic Chain, Forward Kinematics John T. Wen September 11, 2008 So Far... We have covered rigid body rotational kinematics: representations of SO(3), change of

More information

A SIMPLE STATIC ANALYSIS OF MOVING ROAD VEHICLE UNDER CROSSWIND

A SIMPLE STATIC ANALYSIS OF MOVING ROAD VEHICLE UNDER CROSSWIND A SIMPLE STATIC ANALYSIS OF MOVING OAD VEHICLE UNDE COSSWIND Milan Batist Marko Perkoič Uniersity of Ljubljan Faculty of Maritime studies and Transport Pot pomorščako 4, 630 Portorož, Sloeni EU milan.batista@fpp.uni-lj.si,

More information

An example of Lagrangian for a non-holonomic system

An example of Lagrangian for a non-holonomic system Uniersit of North Georgia Nighthaks Open Institutional Repositor Facult Publications Department of Mathematics 9-9-05 An eample of Lagrangian for a non-holonomic sstem Piotr W. Hebda Uniersit of North

More information

Controlling the Apparent Inertia of Passive Human-Interactive Robots

Controlling the Apparent Inertia of Passive Human-Interactive Robots 1 Controlling the Apparent Inertia of Passie Human-Interactie Robots om Worsnopp Michael Peshkin Kein Lynch J. Edward Colgate Abstract Passie robotic deices may exhibit a spatially arying apparent inertia

More information

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Charles Boncelet Probabilit Statistics and Random Signals" Oord Uniersit Press 06. ISBN: 978-0-9-0005-0 Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Sections 8. Joint Densities and Distribution unctions

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 20C. Lecture Eamples. (8//08) Section 2.. Vectors in the plane Definition A ector represents a nonnegatie number and, if the number is not zero, a direction. The number associated ith the ector is

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

Exercise 1b: Differential Kinematics of the ABB IRB 120

Exercise 1b: Differential Kinematics of the ABB IRB 120 Exercise 1b: Differential Kinematics of the ABB IRB 120 Marco Hutter, Michael Blösch, Dario Bellicoso, Samuel Bachmann October 5, 2016 Abstract The aim of this exercise is to calculate the differential

More information

3 - Vector Spaces Definition vector space linear space u, v,

3 - Vector Spaces Definition vector space linear space u, v, 3 - Vector Spaces Vectors in R and R 3 are essentially matrices. They can be vieed either as column vectors (matrices of size and 3, respectively) or ro vectors ( and 3 matrices). The addition and scalar

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Geometry review, part I

Geometry review, part I Geometr reie, part I Geometr reie I Vectors and points points and ectors Geometric s. coordinate-based (algebraic) approach operations on ectors and points Lines implicit and parametric equations intersections,

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

MEAM 520. More Velocity Kinematics

MEAM 520. More Velocity Kinematics MEAM 520 More Velocity Kinematics Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 12: October

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

An Introduction to Three-Dimensional, Rigid Body Dynamics. James W. Kamman, PhD. Volume II: Kinetics. Unit 3

An Introduction to Three-Dimensional, Rigid Body Dynamics. James W. Kamman, PhD. Volume II: Kinetics. Unit 3 Summary An Introduction to hree-dimensional, igid ody Dynamics James W. Kamman, PhD Volume II: Kinetics Unit Degrees of Freedom, Partial Velocities and Generalized Forces his unit defines the concepts

More information

Vectors in R n. P. Danziger

Vectors in R n. P. Danziger 1 Vectors in R n P. Danziger 1 Vectors The standard geometric definition of ector is as something which has direction and magnitude but not position. Since ectors hae no position we may place them whereer

More information

Estimation of Efficiency with the Stochastic Frontier Cost. Function and Heteroscedasticity: A Monte Carlo Study

Estimation of Efficiency with the Stochastic Frontier Cost. Function and Heteroscedasticity: A Monte Carlo Study Estimation of Efficiency ith the Stochastic Frontier Cost Function and Heteroscedasticity: A Monte Carlo Study By Taeyoon Kim Graduate Student Oklahoma State Uniersity Department of Agricultural Economics

