Contents Acknowledgements iii Introduction Preliminaries on Maass forms for

Size: px
Start display at page:

Download "Contents Acknowledgements iii Introduction Preliminaries on Maass forms for"

Transcription

1

2

3 L σ = 1 L L Γ 0 (q) q

4 Γ 0 (q) GL(2) L

5

6

7

8 a n α S(α) = a n e(nα), e(θ) = e 2πiθ S(α) α R/Z α 1,..., α R δ R/Z α r α s δ r s R S(α r ) 2 r=1 ( N + 1 ) a n 2. δ

9 1 ψ(x; q, a) = n x n a q Λ(n), Λ(n) Λ(n) = { p n = p k, p k 1, 0. A B Q x1/2 ( x) B (a,q)=1 y x q Q ψ(y; q, a) y ϕ(q) x( x) A. L (a,q)=1 y x ψ(y; q, a) y ϕ(q) x1/2 2 x,

10 Q x 1/2 ( x) B Q = x ϑ ϵ ϑ > 1/2 ϵ > 0 n (p n+1 p n ) <, p n n ϑ = 1 n (p n+1 p n ) 12. ϑ = 1/2 q n (p n+1 p n ) < q Q χ q a n χ(n) 2 (N + Q 2 ) a n 2.

11 N 2 N 2 N χ(n) χ µ(n)χ(n) µ L Q M = q Q q D = d(q) d(q) q N(α, T ; χ) q Q s = σ + it L(s, χ) α σ 1, t < T τ(χ) a q q Q 1 ϕ(q) χ(a)e(a/q) χ q τ(χ) 2 N(α, T ; χ) DT (M 2 + MT ) 4(1 α) (3 2α) 10 (M + T ), Q 1 2 α 1 T 2

12 T c q Q χ q N(α, T ; χ) (Q 7 T 4 ) 1 α α c (Q + T ). N(α, T ; χ) s = σ + it L(s, χ) α σ 1, t < T c q T χ q N(α, T ; χ) T c(1 α). X < X 1 δ δ L L GL(1, A Q ) L GL(n)

13 L L L L GL(2) GL(2) GL(2) L T 2 T 0 = T 2/3 ϵ > 0 T +T0 T ( ) 1 4 ζ 2 + it dt T 0 T ϵ.

14 GL(2) L L q 1 {f j } j 1 Γ 0 (q) f j = ( 1 + t 4 j 2 )f j f j T n f j (z) = a j (n) yk itj (2π n y)e(nx) n 0 N j (α, T ) s = σ + it α σ 1, t T L(s, f j ) c ϵ > 0 α t j T a j (1) 2 πt j N j (α, T ) T c(1 α)+ϵ. q t2 L 2 (Γ 0 (q)\h) q N(α, T )

15 T c(1 α) c T 2(1 α)/α ( T ) C T T L GL(n) M(Q, α) Q Q p ( Q) α ( p) ϵ > 0 M(Q, α) Q 8 α +ϵ. GL(3) GL(3) SL(3, Z) N 3 2 +ϵ N 1+ϵ GL(2)

16 Γ 0 (q) SL(2, Z)

17 Γ 0 (q) GL(2) GL(2) h {x + iy x R, y > 0} SL(2, R) h ( ) a b z = az + b c d cz + d. h = h Q

18 SL(2, Z) SL(2, R) h ( ) a b = c d { a c c 0, c = 0, ( ) a b m c d n = { cm + dn = 0, am+bn cm+dn. q Γ 0 (q) {( ) a b Γ 0 (q) = c d } SL(2, Z) c 0 q. Γ 0 (q) Q Γ 0 (q) SL(2, Z) f : h C a Q f a σ a SL(2, R) σ a = a f(σ a (x + iy)) = O(y N ) N y k 0 k Γ 0 (q) f : h C ( ) a b γ = Γ c d 0 (q) f(γz) = (cz + d) k f(z) z h f Γ 0 (q)

19 f g k Γ 0 (q) f g f, g k = Γ 0 (q)\h f(z)g(z)y k dxdy y 2, Γ 0 (q) h k f, f < L 2 (Γ 0 (q)\h, k) n f Γ 0 (q) T n T n f(z) = 1 n ad=n (a,n)=1 d ( ) az + b f. d b=1 T 1 f(z) = f ( ) 1. Nz

20 T m T n = d (m,n) (d,n)=1 T mn d 2, T n (n, N) = 1 T n L 2 (Γ 0 (q)\h, k) T n (n, N) = 1 T n ( ) = y 2 2 x y 2 SL(2, R) Γ 0 (q) Γ 0 (q) f : h C f 0 Γ 0 (q) f = ( t2 )f 1 4 +t2 t

