A Generalization of Barbalat s Lemma with Applications to Robust Model Predictive Control

Size: px
Start display at page:

Download "A Generalization of Barbalat s Lemma with Applications to Robust Model Predictive Control"

Transcription

1 A Generalization of Barbalat s Lemma with Applications to Robust Model Predictive Control Fernando A. C. C. Fontes 1 and Lalo Magni 2 1 Officina Mathematica, Departamento de Matemática para a Ciência e Tecnologia, Universidade do Minho, Guimarães, Portugal ( ffontes@mct.uminho.pt). 2 Dipartimento di Informatica e Sistimistica, Università degli Studi di Pavia, via Ferrata 1, Pavia, Italy. ( lalo.magni@unipv.it). Abstract Barbalat s lemma is a well-known and powerful tool to deduce asymptotic stability of nonlinear systems, specially time-varying systems, using Lyapunov-like approaches. Although simple variants of this lemma have already been used successfully to prove stability results for Model Predictive Control (MPC) of nonlinear and time-varying systems, further modifications are needed to address systems allowing uncertainty. The generalization proposed here can be used to guarantee that the state trajectory (resulting from the MPC algorithm) asymptotically approaches some set containing the origin, if there is a function that coincides with the trajectory at a sequence of instants of time and satisfies some boundedness and smoothness conditions. We discuss here the way the proposed lemma can help to establish robust stability results for MPC of nonlinear systems subject to bounded disturbances. keywords: Barbalat s lemma, robust stability, nonlinear systems, predictive control, receding horizon. 1 Introduction Barbalat s lemma is a well-known and powerful tool to deduce asymptotic stability of nonlinear systems, specially time-varying systems, using Lyapunov-like approaches (see e.g. [4] for a discussion and applications). Simple variants of this lemma have been used successfully to prove stability results for Model Predictive Control (MPC) of nonlinear and time-varying systems [3, 1]. A recent work on robust MPC of nonlinear systems [2] used a generalization of Barbalat s lemma as an important step to prove stability of the algorithm. Due to lack of space, the use of such lemma was not much explored there.

2 However, is our believe that the generalization of the lemma presented might provide a useful tool to analyse stability in other robust continuous-time MPC approaches. Barbalat s lemma can be used to guarantee that the state trajectory converges asymptotically to the origin, if some smoothness and boundedness conditions involving the trajectory are satisfied. The generalization proposed here can be used to guarantee that the state trajectory asymptotically approaches some set containing the origin, if there is a function that coincides with the trajectory at a sequence of instants of time and satisfies some boundedness and smoothness conditions. When the stability properties of a continuous-time MPC framework allowing uncertainty are analysed, a difficulty encountered is that the predicted trajectory only coincides with the resulting trajectory at specific sampling instants. Stability properties of the resulting trajectory can be obtained using information on the behavior of the predicted trajectory through the application of the lemma proposed here. 2 Barbalat s Lemma and Variants A standard resuln Calculus states thaf a function is lower bounded and decreasing, then it converges to a limit. However, we cannot conclude whether its derivative will decrease or not. For instance, the function f(t) = e t sin(e 2t ) converges to zero as t, but f (= e t sin(e 2 t )+2 e t cos(e 2 t )) is unbounded. If we want to guarantee that f(t) 0 as t, we musmpose some smoothness property on f(t). Thas, we must require that f is uniformly continuous. We have in this way a well-known form of the Barbalat s lemma (see e.g. [4]). Lemma 2.1 (Barbalat s lemma) Let t F (t) be a differentiable function with a finite limit as t. If F is uniformly continuous, then F (t) 0 as t. A simple modification that has been useful in some MPC (nominal) stability results [3, 1] is the following. Lemma 2.2 Let M be a continuous, positive definite function and x be an absolutely continuous function on IR. If x( ) L <, ẋ( ) L <, and T lim T M(x(t)) dt <, then x(t) 0 as t. 0 Now, suppose that due to disturbances we have no means of guaranteeing that all the hypothesis of the lemma are satisfied for the trajectory x we want to analyse. Instead some hypothesis are satisfied on a neighbouring trajectory ˆx that coincides with the former at a sequence of instants of time. These are the conditions the following lemma, which is the main result here. Lemma 2.3 (A generalization of Barbalat s lemma) Let A be subset of IR n containing the origin, and M : IR n IR be a continuous function such that M(x) > 0 for all x / A and M(x) = 0 for some x A. Let d A (x) be the distance function from a point x IR n to the set A. Consider also functions x and ˆx from IR to IR n coinciding at the points of a sequence π = { } i IN with +1 = + δ. 2