More information

Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, Metric Spaces

Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, Metric Spaces Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, 2013 1 Metric Spaces Let X be an arbitrary set. A function d : X X R is called a metric if it satisfies the folloing

More information

So now that we ve mentioned these terms : kinetic, potential, work we should try to explain them more. Let s develop a model:

So now that we ve mentioned these terms : kinetic, potential, work we should try to explain them more. Let s develop a model: Lecture 12 Energy e are now at the point where we can talk about one of the most powerful tools in physics, energy. Energy is really an abstract concept. e hae indicators of energy (temperature, elocity

More information

Exercise 1a: Determine the dot product of each of the following pairs of vectors.

Exercise 1a: Determine the dot product of each of the following pairs of vectors. Bob Bron, CCBC Dundalk Math 53 Calculus 3, Chapter Section 3 Dot Product (Geometric Definition) Def.: The dot product of to vectors v and n in is given by here θ, satisfying 0, is the angle beteen v and.

More information

and sinθ = cosb =, and we know a and b are acute angles, find cos( a+ b) Trigonometry Topics Accuplacer Review revised July 2016 sin.

and sinθ = cosb =, and we know a and b are acute angles, find cos( a+ b) Trigonometry Topics Accuplacer Review revised July 2016 sin. Trigonometry Topics Accuplacer Revie revised July 0 You ill not be alloed to use a calculator on the Accuplacer Trigonometry test For more information, see the JCCC Testing Services ebsite at http://jcccedu/testing/

More information

Would you risk your live driving drunk? Intro

Would you risk your live driving drunk? Intro Martha Casquete Would you risk your lie driing drunk? Intro Motion Position and displacement Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Constant acceleration: A special

More information

ECE380 Digital Logic. Synchronous sequential circuits

ECE380 Digital Logic. Synchronous sequential circuits ECE38 Digital Logic Synchronous Sequential Circuits: State Diagrams, State Tables Dr. D. J. Jackson Lecture 27- Synchronous sequential circuits Circuits here a clock signal is used to control operation

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

Nonlinear Disturbance Decoupling for a Mobile Robotic Manipulator over Uneven Terrain

Nonlinear Disturbance Decoupling for a Mobile Robotic Manipulator over Uneven Terrain Nonlinear Disturbance Decoupling for a Mobile Robotic Manipulator oer Uneen Terrain Joel Jimenez-Lozano Bill Goodwine Department of Aerospace and Mechanical Engineering Uniersity of Noe Dame Noe Dame IN

More information

Concept of Stress at a Point

Concept of Stress at a Point Washkeic College of Engineering Section : STRONG FORMULATION Concept of Stress at a Point Consider a point ithin an arbitraril loaded deformable bod Define Normal Stress Shear Stress lim A Fn A lim A FS

More information

On the approximation of real powers of sparse, infinite, bounded and Hermitian matrices

On the approximation of real powers of sparse, infinite, bounded and Hermitian matrices On the approximation of real poers of sparse, infinite, bounded and Hermitian matrices Roman Werpachoski Center for Theoretical Physics, Al. Lotnikó 32/46 02-668 Warszaa, Poland Abstract We describe a

More information

Review of Matrices and Vectors 1/45

Review of Matrices and Vectors 1/45 Reiew of Matrices and Vectors /45 /45 Definition of Vector: A collection of comple or real numbers, generally put in a column [ ] T "! Transpose + + + b a b a b b a a " " " b a b a Definition of Vector

More information

Work and Heat Definitions

Work and Heat Definitions Work and Heat Definitions FL- Surroundings: Everything outside system + q -q + System: he part of S the orld e are observing. Heat, q: transfer of energy resulting from a temperature difference Work, :

More information

Consider this problem. A person s utility function depends on consumption and leisure. Of his market time (the complement to leisure), h t

Consider this problem. A person s utility function depends on consumption and leisure. Of his market time (the complement to leisure), h t VI. INEQUALITY CONSTRAINED OPTIMIZATION Application of the Kuhn-Tucker conditions to inequality constrained optimization problems is another very, very important skill to your career as an economist. If