21 f Γ 0 (q)\h f = λf λ 1/4 λ t { ( ) } 1 b Γ = ± b Z Γ (q) a σ a SL(2, R) σ a = a σa 1 Γ a σ a = Γ Γ a a Γ 0 (q) σ a g a Γ a Γ 0 (q) ( ) 1 1 σa 1 g a σ a = f Γ (q) f(σ a (z + 1)) = f ( ( ) ) 1 1 σ a z = f(g 0 1 a σ a z) = f(σ a z), z f(σ a z) x f(σ a z) = n Z c an (y)e(nx), e(θ) = e 2πiθ Γ 0 (q) f Γ 0 (q) f, f < c a0 (y) a f = ( t2 )f

22 c an (y) n 0 y 2 c an(y) = ( 4π 2 n 2 y 2 1 t 2) c an (y). c an (y) = a(n) yk it (2π n y), K K s (y) = e y(t+t 1 )/2 t s dt t, f f(z) = n 0 a f (n) yk it (2π n y)e(nx). a f (n) L f SL(2, Z) z f(nz) Γ 0 (q) L

23 f f(z) = g(dz) g Γ 0 (M) M N d N M T n n (n, N) = 1 T n L L f(z) = n Z a f (n) yk it (2π n y)e(nx) λ f (n) = a f(n) a f (1). λ f (1) = 1 λ f (n) T n f L f R(s) > 1 L(s, f) = λ f (n)n s. n=1 T m T n = T mn d 2 d (m,n) (d,n)=1

24 λ f (mn) = λ f (m)λ f (n) (m, n) = 1 L L(s, f) = p q p q ( 1 λf (p)p s) 1 ( 1 α1,f (p)p s) 1 ( 1 α2,f (p)p s) 1, ( 1 λf (p)p s) 1 ( 1 λf (p)p s + p 2s) 1 = p q p q α i,f (p) α 1,f (p) + α 2,f (p) = λ f (p) α 1,f (p)α 2,f (p) = 1 α i,f (p) λ f (n) α i,f (p) = 1 α i,f (p) p 7/64. L L ( ) s + ϵ + it Λ(s, f) = q s/2 π s Γ Γ 2 ( s + ϵ + it 2 ) L(s, f),

25 1 4 + t2 f ϵ = { 0 T 1 f = f, 1 T 1 f = f. Λ(s, f) = ( 1) ϵ Λ(1 s, f). L(σ + it, f) 0 < σ < 1 σ = 1/2 {u j } j 1 Γ 0 (q) {u j } u j T n (n, N) = 1 {u j } u j T n n λ j u j = λ j u j λ 1 λ 2 u 0 u 0

26 L 2 (Γ 0 (q)\h) a Γ 0 (q) R(s) > 1 z h E a (z, s) = (σ a γz) s, γ Γ a\γ 0 (q) Γ a a σ a SL(2, R) σ a = a σa 1 Γ a σ a = Γ E a (z, s) b E α (σ b z, s) = δ ab y s + π 1/2 Γ(s 1) 2 φ ab0 (s)y 1 s + 2y1/2 π s Γ(s) Γ(s) n 0 n s 1 2 φabn (s)k s 1 (2π n y)e(nx), 2 φ abn (s) = c>0 c 2s d e ( ) nd, c d ( c) ( ) a b c d σa 1 Γ 0 (q)σ b. E a (z, s) s Ea(z, s) a s 1 s

27 E a (z, ir) u 0 L 2 (Γ 0 (q)\h) f L 2 (Γ 0 (q)\h) {u j } f(z) = j 0 f, u j u j (z) + 1 4π a f, E a (, 12 + ir) E a (z, ir)dr, a Γ 0 (q) f, g L 2 (Γ 0 (q)\h) {u j } f, g = j 0 f, u j g, u j + 1 4π a f, E a (, 12 + ir) g, E a (, 12 + ir) dr.