3 If x ( ) L (0, ) <, ẋ ( ) L (0, ) <, ˆx( ) L (0, ) <, ˆx( ) L ([,+δ)) <, and then for some δ > 0 T lim M(ˆx(t)) dt <, T 0 d A (x (t)) 0 as t. 3 Application to a Robust MPC framework The application of this lemma to prove stability for a Robust MPC framework is now discussed. Consider the following nonlinear system subject to disturbances ẋ(t) = f(x(t), u(t), d(t)) a.e. t 0, (1) x(0) = x 0 X 0, x(t) X for all t 0, u(t) U a.e. t 0, d(t) D a.e. t 0. Here X 0 IR n is the set of possible initial states, X IR n is the set of possible states modelling state constraints, U IR m is the set of possible control values modelling input constraints, and D IR p is the set of possible disturbance values. An MPC algorithm to control this system drive it to a target set A is based on repeatedly solving at a sequence of instants of time t 0, t 1,... a Min-max optimal control problem P(x tk, T ): Min u Max d k+t subject to: t k L(x(s), u(s))ds + W (x(t k + T )) x(t k ) = x tk ẋ(s) = f(x(s), u(s), d(s)) a.e. s [t k, t k + T ] u(s) U for all s [t k, t k + T ] x(s) X for all s [t k, t k + T ] x(t k + T ) S. Here, the functions L and W, the horizon T and the terminal set S are design parameters to be tuned according to some stability condition. The solution to each optimal control problem P(x tk, T ) is a pair trajectory/control defined on the interval [t k, t k + T ) and is denoted by ( x k, ū k ). The MPC algorithm performs according to the following receding horizon strategy: 3

4 1. Measure the current state of the plant x tk. 2. Solve problem P(x tk, T ), obtaining the optimal control ū k on the interval [t k, t k + T ). 3. Apply to the plant the control ū k on the interval [t k, t k + δ) (and discard all the remaining for t t k + δ). 4. Repeat the procedure from (1.) for the next sampling instant t k+1 = t k +δ. Let x represent the actual trajectory resulting from the MPC strategy. Let ˆx be the concatenation of predicted trajectories x k for each optimization problem. Thas for k 0 ˆx(t) = x k (t) for all t [t k, t k + δ). Note that ˆx coincides with x at all sampling instants. A stability analysis can be carried out (see [2]) to show thaf the design parameters are conveniently selected, then a certain value function V is decreasing. More precisely, for some δ > 0 small enough and for any t > t > 0 V (t, x (t )) V (t, x (t )) t M(ˆx(s))ds. where M is a continuous function satisfying M(x) > 0 for all x / A and M(x) = 0 for some x A. We can then write that for any t t 0 0 V (t, x (t)) V (t 0, x (t 0 )) t 0 M(ˆx(s))ds. Since V (t 0, x (t 0 )) is finite, we conclude that the function t V (t, x (t)) is bounded and then that t t 0 M(ˆx(s))ds is also bounded. Therefore t ˆx(t) is bounded and, since f is continuous and takes values on bounded sets of (x, u, d), t ˆx is also bounded. Using the fact that x is absolutely continuous and coincides with ˆx at all sampling instants, we may deduce that t ẋ (t) and t x (t) are also bounded. We are in the conditions to apply the modification of Barbalat s lemma, yielding that the trajectory asymptotically converges to the set A. 4 Proof of Lemma 2.3 Assume, contradicting the assertion of the lemma, that x (t) fails to converge to A as t. Then for some c > 0 there exists a sequence {s k } k IN tending to such that d A (x (s k )) 2c for all k IN. Since ẋ ( ) L is bounded, we can find δ > 0 such that for some subsequence of π, { } i I (with I some infinite countable subset of IN) such that d A (x ( )) c for all i I. Since A contains the origin, we also have x ( ) d A (x ( )) c. The same conclusions are valid for ˆx at the points I, i.e. ˆx( ) d A (ˆx( )) c. Let K be a positive number satisfying ˆx( ) L ([, +δ)) K and c/(2δ) < K. (The lasnequality guarantees that the intervals [, + c/(2k)] are nonoverlapping and contained in [, + δ).) 4

5 Let R be positive number such that ˆx( ) L R and the set B = {x IR n : d A (x) c/2, x R} is non-empty. Since M is continuous, M(x) > 0 for all x B, and B is compact, then there exists m > 0 such that m M(x) for all x B. Note that for all t [, + c/(2k)] we have ˆx(t) ˆx( ) ˆx(s) ds [c/(2k)]k c/2 Then, by the triangle inequality d A (ˆx(t)) d A (ˆx( )) ˆx(t) ˆx( ) c/2 Therefore M(ˆx(t)) m for all t [, + c/(2k)], and i+1 M(ˆx(s))ds i+c/(2k) M(ˆx(s))ds mc/(2k). This would imply that M(ˆx(s))ds as t, contradicting the hypothesis and thereby completing the 0 proof. References [1] F. A. C. C. Fontes. A general framework to design stabilizing nonlinear model predictive controllers. Systems & Control Letters, 42: , [2] F.A.C.C. Fontes and L. Magni. Min-max model predictive control of nonlinear systems using discontinuous feedbacks. IEEE Transactions on Automatic Control, 48(10): , [3] H. Michalska and R. B. Vinter. Nonlinear stabilization using discontinuous moving-horizon control. IMA Journal of Mathematical Control and Information, 11: , [4] J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, New Jersey,