More information

Section 6: PRISMATIC BEAMS. Beam Theory

Section 6: PRISMATIC BEAMS. Beam Theory Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are Bernoulli-Euler beam theory Timoshenko beam theory One learns the details of Bernoulli-Euler beam

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linea Algeba Math Open Book Eam Open Notes Sept Calculatos Pemitted Sho all ok (ecept #). ( pts) Gien the sstem of equations a) ( pts) Epess this sstem as an augmented mati. b) ( pts) Bing this mati to

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR PARALLEL MANIPULATORS 6-degree of Freedom Flight Simulator BACKGROUND Platform-type parallel mechanisms 6-DOF MANIPULATORS INTRODUCTION Under alternative robotic mechanical

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Motion In Two Dimensions. Vectors in Physics

Motion In Two Dimensions. Vectors in Physics Motion In Two Dimensions RENE DESCARTES (1736-1806) GALILEO GALILEI (1564-1642) Vectors in Physics All physical quantities are either scalars or ectors Scalars A scalar quantity has only magnitude. In

More information

The Probability of Pathogenicity in Clinical Genetic Testing: A Solution for the Variant of Uncertain Significance

The Probability of Pathogenicity in Clinical Genetic Testing: A Solution for the Variant of Uncertain Significance International Journal of Statistics and Probability; Vol. 5, No. 4; July 2016 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education The Probability of Pathogenicity in Clinical

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR The 6nx6n matrices of manipulator mass M and manipulator angular velocity W are introduced below: M = diag M 1, M 2,, M n W = diag (W 1, W 2,, W n ) From this definitions

More information

Week 3: Wheeled Kinematics AMR - Autonomous Mobile Robots

Week 3: Wheeled Kinematics AMR - Autonomous Mobile Robots Week 3: Wheeled Kinematics AMR - Paul Furgale Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Wheeled Kinematics 1 AMRx Flipped Classroom A Matlab exercise is coming later

More information

The Jacobian. Jesse van den Kieboom

The Jacobian. Jesse van den Kieboom The Jacobian Jesse van den Kieboom jesse.vandenkieboom@epfl.ch 1 Introduction 1 1 Introduction The Jacobian is an important concept in robotics. Although the general concept of the Jacobian in robotics

More information

A Geometric Review of Linear Algebra

A Geometric Review of Linear Algebra A Geometric Reiew of Linear Algebra The following is a compact reiew of the primary concepts of linear algebra. The order of presentation is unconentional, with emphasis on geometric intuition rather than

More information

Ch. 2 Math Preliminaries for Lossless Compression. Section 2.4 Coding

Ch. 2 Math Preliminaries for Lossless Compression. Section 2.4 Coding Ch. 2 Math Preliminaries for Lossless Compression Section 2.4 Coding Some General Considerations Definition: An Instantaneous Code maps each symbol into a codeord Notation: a i φ (a i ) Ex. : a 0 For Ex.

More information

Hydrodynamic Coefficients Identification and Experimental Investigation for an Underwater Vehicle

Hydrodynamic Coefficients Identification and Experimental Investigation for an Underwater Vehicle Sensors & Transducers 2014 by IFSA Publishing, S. L. http://.sensorsportal.com Hydrodynamic Coefficients Identification and Experimental Inestigation for an Underater Vehicle 1 Shaorong XIE, 1 Qingmei

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Q2. The velocity field in a fluid flow is given by

Q2. The velocity field in a fluid flow is given by Kinematics of Flid Q. Choose the correct anser (i) streamline is a line (a) hich is along the path of a particle (b) dran normal to the elocit ector at an point (c) sch that the streamlines diide the passage

More information

4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion.