28 S(m, n; c) = ( ) md + nd e, c d c (c, d) = 1 d dd 1 c

29 (c 1, c 2 ) = 1 c 1 c 2 c 1 c 1 1 c 2 c 2 c 2 1 c 1 S(m, n; c 1 c 2 ) = S(c 2 m, c 2 n; c 1 )S(c 1 m, c 1 n; c 2 ). ( c2 md 1 + c 2 nd 1 e c 1 d 1 c 1 e d 1 c 1 d 2 c 2 = ) e d 2 c 2 ( ) c1 md 2 + c 1 nd 2 c 2 ( c2 c 2 md 1 + c 2 c 2 nd 1 + c 1 c 1 md 2 + c 1 c 1 nd 2 c 1 c 2 ). md 1 +nd 1 c 1 md 2 +nd 2 c 2 d c 1 c 2 (d, c 1 c 2 ) = 1 d 1 d 2 d c 1 c 2 md + nd c 1 c 2 d c 1 c 2 (d, c 1 c 2 ) = 1 (d 1, d 2 ) S(m, n; c 1 c 2 ) c

30 S(m, n; c) τ(c)(m, n, c) 1/2 c 1/2, τ(c) c (m, n, c) m n c T m T n = d (m,n) T mn d 2 SL(2, Z)\h S(m, n; c) = d (m,n,c) d S ( 1, mn d, c ). 2 d Z m,n (s) = S(m, n; c)c 2s. c=1 σ > 1/2 Z m,n (s) R(s) > σ

31 σ(1 σ) R(s) > 3/4 3/16 α 1,..., α R α r α s δ r s S(α) = a n e(nα). R r=1 S(α r ) 2 (N + 1 δ ) a n 2. α r r/c r c δ = 1/c r c ( a n e n r ) 2 c (N + c) a n 2.

32 B(θ, c, M, N) = m=m+1 ( ) 2 mn b m b n S(m, n, c)e θ, c N M θ > 0 c > M 1 ϵ B(θ, c, M, N) M ϵ (c + N) b n 2. α = N M 1 1 mn M η( mn ) M η(x) = 1 + α m, n { 1 1 x 1 + α, 0 x 1 α 2 x 1 + 2α. η(x)e(2θc 1 Mx) = 1 2πi 1+i 1 i R(s)x s ds, R(s) = 0 η(x)e(2θc 1 Mx)x s 1 dx. s = 1 + it t t 2 t > 16πθc 1 M

33 1+i 1 i ( ) ( ) mn 2 mn B(θ, c, M, N) = b m b n S(m, n, c)η e M c m=m+1 = 1 1+i ( ) s mn b m b n S(m, n, c)r(s) ds 2πi 1 i M m=m+1 ( ) md b m m s/2 ( ) nd e b n n s/2 e c c M s R(s)ds. d c m=m+1 d c m=m+1 ( ) md b m m s/2 e c b n n s/2 e ( ) nd c M 1 (N + c) b n 2. B(θ, c, M, N) 1+i 1 i R(s)ds (N + c) b n 2, R c > M 1 ϵ c B(θ, c, M, N) N M c M 1 ϵ 0 < θ < 2 B(θ, c, M, N) θ c 2 N 4 M 4 +ϵ b n 2.

34 B(θ, c, M, N) = d c d X ( θ, c d, M d, N ), d x n = b dn, q = c/d, K = M/d, L = N/d X (θ, q, K, L) = K<m,n K+L ( ) 2 mn x m x n S(1, mn; q)e. q X(θ, q, K, L) 2 = ( ( K<n K+L K<n K+L ) ( n ) x n 2 η K n Z x n 2 ) K<m 1,m 2 K+L K<m K+L x m1 x m2 ( ) 2 2 mn x m S(1, mn; q)e q ( ) h1 h 2 e f(n), q h 1,h 2 q n Z η (h 1 h 2, q) = 1 h i ( q) h i h i 1 q ( n ) ( h1 m 1 h 2 m 2 f(n) = η e n + 2( m 1 ) m 2 )θ n. K q q A B f(n) = η ( n K ) e (An + B n) n Z f(n) = u Z f(u),

35 f(u) = ( ) t ( η e (A u)t + B ) t dt. K u A A u 1 q t η ( t K ) 0 t > K/2 B 2 < θ K+L K/2 K t q 1 q p ( ) p (( 1 ( ) ) ) t 1 1 f(u) = η 2πi K A u + B 2 A u + B t 2 t ( e (A u)t + B ) t dt, f(u) K( A u K) p. u A f(u) K ( ) p K = M q d ( ) p M M c d M ϵp K 1 p u = A A h 1 m 1 h 2 m 2 q h 1,h 2 q ( ) h1 h 2 e (m 1 m 2, q), q h 1 m 1 h 2 m 2 q m 1 = m 2 f(a) L f(a) = ( ) t ( η e B ) t dt K L B q KL θ m 1 m 2.

