WMAP satellite. 16 Feb Feb Feb 2012

Size: px
Start display at page:

Download "WMAP satellite. 16 Feb Feb Feb 2012"

Transcription

1 16 Feb Feb Feb 2012 è Announcements è Problem 5 (Hrtle 18.3). Assume V * is nonreltivistic. The reltivistic cse requires more complicted functions. è Outline è WMAP stellite è Dipole nisotropy è Smll-scle nisotropy è Rough clcultion of the ngulr scle è Precise clcultion of the ngulr scle è Sound wves WMAP stellite

2 2 cosmology.nb Dve's notebook, (Greg Tucker )

3 cosmology.nb 3

4 4 cosmology.nb Five wvelength bnds. Ech ssembly compres two regions of the sky seprted by 140. Q: Why does ech ssembly compre two regions of the sky? One ssembly opertes t 22 GHz, one t 30 GHz, two t 40 GHz, two t 60 GHz, nd four t 90 GHz. Q: Why is there only one ssembly t 22GHz yet there re four t 90GHz? Dipole nisotropy Temperture of the entire sky. Hottest spot is 3mK hotter thn the verge. Pink is rdition of the Milky Wy Glxy, which hs different spectrum. There is specil frme in which the universe is t rest. We re moving with respect to this frme. On 21 June, we re moving towrd Pisces t 30 km s = Q: On 21 June, wht is the Doppler shift of the 2.7-K photons looking towrd Pisces? 90 from Pisces? 180 from Pisces? Q: On 21 June, wht is the temperture shift of the CBR towrd Pisces? 90 from Pisces? 180 from Pisces? The peculir velocities of glxies re bout 300 km s = A not unresonble vlue of the dipole nisotropy is 2.7 mk. The dipole nisotropy is mk towrd l, b = , (Bennett et l., 2003, ApJS, 148, 1). Motion of the sun in the Milky Wy is 215 km s. Milky Wy moves t 200 km s towrds Andromed. Net velocity of the locl group of glxies is km s towrd (l, b) = (276 ± 3, 30 ± 3 ) (Smoot et l, 1991, ApJ 371, L1,Kogut et l, 1993, ApJ 419, 1) WMAP ngulr size of fluctutions

5 cosmology.nb 5

6 6 cosmology.nb WMAP: Rough clcultion of the physicl size of the fluctutions Pln: Why is the lrgest nisotropy t n ngulr scle of 1? Fluctutions cn grow for the ge of the universe. The size is bout ct. We will clculte the ge of the universe (for given W 0 r ). Then clculte the size L precisely. We lredy know tht the ngle subtended by ruler t expnsion premeter nd comoving distnce r is q=l r. ü Age of the universe ü Using middle-school physics A cr is moving t 50mph. It is 100mi from us. How long hs the cr been trveling since it left? A glxy is moving from us t speed v. Its distnce is v = DH 0. Assume it hs lwys moved t this speed. Wht is the time since the Big Bng? t = D v = D DH 0 = H 0-1 Neglected effect: the glxy cn be slowing down or speeding up. ü Proper clcultion of expnsion vs time Friedmn's eqution reltes the expnsion prmeter t, mtter density r t, nd the rdius of curvture r 0. We wnt to integrte Friedmn's eqution to find t.

7 cosmology.nb 7 d H 0 dt 2 = W k0 +W m0-1 +W r0-2 +W v0 2 H 0 dt= W k0 +W m0-1 +W r0-2 +W v d H 0 t = 0 Wk0 +W m0 x -1 +W r0 x -2 +W v0 x dx Importnt & instructive cses: Mtter: H 0 t = 1 -Wm0 +W m0 x dx 0 Integrte 1 Sqrt 1 o ox 1, x, 0,, Assumptions 1 o 0, 1 0 o o o o o 1 o ArcSinh 1 1 o 1 o o The ge of the universe t expnsion prmeter t = H W m0 +W m0 - W m W 3 2 m0 1 -W m0 1 2 rcsinh 1-W -1 m W m0 W 1 2 m0 More specificlly, for W m0 = 0, H 0 t = For W m0 = 1, H 0 t = For W m0 = 2, H 0 t = x dx x = dx= 0 2 x-x Or. 1-1-x dx 1-1-x = rccos 1 - x x = 1 - cos h t = H 0-1 h-sin h Wht is the mximum vlue for the expnsion prmeter? At the present ( = 1), the ge of the universe is H 0-1 p Now H 0 t Rdition with W r0 = 1:

8 8 cosmology.nb H 0 t = 0 x dx= 0 xdx H 0 t = Integrte x Sqrt x 2 1 o o, x, 0,, Assumptions o 1, 1 0 o 2 1 o o 1 o H 0 t = W r - W 0 r - 2 W 0 r W 0 r - 1 For W 0 = 1, H 0 t = W 0 r = H 0 t Cption: time vs expnsion prmeter for universe with rdition only. Q: All of the models hve the sme slope t the present time. Why? Q: Why does it tke less time for the universe to expnd with lrger density of rdition? ü Plots ü Estimte of the ngulr size of the fluctutions for W mtter 0 = 1. q=l r Assume the universe is mtter dominted. r is expnsion prmeter t recombintion. Assume W 0 = 1. L = ge of universe -1 = H r 3 2 r = 2 H q= 1 3 r r 1 2

9 cosmology.nb 9 In[646]:= " " Out[646]= Now we need to do better job. 1. Rdition domintes in the erly universe. 2. How fst do sound wves go? 3. Prt of the speed of sound is ersed by the expnsion of the universe. (Hrtle 18.3). Sound wves before recombintion ü Physicl conditions t recombintion ü At recombintion, which hs the greter mss density, pressureless mtter or rdition? W m0 = 0.26 pressureless mtter, mostly drk mtter, mtter tht does not interct with light W b0 = bryons, ordinry mtter W r0 = 1.2μ10-5 rdition r b = r b0-3 r r =r r0-4 r m r r =r m0 r r0 At eq = (z = 3600), the mss-energy density of bryonic mtter nd rdition re equl. Q: At recombintion (=0.0009), which hs greter mss density, pressureless mtter or rdition? We will discuss sound wves, which hs to do with rdition nd mtter. Q: Does drk mtter prticipte in the sound wves? Q: At recombintion, re electrons pressureless? The energy of CBR photon is 2.3μ10-4 ev. ü At recombintion, which hs greter number density, bryonic mtter or rdition? At the present time, the mss of bryonic mtter is 938MeV. The mss of photon is 2.73 K K ev = 2.3μ10-4 ev. The number density n r n b = μ938 MeV 2.3μ10-4 ev = 1.1μ10 9. More precisely, becuse photons hve different energies, I need to integrte the Plnck number spectrum. n r = 0.41μ10 9 photon m -3 T K 3 n b = 0.25 nucleon m -3 W b0.043 H 0 72 km s Mpc 2 n r n b = 1.64μ10 9. The number of photons nd bryons do not chnge. As the universe expnds, the number of bryons in coexpnding box does not chnge. The number of bryons entering must equl the number exiting, becuse of homogeneity. Sme rgument is true for photons.

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

Midterm. 16 Feb Feb 2012

Midterm. 16 Feb Feb 2012 16 Feb 2012 21 Feb 2012 è Outline è Midterm è Why is the cosmic background radiation important for the history of the universe è Important events in the history of the universe è Anisotropies in the cosmic

More information

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s 4. Cosmic Dynmics: The Friedmnn Eqution Reding: Chpter 4 Newtonin Derivtion of the Friedmnn Eqution Consider n isolted sphere of rdius R s nd mss M s, in uniform, isotropic expnsion (Hubble flow). The

More information

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0 Notes for Cosmology course, fll 2005 Cosmic Dynmics Prelude [ ds 2 = c 2 dt 2 +(t) 2 dx 2 ] + x 2 dω 2 = c 2 dt 2 +(t) [ 2 dr 2 + S 1 κx 2 /R0 2 κ (r) 2 dω 2] nd x = S κ (r) = r, R 0 sin(r/r 0 ), R 0 sinh(r/r

More information

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011 Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Today in Astronomy 142: general relativity and the Universe

Today in Astronomy 142: general relativity and the Universe Tody in Astronomy 14: generl reltivity nd the Universe The Robertson- Wlker metric nd its use. The Friedmnn eqution nd its solutions. The ges nd ftes of flt universes The cosmologicl constnt. Glxy cluster

More information

Thermodynamics of the early universe, v.4

Thermodynamics of the early universe, v.4 Thermodynmics of the erly universe, v.4 A physicl description of the universe is possible when it is ssumed to be filled with mtter nd rdition which follows the known lws of physics. So fr there is no