4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion. 4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion. We now hae deeloped a ector model that allows the ready isualization

More information

4-vectors. Chapter Definition of 4-vectors

4-vectors. Chapter Definition of 4-vectors Chapter 12 4-ectors Copyright 2004 by Daid Morin, morin@physics.harard.edu We now come to a ery powerful concept in relatiity, namely that of 4-ectors. Although it is possible to derie eerything in special

More information

Robustness Analysis of Linear Parameter Varying Systems Using Integral Quadratic Constraints

Robustness Analysis of Linear Parameter Varying Systems Using Integral Quadratic Constraints Robustness Analysis of Linear Parameter Varying Systems Using Integral Quadratic Constraints Harald Pfifer and Peter Seiler 1 Abstract A general approach is presented to analyze the orst case input/output

More information

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame. Robotics I September, 7 Exercise Consider the rigid body in Fig., a thin rod of length L. The rod will be rotated by an angle α around the z axis, then by an angle β around the resulting x axis, and finally

More information

Race car Damping Some food for thought

Race car Damping Some food for thought Race car Damping Some food for thought The first article I ever rote for Racecar Engineering as ho to specify dampers using a dual rate damper model. This as an approach that my colleagues and I had applied

More information

21.60 Worksheet 8 - preparation problems - question 1:

21.60 Worksheet 8 - preparation problems - question 1: Dynamics 190 1.60 Worksheet 8 - preparation problems - question 1: A particle of mass m moes under the influence of a conseratie central force F (r) =g(r)r where r = xˆx + yŷ + zẑ and r = x + y + z. A.

More information

Lecture 3a: The Origin of Variational Bayes

Lecture 3a: The Origin of Variational Bayes CSC535: 013 Advanced Machine Learning Lecture 3a: The Origin of Variational Bayes Geoffrey Hinton The origin of variational Bayes In variational Bayes, e approximate the true posterior across parameters

More information

Nonholonomic Constraints Examples

Nonholonomic Constraints Examples Nonholonomic Constraints Examples Basilio Bona DAUIN Politecnico di Torino July 2009 B. Bona (DAUIN) Examples July 2009 1 / 34 Example 1 Given q T = [ x y ] T check that the constraint φ(q) = (2x + siny

More information

Time-Optimal Cornering Trajectory Planning for Differential-Driven Wheeled Mobile Robots with Motor Current and Voltage Constraints

Time-Optimal Cornering Trajectory Planning for Differential-Driven Wheeled Mobile Robots with Motor Current and Voltage Constraints Time-Optimal Cornering Trajectory Planning for Differential-Driven Wheeled Mobile Robots ith Motor Current and Voltage Constraints Yunjeong Kim Department of Electrical Engineering KAIST Daejeon, Kaist

More information

A vector in the plane is directed line segment. The directed line segment AB

A vector in the plane is directed line segment. The directed line segment AB Vector: A ector is a matrix that has only one row then we call the matrix a row ector or only one column then we call it a column ector. A row ector is of the form: a a a... A column ector is of the form:

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum 1997 19 CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION 3.0. Introduction

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Equivalence between transition systems. Modal logic and first order logic. In pictures: forth condition. Bisimilation. In pictures: back condition

Equivalence between transition systems. Modal logic and first order logic. In pictures: forth condition. Bisimilation. In pictures: back condition odal logic and first order logic odal logic: local ie of the strctre ( here can I get by folloing links from here ). First order logic: global ie of the strctre (can see eerything, qantifiers do not follo

More information

Homework Set 2 Solutions

Homework Set 2 Solutions MATH 667-010 Introduction to Mathematical Finance Prof. D. A. Edards Due: Feb. 28, 2018 Homeork Set 2 Solutions 1. Consider the ruin problem. Suppose that a gambler starts ith ealth, and plays a game here

More information

Econ 201: Problem Set 3 Answers

Econ 201: Problem Set 3 Answers Econ 20: Problem Set 3 Ansers Instructor: Alexandre Sollaci T.A.: Ryan Hughes Winter 208 Question a) The firm s fixed cost is F C = a and variable costs are T V Cq) = 2 bq2. b) As seen in class, the optimal

More information

Doppler shifts in astronomy

Doppler shifts in astronomy 7.4 Doppler shift 253 Diide the transformation (3.4) by as follows: = g 1 bck. (Lorentz transformation) (7.43) Eliminate in the right-hand term with (41) and then inoke (42) to yield = g (1 b cos u). (7.44)