Sampled-Data Model Predictive Control for Nonlinear Time-Varying Systems: Stability and Robustness

Sampled-Data Model Predictive Control for Nonlinear Time-Varying Systems: Stability and Robustness Sampled-Data Model Predictive Control for Nonlinear Time-Varying Systems: Stability and Robustness Fernando A. C. C. Fontes 1, Lalo Magni 2, and Éva Gyurkovics3 1 Officina Mathematica, Departamento de

More information

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints S. Lopes, F. A. C. C. Fontes and M. d. R. de Pinho Officina Mathematica report, April 4, 27 Abstract Standard

More information

Min-Max Model Predictive Control of Nonlinear Systems using Discontinuous Feedbacks

Min-Max Model Predictive Control of Nonlinear Systems using Discontinuous Feedbacks Min-Ma Model Predictive Control of Nonlinear Systems using Discontinuous Feedbacks Fernando A. C. C. Fontes and Lalo Magni Abstract This paper proposes a Model Predictive Control (MPC) algorithm for the

More information

A Model Predictive Control Scheme with Additional Performance Index for Transient Behavior

A Model Predictive Control Scheme with Additional Performance Index for Transient Behavior A Model Predictive Control Scheme with Additional Performance Index for Transient Behavior Andrea Alessandretti, António Pedro Aguiar and Colin N. Jones Abstract This paper presents a Model Predictive

More information

Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees

Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees Pontus Giselsson Department of Automatic Control LTH Lund University Box 118, SE-221 00 Lund, Sweden pontusg@control.lth.se

More information

Converse Lyapunov theorem and Input-to-State Stability

Converse Lyapunov theorem and Input-to-State Stability Converse Lyapunov theorem and Input-to-State Stability April 6, 2014 1 Converse Lyapunov theorem In the previous lecture, we have discussed few examples of nonlinear control systems and stability concepts

More information

GLOBAL STABILIZATION OF THE INVERTED PENDULUM USING MODEL PREDICTIVE CONTROL. L. Magni, R. Scattolini Λ;1 K. J. Åström ΛΛ

GLOBAL STABILIZATION OF THE INVERTED PENDULUM USING MODEL PREDICTIVE CONTROL. L. Magni, R. Scattolini Λ;1 K. J. Åström ΛΛ Copyright 22 IFAC 15th Triennial World Congress, Barcelona, Spain GLOBAL STABILIZATION OF THE INVERTED PENDULUM USING MODEL PREDICTIVE CONTROL L. Magni, R. Scattolini Λ;1 K. J. Åström ΛΛ Λ Dipartimento

More information

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1 Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems p. 1/1 p. 2/1 Converse Lyapunov Theorem Exponential Stability Let x = 0 be an exponentially stable equilibrium

More information

Robust Adaptive Attitude Control of a Spacecraft

Robust Adaptive Attitude Control of a Spacecraft Robust Adaptive Attitude Control of a Spacecraft AER1503 Spacecraft Dynamics and Controls II April 24, 2015 Christopher Au Agenda Introduction Model Formulation Controller Designs Simulation Results 2

More information

Regional Input-to-State Stability for Nonlinear Model Predictive Control

Regional Input-to-State Stability for Nonlinear Model Predictive Control 1548 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006 Regional Input-to-State Stability for Nonlinear Model Predictive Control L. Magni, D. M. Raimondo, and R. Scattolini Abstract

More information

On the stability of receding horizon control with a general terminal cost

On the stability of receding horizon control with a general terminal cost On the stability of receding horizon control with a general terminal cost Ali Jadbabaie and John Hauser Abstract We study the stability and region of attraction properties of a family of receding horizon

More information

On robustness of suboptimal min-max model predictive control *

On robustness of suboptimal min-max model predictive control * Manuscript received June 5, 007; revised Sep., 007 On robustness of suboptimal min-max model predictive control * DE-FENG HE, HAI-BO JI, TAO ZHENG Department of Automation University of Science and Technology

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 3. Fundamental properties IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Example Consider the system ẋ = f

More information

L 1 Adaptive Controller for a Class of Systems with Unknown

L 1 Adaptive Controller for a Class of Systems with Unknown 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June -3, 28 FrA4.2 L Adaptive Controller for a Class of Systems with Unknown Nonlinearities: Part I Chengyu Cao and Naira Hovakimyan

More information

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles HYBRID PREDICTIVE OUTPUT FEEDBACK STABILIZATION OF CONSTRAINED LINEAR SYSTEMS Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

The Rationale for Second Level Adaptation

The Rationale for Second Level Adaptation The Rationale for Second Level Adaptation Kumpati S. Narendra, Yu Wang and Wei Chen Center for Systems Science, Yale University arxiv:1510.04989v1 [cs.sy] 16 Oct 2015 Abstract Recently, a new approach