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

The Properties of Stars

The Properties of Stars 10/11/010 The Properties of Strs sses Using Newton s Lw of Grvity to Determine the ss of Celestil ody ny two prticles in the universe ttrct ech other with force tht is directly proportionl to the product

More information

4- Cosmology - II. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

4- Cosmology - II. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 4- Cosmology - II introduc)on to Astrophysics, C. Bertulni, Texs A&M-Commerce 1 4.1 - Solutions of Friedmnn Eqution As shown in Lecture 3, Friedmnn eqution is given by! H 2 = # " & % 2 = 8πG 3 ρ k 2 +

More information

NOT TO SCALE. We can make use of the small angle approximations: if θ á 1 (and is expressed in RADIANS), then

NOT TO SCALE. We can make use of the small angle approximations: if θ á 1 (and is expressed in RADIANS), then 3. Stellr Prllx y terrestril stndrds, the strs re extremely distnt: the nerest, Proxim Centuri, is 4.24 light yers (~ 10 13 km) wy. This mens tht their prllx is extremely smll. Prllx is the pprent shifting

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

Vorticity. curvature: shear: fluid elements moving in a straight line but at different speeds. t 1 t 2. ATM60, Shu-Hua Chen

Vorticity. curvature: shear: fluid elements moving in a straight line but at different speeds. t 1 t 2. ATM60, Shu-Hua Chen Vorticity We hve previously discussed the ngulr velocity s mesure of rottion of body. This is suitble quntity for body tht retins its shpe but fluid cn distort nd we must consider two components to rottion:

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

Cosmology: Part II. Asaf Pe er Asymptotic behavior of the universe. (t) 1 kr 2 +r2 (dθ 2 +sin 2 θdφ 2 )

Cosmology: Part II. Asaf Pe er Asymptotic behavior of the universe. (t) 1 kr 2 +r2 (dθ 2 +sin 2 θdφ 2 ) Cosmology: Prt II Asf Pe er 1 Mrch 18, 2014 This prt of the course is bsed on Refs. [1] - [4]. 1. Asymptotic behvior of the universe The Robertson-Wlker metric, [ ] dr ds 2 = dt 2 + 2 2 (t) 1 kr 2 +r2

More information

Outline. I. The Why and What of Inflation II. Gauge fields and inflation, generic setup III. Models within Isotropic BG

Outline. I. The Why and What of Inflation II. Gauge fields and inflation, generic setup III. Models within Isotropic BG Outline I. The Why nd Wht of Infltion II. Guge fields nd infltion, generic setup III. Models within Isotropic BG Guge-fltion model Chromo-nturl model IV. Model within Anisotropic BG Infltion with nisotropic

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions Quntum Mechnics Qulifying Exm - August 016 Notes nd Instructions There re 6 problems. Attempt them ll s prtil credit will be given. Write on only one side of the pper for your solutions. Write your lis

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

Student Session Topic: Particle Motion

Student Session Topic: Particle Motion Student Session Topic: Prticle Motion Prticle motion nd similr problems re on the AP Clculus exms lmost every yer. The prticle my be prticle, person, cr, etc. The position, velocity or ccelertion my be

More information

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15 Physics H - Introductory Quntum Physics I Homework #8 - Solutions Fll 4 Due 5:1 PM, Mondy 4/11/15 [55 points totl] Journl questions. Briefly shre your thoughts on the following questions: Of the mteril

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

(See Notes on Spontaneous Emission)

(See Notes on Spontaneous Emission) ECE 240 for Cvity from ECE 240 (See Notes on ) Quntum Rdition in ECE 240 Lsers - Fll 2017 Lecture 11 1 Free Spce ECE 240 for Cvity from Quntum Rdition in The electromgnetic mode density in free spce is

More information

221A Lecture Notes WKB Method

221A Lecture Notes WKB Method A Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using ψ x, t = e

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Theorem Suppose f is continuous

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Section 17.2 Line Integrals

Section 17.2 Line Integrals Section 7. Line Integrls Integrting Vector Fields nd Functions long urve In this section we consider the problem of integrting functions, both sclr nd vector (vector fields) long curve in the plne. We