More information

2-D Visual Servoing for MARCO

2-D Visual Servoing for MARCO 2-D Visual Seroing for MARCO Teresa A. Vidal C. Institut de Robòtica i Informàtica Industrial Uniersitat Politèctica de Catalunya - CSIC Llorens i Artigas 4-6, Edifici U, 2a pl. Barcelona 82, Spain tidal@iri.upc.es

More information

Unit 11: Vectors in the Plane

Unit 11: Vectors in the Plane 135 Unit 11: Vectors in the Plane Vectors in the Plane The term ector is used to indicate a quantity (such as force or elocity) that has both length and direction. For instance, suppose a particle moes

More information

different formulas, depending on whether or not the vector is in two dimensions or three dimensions.

different formulas, depending on whether or not the vector is in two dimensions or three dimensions. ectors The word ector comes from the Latin word ectus which means carried. It is best to think of a ector as the displacement from an initial point P to a terminal point Q. Such a ector is expressed as

More information

A Generalization of a result of Catlin: 2-factors in line graphs

A Generalization of a result of Catlin: 2-factors in line graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 72(2) (2018), Pages 164 184 A Generalization of a result of Catlin: 2-factors in line graphs Ronald J. Gould Emory University Atlanta, Georgia U.S.A. rg@mathcs.emory.edu

More information

The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25

The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25 UNIT 2 - APPLICATIONS OF VECTORS Date Lesson TOPIC Homework Sept. 19 2.1 (11) 7.1 Vectors as Forces Pg. 362 # 2, 5a, 6, 8, 10 13, 16, 17 Sept. 21 2.2 (12) 7.2 Velocity as Vectors Pg. 369 # 2,3, 4, 6, 7,

More information

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b)

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b) . Sole Problem.-(c). Sole Problem.-(b). A two dimensional trss shown in the figre is made of alminm with Yong s modls E = 8 GPa and failre stress Y = 5 MPa. Determine the minimm cross-sectional area of

More information

Given U, V, x and θ perform the following steps: a) Find the rotation angle, φ, by which u 1 is rotated in relation to x 1

Given U, V, x and θ perform the following steps: a) Find the rotation angle, φ, by which u 1 is rotated in relation to x 1 1 The Jacobian can be expressed in an arbitrary frame, such as the base frame located at the first joint, the hand frame located at the end-effector, or the global frame located somewhere else. The SVD

More information

Chapter 2: 1D Kinematics Tuesday January 13th

Chapter 2: 1D Kinematics Tuesday January 13th Chapter : D Kinematics Tuesday January 3th Motion in a straight line (D Kinematics) Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Short summary Constant acceleration a special

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

Fluid Physics 8.292J/12.330J

Fluid Physics 8.292J/12.330J Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

More information

Kinematics on oblique axes

Kinematics on oblique axes Bolina 1 Kinematics on oblique axes arxi:physics/01111951 [physics.ed-ph] 27 No 2001 Oscar Bolina Departamento de Física-Matemática Uniersidade de São Paulo Caixa Postal 66318 São Paulo 05315-970 Brasil

More information

Fundamentals of DC Testing

Fundamentals of DC Testing Fundamentals of DC Testing Aether Lee erigy Japan Abstract n the beginning of this lecture, Ohm s la, hich is the most important electric la regarding DC testing, ill be revieed. Then, in the second section,

More information

Business Cycles: The Classical Approach

Business Cycles: The Classical Approach San Francisco State University ECON 302 Business Cycles: The Classical Approach Introduction Michael Bar Recall from the introduction that the output per capita in the U.S. is groing steady, but there

More information

Line following of a mobile robot

Line following of a mobile robot Line following of a mobile robot May 18, 004 1 In brief... The project is about controlling a differential steering mobile robot so that it follows a specified track. Steering is achieved by setting different

More information

On the Polarization Diversity of Aperture Array Antennas for SKA Wide-Field Polarimetry

On the Polarization Diversity of Aperture Array Antennas for SKA Wide-Field Polarimetry On the Polarization Diersity of Apertre Array Antennas for KA Wide-Field Polarimetry ob Maaskant and Tobia Carozzi May 04, 00 BYU orkshop, Proo, Utah In part based on a discssion ith: Karl Warnick, Brian

More information

Dynamic Vehicle Routing with Moving Demands Part II: High speed demands or low arrival rates

Dynamic Vehicle Routing with Moving Demands Part II: High speed demands or low arrival rates Dynamic Vehicle Routing with Moing Demands Part II: High speed demands or low arrial rates Stephen L. Smith Shaunak D. Bopardikar Francesco Bullo João P. Hespanha Abstract In the companion paper we introduced

More information

Why do Golf Balls have Dimples on Their Surfaces?