More information

Contraction Based Adaptive Control of a Class of Nonlinear Systems

Contraction Based Adaptive Control of a Class of Nonlinear Systems 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 WeB4.5 Contraction Based Adaptive Control of a Class of Nonlinear Systems B. B. Sharma and I. N. Kar, Member IEEE Abstract

More information

Decentralized and distributed control

Decentralized and distributed control Decentralized and distributed control Centralized control for constrained discrete-time systems M. Farina 1 G. Ferrari Trecate 2 1 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) Politecnico

More information

Robust Adaptive MPC for Systems with Exogeneous Disturbances

Robust Adaptive MPC for Systems with Exogeneous Disturbances Robust Adaptive MPC for Systems with Exogeneous Disturbances V. Adetola M. Guay Department of Chemical Engineering, Queen s University, Kingston, Ontario, Canada (e-mail: martin.guay@chee.queensu.ca) Abstract:

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

Feedback stabilisation with positive control of dissipative compartmental systems

Feedback stabilisation with positive control of dissipative compartmental systems Feedback stabilisation with positive control of dissipative compartmental systems G. Bastin and A. Provost Centre for Systems Engineering and Applied Mechanics (CESAME Université Catholique de Louvain

More information

Distributed Receding Horizon Control of Cost Coupled Systems

Distributed Receding Horizon Control of Cost Coupled Systems Distributed Receding Horizon Control of Cost Coupled Systems William B. Dunbar Abstract This paper considers the problem of distributed control of dynamically decoupled systems that are subject to decoupled

More information

STABILITY OF RESET SWITCHED SYSTEMS. University of Aveiro, Portugal University of Beira Interior, Portugal University of Aveiro, Portugal

STABILITY OF RESET SWITCHED SYSTEMS. University of Aveiro, Portugal University of Beira Interior, Portugal University of Aveiro, Portugal STABILITY OF RESET SWITCHED SYSTEMS Isabel Brás, Ana Carapito, Paula Rocha, University of Aveiro, Portugal University of Beira Interior, Portugal University of Aveiro, Portugal Abstract: In this paper

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

On Sontag s Formula for the Input-to-State Practical Stabilization of Retarded Control-Affine Systems

On Sontag s Formula for the Input-to-State Practical Stabilization of Retarded Control-Affine Systems On Sontag s Formula for the Input-to-State Practical Stabilization of Retarded Control-Affine Systems arxiv:1206.4240v1 [math.oc] 19 Jun 2012 P. Pepe Abstract In this paper input-to-state practically stabilizing

More information

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402 Georgia Institute of Technology Nonlinear Controls Theory Primer ME 640 Ajeya Karajgikar April 6, 011 Definition Stability (Lyapunov): The equilibrium state x = 0 is said to be stable if, for any R > 0,

More information

3 Stability and Lyapunov Functions

3 Stability and Lyapunov Functions CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

More information

A sub-optimal second order sliding mode controller for systems with saturating actuators

A sub-optimal second order sliding mode controller for systems with saturating actuators 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June -3, 28 FrB2.5 A sub-optimal second order sliding mode for systems with saturating actuators Antonella Ferrara and Matteo

More information

A Robust MPC/ISM Hierarchical Multi-Loop Control Scheme for Robot Manipulators

A Robust MPC/ISM Hierarchical Multi-Loop Control Scheme for Robot Manipulators 52nd IEEE Conference on Decision and Control December 1-13, 213. Florence, Italy A Robust MPC/ISM Hierarchical Multi-Loop Control Scheme for Robot Manipulators Antonella Ferrara and Gian Paolo Incremona

More information

Stability Analysis and Synthesis for Scalar Linear Systems With a Quantized Feedback

Stability Analysis and Synthesis for Scalar Linear Systems With a Quantized Feedback IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 48, NO 9, SEPTEMBER 2003 1569 Stability Analysis and Synthesis for Scalar Linear Systems With a Quantized Feedback Fabio Fagnani and Sandro Zampieri Abstract

More information

An Approach of Robust Iterative Learning Control for Uncertain Systems

An Approach of Robust Iterative Learning Control for Uncertain Systems ,,, 323 E-mail: mxsun@zjut.edu.cn :, Lyapunov( ),,.,,,.,,. :,,, An Approach of Robust Iterative Learning Control for Uncertain Systems Mingxuan Sun, Chaonan Jiang, Yanwei Li College of Information Engineering,

More information

COMPUTATIONAL DELAY IN NONLINEAR MODEL PREDICTIVE CONTROL. Rolf Findeisen Frank Allgöwer

COMPUTATIONAL DELAY IN NONLINEAR MODEL PREDICTIVE CONTROL. Rolf Findeisen Frank Allgöwer COMPUTATIONAL DELAY IN NONLINEAR MODEL PREDICTIVE CONTROL Rolf Findeisen Frank Allgöwer Institute for Systems Theory in Engineering, University of Stuttgart, 70550 Stuttgart, Germany, findeise,allgower