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

2.57/2.570 Midterm Exam No. 1 March 31, :00 am -12:30 pm

2.57/2.570 Midterm Exam No. 1 March 31, :00 am -12:30 pm 2.57/2.570 Midterm Exm No. 1 Mrch 31, 2010 11:00 m -12:30 pm Instructions: (1) 2.57 students: try ll problems (2) 2.570 students: Problem 1 plus one of two long problems. You cn lso do both long problems,

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Prt III Mondy 12 June, 2006 9 to 11 PAPER 55 ADVANCED COSMOLOGY Attempt TWO questions. There re THREE questions in totl. The questions crry equl weight. STATIONERY REQUIREMENTS Cover

More information

ADVANCED QUANTUM MECHANICS

ADVANCED QUANTUM MECHANICS PHY216 PHY472 Dt Provided: Dt Provided: Formul Formul sheet ndsheet physicl nd constnts physicl constnts DEPARTMENT DEPARTMENT OF PHYSICS OF PHYSICS & Spring& Semester 2015-2016 Autumn Semester 2009-2010

More information

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present? University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the three-phse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus ES 111 Mthemticl Methods in the Erth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry nd bsic clculus Trigonometry When is it useful? Everywhere! Anything involving coordinte systems

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 36 Dr Jen M Stndrd Problem Set 3 Solutions 1 Verify for the prticle in one-dimensionl box by explicit integrtion tht the wvefunction ψ ( x) π x is normlized To verify tht ψ ( x) is normlized,

More information

DARK MATTER AND THE UNIVERSE. Answer question ONE (Compulsory) and TWO other questions.

DARK MATTER AND THE UNIVERSE. Answer question ONE (Compulsory) and TWO other questions. Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. Picture of glxy cluster Abell 2218 required for question 4(c) is ttched. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Inflation Cosmology. Ch 02 - The smooth, expanding universe. Korea University Eunil Won

Inflation Cosmology. Ch 02 - The smooth, expanding universe. Korea University Eunil Won Infltion Cosmology Ch 02 - The smooth, expnding universe Kore University Eunil Won From now on, we use = c = k B = The metric Generl Reltivity - in 2-dimensionl plne, the invrint distnce squred is (dx)

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Lecture 8. Band theory con.nued

Lecture 8. Band theory con.nued Lecture 8 Bnd theory con.nued Recp: Solved Schrodinger qu.on for free electrons, for electrons bound in poten.l box, nd bound by proton. Discrete energy levels rouse. The Schrodinger qu.on pplied to periodic

More information

Hints for Exercise 1 on: Current and Resistance

Hints for Exercise 1 on: Current and Resistance Hints for Exercise 1 on: Current nd Resistnce Review the concepts of: electric current, conventionl current flow direction, current density, crrier drift velocity, crrier numer density, Ohm s lw, electric

More information

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions Mth 1102: Clculus I (Mth/Sci mjors) MWF 3pm, Fulton Hll 230 Homework 2 solutions Plese write netly, nd show ll work. Cution: An nswer with no work is wrong! Do the following problems from Chpter III: 6,

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.38/NMAT343 Hybrid Elstic olids Yun Li, Ying Wu, Ping heng, Zho-Qing Zhng* Deprtment of Physics, Hong Kong University of cience nd Technology Cler Wter By, Kowloon, Hong Kong, Chin E-mil: phzzhng@ust.hk

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

INTERACTION BETWEEN THE NUCLEONS IN THE ATOMIC NUCLEUS. By Nesho Kolev Neshev

INTERACTION BETWEEN THE NUCLEONS IN THE ATOMIC NUCLEUS. By Nesho Kolev Neshev INTERACTION BETWEEN THE NUCLEONS IN THE ATOMIC NUCLEUS By Nesho Kolev Neshev It is known tht between the nucleons in the tomic nucleus there re forces with fr greter mgnitude in comprison to the electrosttic

More information

Nonlocal Gravity and Structure in the Universe

Nonlocal Gravity and Structure in the Universe Nonlocl rvity nd Structure in the Universe Sohyun Prk Penn Stte University Co-uthor: Scott Dodelson Bsed on PRD 87 (013) 04003, 109.0836, PRD 90 (014) 000000, 1310.439 August 5, 014 Chicgo, IL Cosmo 014

More information

Introduction to Astrophysics

Introduction to Astrophysics PHY104 PHY472 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 2009-2010 ASTRONOMY DEPARTMENT