Why do Golf Balls have Dimples on Their Surfaces? Name: Partner(s): 1101 Section: Desk # Date: Why do Golf Balls have Dimples on Their Surfaces? Purpose: To study the drag force on objects ith different surfaces, ith the help of a ind tunnel. Overvie

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3.

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3. PROLEM 15.1 The brake drum is attached to a larger flywheel that is not shown. The motion of the brake drum is defined by the relation θ = 36t 1.6 t, where θ is expressed in radians and t in seconds. Determine

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Engineering Notes. CONVENTIONAL streamlined autonomous underwater vehicles. Global Directional Control of a Slender Autonomous Underwater Vehicle

Engineering Notes. CONVENTIONAL streamlined autonomous underwater vehicles. Global Directional Control of a Slender Autonomous Underwater Vehicle JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 3, No., January February 27 Engineering Notes ENGINEERING NOTES are short manuscripts describing new deelopments or important results of a preliminary nature.

More information

Reversal in time order of interactive events: Collision of inclined rods

Reversal in time order of interactive events: Collision of inclined rods Reersal in time order of interactie eents: Collision of inclined rods Published in The European Journal of Physics Eur. J. Phys. 27 819-824 http://www.iop.org/ej/abstract/0143-0807/27/4/013 Chandru Iyer

More information

Highway Vehicular Delay Tolerant Networks: Information Propagation Speed Properties

Highway Vehicular Delay Tolerant Networks: Information Propagation Speed Properties Highay Vehicular Delay Tolerant Netorks: Information Propagation Speed Properties Emmanuel Baccelli, Philippe Jacquet, Bernard Mans, Georgios Rodolakis INRIA, France, {firstname.lastname}@inria.fr Macquarie

More information

On Shortest Single/Multiple Path Computation Problems in Fiber-Wireless (FiWi) Access Networks

On Shortest Single/Multiple Path Computation Problems in Fiber-Wireless (FiWi) Access Networks 2014 IEEE 15th International Conference on High Performance Sitching and Routing (HPSR) On Shortest Single/Multiple Path Computation Problems in Fiber-Wireless (FiWi) Access Netorks Chenyang Zhou, Anisha

More information

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics Robotics I Kinematics, Dynamics and Control of Robotic Manipulators Velocity Kinematics Dr. Christopher Kitts Director Robotic Systems Laboratory Santa Clara University Velocity Kinematics So far, we ve

More information

CHAPTER 4: DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION

CHAPTER 4: DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION CHAPTE 4: DYNAMICS: FOCE AND NEWTON S LAWS OF MOTION 4. NEWTON S SECOND LAW OF MOTION: CONCEPT OF A SYSTEM. A 6.- kg sprinter starts a race ith an acceleration of external force on him? 4. m/s. What is

More information

Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market

Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market Kai Hao Yang 10/31/2017 1 Partial Equilibrium in a Competitive Market In the previous lecture, e derived the aggregate

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle Angular elocity 1 (a) Define the radian. [1] (b) Explain what is meant by the term angular elocity. [1] (c) Gie the angular elocity

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

Cases of integrability corresponding to the motion of a pendulum on the two-dimensional plane

Cases of integrability corresponding to the motion of a pendulum on the two-dimensional plane Cases of integrability corresponding to the motion of a pendulum on the two-dimensional plane MAXIM V. SHAMOLIN Lomonoso Moscow State Uniersity Institute of Mechanics Michurinskii Ae.,, 99 Moscow RUSSIAN

More information