More information

Nonlinear systems. Lyapunov stability theory. G. Ferrari Trecate

Nonlinear systems. Lyapunov stability theory. G. Ferrari Trecate Nonlinear systems Lyapunov stability theory G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Advanced automation and control Ferrari Trecate

More information

EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED

EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED STUART M. HARWOOD AND PAUL I. BARTON Key words. linear programs, ordinary differential equations, embedded

More information

Any domain of attraction for a linear constrained system is a tracking domain of attraction

Any domain of attraction for a linear constrained system is a tracking domain of attraction Any domain of attraction for a linear constrained system is a tracking domain of attraction Franco Blanchini, Stefano Miani, Dipartimento di Matematica ed Informatica Dipartimento di Ingegneria Elettrica,

More information

Set-based adaptive estimation for a class of nonlinear systems with time-varying parameters

Set-based adaptive estimation for a class of nonlinear systems with time-varying parameters Preprints of the 8th IFAC Symposium on Advanced Control of Chemical Processes The International Federation of Automatic Control Furama Riverfront, Singapore, July -3, Set-based adaptive estimation for

More information

Suboptimality of minmax MPC. Seungho Lee. ẋ(t) = f(x(t), u(t)), x(0) = x 0, t 0 (1)

Suboptimality of minmax MPC. Seungho Lee. ẋ(t) = f(x(t), u(t)), x(0) = x 0, t 0 (1) Suboptimality of minmax MPC Seungho Lee In this paper, we consider particular case of Model Predictive Control (MPC) when the problem that needs to be solved in each sample time is the form of min max

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

On the Inherent Robustness of Suboptimal Model Predictive Control

On the Inherent Robustness of Suboptimal Model Predictive Control On the Inherent Robustness of Suboptimal Model Predictive Control James B. Rawlings, Gabriele Pannocchia, Stephen J. Wright, and Cuyler N. Bates Department of Chemical and Biological Engineering and Computer

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

Existence and uniqueness: Picard s theorem

Existence and uniqueness: Picard s theorem Existence and uniqueness: Picard s theorem First-order equations Consider the equation y = f(x, y) (not necessarily linear). The equation dictates a value of y at each point (x, y), so one would expect

More information

Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems

Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems Zhengtao Ding Manchester School of Engineering, University of Manchester Oxford Road, Manchester M3 9PL, United Kingdom zhengtaoding@manacuk

More information

A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF 3RD-ORDER UNCERTAIN NONLINEAR SYSTEMS

A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF 3RD-ORDER UNCERTAIN NONLINEAR SYSTEMS Copyright 00 IFAC 15th Triennial World Congress, Barcelona, Spain A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF RD-ORDER UNCERTAIN NONLINEAR SYSTEMS Choon-Ki Ahn, Beom-Soo

More information

Lyapunov Stability Theory

Lyapunov Stability Theory Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

More information

Disturbance Attenuation Properties for Discrete-Time Uncertain Switched Linear Systems

Disturbance Attenuation Properties for Discrete-Time Uncertain Switched Linear Systems Disturbance Attenuation Properties for Discrete-Time Uncertain Switched Linear Systems Hai Lin Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556, USA Panos J. Antsaklis

More information

Common fixed points for α-ψ-ϕ-contractions in generalized metric spaces

Common fixed points for α-ψ-ϕ-contractions in generalized metric spaces Nonlinear Analysis: Modelling and Control, 214, Vol. 19, No. 1, 43 54 43 Common fixed points for α-ψ-ϕ-contractions in generalized metric spaces Vincenzo La Rosa, Pasquale Vetro Università degli Studi

More information

Input-output finite-time stabilization for a class of hybrid systems

Input-output finite-time stabilization for a class of hybrid systems Input-output finite-time stabilization for a class of hybrid systems Francesco Amato 1 Gianmaria De Tommasi 2 1 Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy, 2 Università degli Studi

More information

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 1/1 Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 2/1 Perturbed Systems: Nonvanishing Perturbation Nominal System: Perturbed System: ẋ = f(x), f(0) = 0 ẋ

More information

A Stable Block Model Predictive Control with Variable Implementation Horizon

A Stable Block Model Predictive Control with Variable Implementation Horizon American Control Conference June 8-,. Portland, OR, USA WeB9. A Stable Block Model Predictive Control with Variable Implementation Horizon Jing Sun, Shuhao Chen, Ilya Kolmanovsky Abstract In this paper,

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control

Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control International Journal of Automation and Computing 04(2), April 2007, 195-202 DOI: 10.1007/s11633-007-0195-0 Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control

More information

On the Inherent Robustness of Suboptimal Model Predictive Control

On the Inherent Robustness of Suboptimal Model Predictive Control On the Inherent Robustness of Suboptimal Model Predictive Control James B. Rawlings, Gabriele Pannocchia, Stephen J. Wright, and Cuyler N. Bates Department of Chemical & Biological Engineering Computer