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

Big Bang/Inflationary Picture

Big Bang/Inflationary Picture Big Bng/Infltionry Picture big bng infltionry epoch rdition epoch mtter epoch drk energy epoch DISJOINT Gret explntory power: horizon fltness monopoles entropy Gret predictive power: Ω totl = 1 nerly scle-invrint

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Kepler's Three LAWS. Universal Gravitation Chapter 12. Heliocentric Model. Geocentric Model. Other Models. Johannes Kepler

Kepler's Three LAWS. Universal Gravitation Chapter 12. Heliocentric Model. Geocentric Model. Other Models. Johannes Kepler Universl Grvittion Chpter 1 Johnnes Kepler Johnnes Kepler ws Germn mthemticin, stronomer nd strologer, nd key figure in the 17th century Scientific revolution. He is best known for his lws of plnetry motion,

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Phys 6321 Final Exam - Solutions May 3, 2013

Phys 6321 Final Exam - Solutions May 3, 2013 Phys 6321 Finl Exm - Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. Linear-linear graph paper is required.

Data Provided: A formula sheet and table of physical constants is attached to this paper. Linear-linear graph paper is required. Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. Liner-liner grph pper is required. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2015-2016) SEMICONDUCTOR PHYSICS

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Density of Energy Stored in the Electric Field

Density of Energy Stored in the Electric Field Density of Energy Stored in the Electric Field Deprtment of Physics, Cornell University c Tomás A. Aris October 14, 01 Figure 1: Digrm of Crtesin vortices from René Descrtes Principi philosophie, published

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

β 1 = 2 π and the path length difference is δ 1 = λ. The small angle approximation gives us y 1 L = tanθ 1 θ 1 sin θ 1 = δ 1 y 1

β 1 = 2 π and the path length difference is δ 1 = λ. The small angle approximation gives us y 1 L = tanθ 1 θ 1 sin θ 1 = δ 1 y 1 rgsdle (zdr8) HW13 ditmire (58335) 1 This print-out should hve 1 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 001 (prt 1 of ) 10.0 points

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deprtment of Physics Physics 8T Fll Term 4 In-Clss Problems nd 3: Projectile Motion Solutions We would like ech group to pply the problem solving strtegy with the

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

The heat budget of the atmosphere and the greenhouse effect

The heat budget of the atmosphere and the greenhouse effect The het budget of the tmosphere nd the greenhouse effect 1. Solr rdition 1.1 Solr constnt The rdition coming from the sun is clled solr rdition (shortwve rdition). Most of the solr rdition is visible light

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0. STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

More information

Math 116 Calculus II

Math 116 Calculus II Mth 6 Clculus II Contents 5 Exponentil nd Logrithmic functions 5. Review........................................... 5.. Exponentil functions............................... 5.. Logrithmic functions...............................

More information

Imperial College QFFF, Cosmology Lecture notes. Toby Wiseman

Imperial College QFFF, Cosmology Lecture notes. Toby Wiseman Imperil College QFFF, 07-8 Cosmology Lecture notes Toby Wisemn Toby Wisemn; Huxley 507, emil: t.wisemn@imperil.c.uk Books This course is not bsed directly on ny one book. Approprite reding for the course

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Lecture 8. Newton s Laws. Applications of the Newton s Laws Problem-Solving Tactics. Physics 105; Fall Inertial Frames: T = mg

Lecture 8. Newton s Laws. Applications of the Newton s Laws Problem-Solving Tactics. Physics 105; Fall Inertial Frames: T = mg Lecture 8 Applictions of the ewton s Lws Problem-Solving ctics http://web.njit.edu/~sireno/ ewton s Lws I. If no net force ocects on body, then the body s velocity cnnot chnge. II. he net force on body

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

Bob Brown Math 251 Calculus 1 Chapter 5, Section 4 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 5, Section 4 1 CCBC Dundalk Bo Brown Mth Clculus Chpter, Section CCBC Dundlk The Fundmentl Theorem of Clculus Informlly, the Fundmentl Theorem of Clculus (FTC) sttes tht differentition nd definite integrtion re inverse opertions

More information

Practive Derivations for MT 1 GSI: Goni Halevi SOLUTIONS

Practive Derivations for MT 1 GSI: Goni Halevi SOLUTIONS Prctive Derivtions for MT GSI: Goni Hlevi SOLUTIONS Note: These solutions re perhps excessively detiled, but I wnted to ddress nd explin every step nd every pproximtion in cse you forgot where some of

More information