More information

Passivity-based Stabilization of Non-Compact Sets

Passivity-based Stabilization of Non-Compact Sets Passivity-based Stabilization of Non-Compact Sets Mohamed I. El-Hawwary and Manfredi Maggiore Abstract We investigate the stabilization of closed sets for passive nonlinear systems which are contained

More information

Journal of Process Control

Journal of Process Control Journal of Process Control 3 (03) 404 44 Contents lists available at SciVerse ScienceDirect Journal of Process Control j ourna l ho me pag e: www.elsevier.com/locate/jprocont Algorithms for improved fixed-time

More information

16 1 Basic Facts from Functional Analysis and Banach Lattices

16 1 Basic Facts from Functional Analysis and Banach Lattices 16 1 Basic Facts from Functional Analysis and Banach Lattices 1.2.3 Banach Steinhaus Theorem Another fundamental theorem of functional analysis is the Banach Steinhaus theorem, or the Uniform Boundedness

More information

EN Nonlinear Control and Planning in Robotics Lecture 10: Lyapunov Redesign and Robust Backstepping April 6, 2015

EN Nonlinear Control and Planning in Robotics Lecture 10: Lyapunov Redesign and Robust Backstepping April 6, 2015 EN530.678 Nonlinear Control and Planning in Robotics Lecture 10: Lyapunov Redesign and Robust Backstepping April 6, 2015 Prof: Marin Kobilarov 1 Uncertainty and Lyapunov Redesign Consider the system [1]

More information

ESTIMATES ON THE PREDICTION HORIZON LENGTH IN MODEL PREDICTIVE CONTROL

ESTIMATES ON THE PREDICTION HORIZON LENGTH IN MODEL PREDICTIVE CONTROL ESTIMATES ON THE PREDICTION HORIZON LENGTH IN MODEL PREDICTIVE CONTROL K. WORTHMANN Abstract. We are concerned with model predictive control without stabilizing terminal constraints or costs. Here, our

More information

Optimizing Economic Performance using Model Predictive Control

Optimizing Economic Performance using Model Predictive Control Optimizing Economic Performance using Model Predictive Control James B. Rawlings Department of Chemical and Biological Engineering Second Workshop on Computational Issues in Nonlinear Control Monterey,

More information

Enlarged terminal sets guaranteeing stability of receding horizon control

Enlarged terminal sets guaranteeing stability of receding horizon control Enlarged terminal sets guaranteeing stability of receding horizon control J.A. De Doná a, M.M. Seron a D.Q. Mayne b G.C. Goodwin a a School of Electrical Engineering and Computer Science, The University

More information

Nonlinear Control Lecture 5: Stability Analysis II

Nonlinear Control Lecture 5: Stability Analysis II Nonlinear Control Lecture 5: Stability Analysis II Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2010 Farzaneh Abdollahi Nonlinear Control Lecture 5 1/41

More information

IEOR 265 Lecture 14 (Robust) Linear Tube MPC

IEOR 265 Lecture 14 (Robust) Linear Tube MPC IEOR 265 Lecture 14 (Robust) Linear Tube MPC 1 LTI System with Uncertainty Suppose we have an LTI system in discrete time with disturbance: x n+1 = Ax n + Bu n + d n, where d n W for a bounded polytope

More information

Hierarchical Model Predictive/Sliding Mode Control of Nonlinear Constrained Uncertain Systems

Hierarchical Model Predictive/Sliding Mode Control of Nonlinear Constrained Uncertain Systems Hierarchical Model Predictive/Sliding Mode Control of Nonlinear Constrained Uncertain Systems Gian Paolo Incremona Antonella Ferrara Lalo Magni Dipartimento di Ingegneria Industriale e dell Informazione,

More information

MPC: implications of a growth condition on exponentially controllable systems

MPC: implications of a growth condition on exponentially controllable systems MPC: implications of a growth condition on exponentially controllable systems Lars Grüne, Jürgen Pannek, Marcus von Lossow, Karl Worthmann Mathematical Department, University of Bayreuth, Bayreuth, Germany

More information

Stability Analysis of Optimal Adaptive Control under Value Iteration using a Stabilizing Initial Policy

Stability Analysis of Optimal Adaptive Control under Value Iteration using a Stabilizing Initial Policy Stability Analysis of Optimal Adaptive Control under Value Iteration using a Stabilizing Initial Policy Ali Heydari, Member, IEEE Abstract Adaptive optimal control using value iteration initiated from

More information

On Convergence of Nonlinear Active Disturbance Rejection for SISO Systems

On Convergence of Nonlinear Active Disturbance Rejection for SISO Systems On Convergence of Nonlinear Active Disturbance Rejection for SISO Systems Bao-Zhu Guo 1, Zhi-Liang Zhao 2, 1 Academy of Mathematics and Systems Science, Academia Sinica, Beijing, 100190, China E-mail:

More information

Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique

Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique International Journal of Automation and Computing (3), June 24, 38-32 DOI: 7/s633-4-793-6 Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique Lei-Po Liu Zhu-Mu Fu Xiao-Na

More information

Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization

Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 0, OCTOBER 003 87 Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization Zhihua Qu Abstract Two classes of partially known

More information

Applied Nonlinear Control

Applied Nonlinear Control Applied Nonlinear Control JEAN-JACQUES E. SLOTINE Massachusetts Institute of Technology WEIPING LI Massachusetts Institute of Technology Pearson Education Prentice Hall International Inc. Upper Saddle

More information

A Globally Stabilizing Receding Horizon Controller for Neutrally Stable Linear Systems with Input Constraints 1

A Globally Stabilizing Receding Horizon Controller for Neutrally Stable Linear Systems with Input Constraints 1 A Globally Stabilizing Receding Horizon Controller for Neutrally Stable Linear Systems with Input Constraints 1 Ali Jadbabaie, Claudio De Persis, and Tae-Woong Yoon 2 Department of Electrical Engineering

More information

Adaptive Dynamic Inversion Control of a Linear Scalar Plant with Constrained Control Inputs

Adaptive Dynamic Inversion Control of a Linear Scalar Plant with Constrained Control Inputs 5 American Control Conference June 8-, 5. Portland, OR, USA ThA. Adaptive Dynamic Inversion Control of a Linear Scalar Plant with Constrained Control Inputs Monish D. Tandale and John Valasek Abstract

More information

Chapter III. Stability of Linear Systems

Chapter III. Stability of Linear Systems 1 Chapter III Stability of Linear Systems 1. Stability and state transition matrix 2. Time-varying (non-autonomous) systems 3. Time-invariant systems 1 STABILITY AND STATE TRANSITION MATRIX 2 In this chapter,

More information

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points Nonlinear Control Lecture # 3 Stability of Equilibrium Points The Invariance Principle Definitions Let x(t) be a solution of ẋ = f(x) A point p is a positive limit point of x(t) if there is a sequence

More information

Convergence Rate of Nonlinear Switched Systems

Convergence Rate of Nonlinear Switched Systems Convergence Rate of Nonlinear Switched Systems Philippe JOUAN and Saïd NACIRI arxiv:1511.01737v1 [math.oc] 5 Nov 2015 January 23, 2018 Abstract This paper is concerned with the convergence rate of the

More information

Tonelli Full-Regularity in the Calculus of Variations and Optimal Control

Tonelli Full-Regularity in the Calculus of Variations and Optimal Control Tonelli Full-Regularity in the Calculus of Variations and Optimal Control Delfim F. M. Torres delfim@mat.ua.pt Department of Mathematics University of Aveiro 3810 193 Aveiro, Portugal http://www.mat.ua.pt/delfim

More information

arxiv: v2 [math.oc] 29 Aug 2012

arxiv: v2 [math.oc] 29 Aug 2012 Ensuring Stability in Networked Systems with Nonlinear MPC for Continuous Time Systems Lars Grüne 1, Jürgen Pannek 2, and Karl Worthmann 1 arxiv:123.6785v2 [math.oc] 29 Aug 212 Abstract For networked systems,

More information

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Abstract As in optimal control theory, linear quadratic (LQ) differential games (DG) can be solved, even in high dimension,

More information

Linear conic optimization for nonlinear optimal control

Linear conic optimization for nonlinear optimal control Linear conic optimization for nonlinear optimal control Didier Henrion 1,2,3, Edouard Pauwels 1,2 Draft of July 15, 2014 Abstract Infinite-dimensional linear conic formulations are described for nonlinear

More information

Viscosity Solutions of the Bellman Equation for Perturbed Optimal Control Problems with Exit Times 0

Viscosity Solutions of the Bellman Equation for Perturbed Optimal Control Problems with Exit Times 0 Viscosity Solutions of the Bellman Equation for Perturbed Optimal Control Problems with Exit Times Michael Malisoff Department of Mathematics Louisiana State University Baton Rouge, LA 783-4918 USA malisoff@mathlsuedu

More information

Approximation-Free Prescribed Performance Control

Approximation-Free Prescribed Performance Control Preprints of the 8th IFAC World Congress Milano Italy August 28 - September 2 2 Approximation-Free Prescribed Performance Control Charalampos P. Bechlioulis and George A. Rovithakis Department of Electrical

More information

GLOBAL ANALYSIS OF PIECEWISE LINEAR SYSTEMS USING IMPACT MAPS AND QUADRATIC SURFACE LYAPUNOV FUNCTIONS

GLOBAL ANALYSIS OF PIECEWISE LINEAR SYSTEMS USING IMPACT MAPS AND QUADRATIC SURFACE LYAPUNOV FUNCTIONS GLOBAL ANALYSIS OF PIECEWISE LINEAR SYSTEMS USING IMPACT MAPS AND QUADRATIC SURFACE LYAPUNOV FUNCTIONS Jorge M. Gonçalves, Alexandre Megretski y, Munther A. Dahleh y California Institute of Technology

More information

ON THE STRONG CONVERGENCE OF DERIVATIVES IN A TIME OPTIMAL PROBLEM.

ON THE STRONG CONVERGENCE OF DERIVATIVES IN A TIME OPTIMAL PROBLEM. ON THE STRONG CONVERGENCE OF DERIVATIVES IN A TIME OPTIMAL PROBLEM. A. CELLINA, F. MONTI, AND M. SPADONI Abstract. We consider a time optimal problem for a system described by a Differential Inclusion,

More information

NONLINEAR SAMPLED-DATA OBSERVER DESIGN VIA APPROXIMATE DISCRETE-TIME MODELS AND EMULATION

NONLINEAR SAMPLED-DATA OBSERVER DESIGN VIA APPROXIMATE DISCRETE-TIME MODELS AND EMULATION NONLINEAR SAMPLED-DAA OBSERVER DESIGN VIA APPROXIMAE DISCREE-IME MODELS AND EMULAION Murat Arcak Dragan Nešić Department of Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute

More information

H 1 optimisation. Is hoped that the practical advantages of receding horizon control might be combined with the robustness advantages of H 1 control.

H 1 optimisation. Is hoped that the practical advantages of receding horizon control might be combined with the robustness advantages of H 1 control. A game theoretic approach to moving horizon control Sanjay Lall and Keith Glover Abstract A control law is constructed for a linear time varying system by solving a two player zero sum dierential game

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

Economic model predictive control with self-tuning terminal weight

Economic model predictive control with self-tuning terminal weight Economic model predictive control with self-tuning terminal weight Matthias A. Müller, David Angeli, and Frank Allgöwer Abstract In this paper, we propose an economic model predictive control (MPC) framework

More information

Introduction. 1.1 Historical Overview. Chapter 1

Introduction. 1.1 Historical Overview. Chapter 1 Chapter 1 Introduction 1.1 Historical Overview Research in adaptive control was motivated by the design of autopilots for highly agile aircraft that need to operate at a wide range of speeds and altitudes,

More information

A Guaranteed Cost LMI-Based Approach for Event-Triggered Average Consensus in Multi-Agent Networks

A Guaranteed Cost LMI-Based Approach for Event-Triggered Average Consensus in Multi-Agent Networks A Guaranteed Cost LMI-Based Approach for Event-Triggered Average Consensus in Multi-Agent Networks Amir Amini, Arash Mohammadi, Amir Asif Electrical and Computer Engineering,, Montreal, Canada. Concordia

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Postface to Model Predictive Control: Theory and Design

Postface to Model Predictive Control: Theory and Design Postface to Model Predictive Control: Theory and Design J. B. Rawlings and D. Q. Mayne August 19, 2012 The goal of this postface is to point out and comment upon recent MPC papers and issues pertaining

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

arxiv: v2 [math.oc] 15 Jan 2014

arxiv: v2 [math.oc] 15 Jan 2014 Stability and Performance Guarantees for MPC Algorithms without Terminal Constraints 1 Jürgen Pannek 2 and Karl Worthmann University of the Federal Armed Forces, 85577 Munich, Germany, juergen.pannek@googlemail.com

More information

A Model Predictive Control Framework for Hybrid Dynamical Systems

A Model Predictive Control Framework for Hybrid Dynamical Systems A Model Predictive Control Framework for Hybrid Dynamical Systems Berk Altın Pegah Ojaghi Ricardo G. Sanfelice Department of Computer Engineering, University of California, Santa Cruz, CA 9564, USA (e-mail:

More information

Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms

Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms Dmitry Yershov and Steve LaValle Computer Science niversity of Illinois at rbana-champaign WAFR 2010 December 15, 2010

More information

ECE7850 Lecture 8. Nonlinear Model Predictive Control: Theoretical Aspects

ECE7850 Lecture 8. Nonlinear Model Predictive Control: Theoretical Aspects ECE7850 Lecture 8 Nonlinear Model Predictive Control: Theoretical Aspects Model Predictive control (MPC) is a powerful control design method for constrained dynamical systems. The basic principles and

More information

Adaptive estimation in nonlinearly parameterized nonlinear dynamical systems

Adaptive estimation in nonlinearly parameterized nonlinear dynamical systems 2 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July, 2 Adaptive estimation in nonlinearly parameterized nonlinear dynamical systems Veronica Adetola, Devon Lehrer and

More information

State-Feedback Optimal Controllers for Deterministic Nonlinear Systems

State-Feedback Optimal Controllers for Deterministic Nonlinear Systems State-Feedback Optimal Controllers for Deterministic Nonlinear Systems Chang-Hee Won*, Abstract A full-state feedback optimal control problem is solved for a general deterministic nonlinear system. The

More information

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA AND ALEKSANDAR MIJATOVIĆ Abstract. We develop a general approach to the Policy Improvement Algorithm (PIA) for stochastic control problems

More information