36 K<m 1,m 2 K+L x m1 x m2 q(q + L) h 1,h 2 q θ 1 qk ϵ KL K<m K+L ( ) h1 h 2 e f(n) q K<m K+L n Z x m 2 + θ 1 q KL x m 2. K<m 1,m 2 K+L m 1 m 2 (m 1 m 2, q) x m1 x m2 m 1 m 2 ( ) 2 X(θ, q, K, L) 2 θ 1 qk ϵ KL x n 2. K<m K+L d c Γ 0 (q) m 0 P m (z, s) = (γz) s e(mγz). γ Γ \Γ 0 (q) m = 0 R(s) > 1 P m (γz, s) = P m (z, s) P m (, s) L 2 (Γ 0 (q)\h)

37 P m (, s 1 ), P n (, s 2 ) P m (z, s) P m (z, s) R(s) > 1 m 0 P m (z, s) = n Z B n (m, y, s)e(nx), B n (m, y, s) = δ mn y s e 2πny + y s c>0 c 0 q c 2s S(m, n; c) ( (x 2 + y 2 ) s e nx ) m dx. c 2 (x + iy) Z m,n (s) = c=1 S(m, n; c)c 2s R(s) > 3/4 P m (z, s) R(s) > 3/4 m, n 1 P m (, s 1 ), P n (, s 2 ) = 0 B n (m, y, s 1 )y s 2 2 e 2πny dy.

38 D Γ 0 (q) h P m (, s 1 ), P n (, s 2 = = D P m (z, s 1 ) γ Γ \Γ 0 (q) γd = E γ Γ \Γ 0 (q) (γz) s 2 e(nz) dxdy y 2 P m (γ 1 z, s 1 )y s 2 e(nz) dxdy y 2 P m (z, s 1 )e( nx)y s 2 2 e 2πny dxdy, E Γ 0 x < 1, y > 0 P m (z, s 1 ) P m (, s 1 ), P n (, s 2 ) = k Z B k (m, y, s 1 )e(kx)e( nx)y s2 2 e 2πmy dxdy. x k = n B k (m, y, s 1 ) P m (, s 1 ), P n (, s 2 ) R(s 1 ) > 3/4 R(s 2 ) > 3/4 s 1 = 1+it s 2 = 1 it m, n 1 P m (, 1 + it), P n (, 1 + it) = δ ( mn n ) it 4πn 2i S(m, n; c) i m c 2 c>0 i c 0 q ( ) 4π mn dv K 2it v c v. P m (, s 1 ), P n (, s 2 )

39 P m (, s) L 2 (Γ 0 (q)\h) P m m f(z) = n 0 a f (n) yk it (2π n y)e(nx) Γ 0 (q) t2 m 1 R(s) > 1 P m (, s), f = (4πm) 1 2 s π 1 2 af (m) Γ(s 1 + it)γ(s 1 it) 2 2. Γ(s) P m (, s), f = = D γ Γ \Γ 0 (q) γ Γ \Γ 0 (q) γd = = E 1 0 = a f (m) (γz) s e(mγz)f(z) dxdy y 2 (z) s e(mz)f(γ 1 z) dxdy y 2 f(z)e(mx)y s 2 e 2πmy dxdy a f (n)k it (2π n y)e( nx)e(mx)y s 3 2 e 2πmy dxdy 0 n 0 0 K it (2πmy)y s 3 2 e 2πmy dy. 0 K it (y)y s 3 2 e y dy = π s Γ(s it)γ(s 1 2 it) Γ(s)

40 m 1 R(s) > 1 a Γ 0 (q) P m (, s), E a (, 12 + ir ) = 2 2 2s m 1 2 s ir π 3 2 s ir φ a m ( ir ) Γ(s ir)γ(s 1 2 ir) Γ(s)Γ( 1 2 ir). u j (z) = n 0 a j(n) yk it (2π n y)e(nx) u j t2 j m, n 1 ( πm 1 2 s 1 n 1 2 s 2 P m (, s 1 ), P n (, s 2 ) = (4π) s 1+s 2 a 1 j (m)a j (n)λ(s 1, s 2 ; t j ) Γ(s 1 )Γ(s 2 ) j 1 + ( n ) ( ) ( ) ) ir 1 1 φa m a m 2 + ir φ a n 2 + ir Λ(s1, s 2 ; r) Γ( 1 dr, + ir) 2 2 Λ(s 1, s 2 ; r) = Γ (s 1 12 ) + ir Γ (s 1 12 ) ir Γ (s 2 12 ) + ir Γ (s 2 12 ) ir. s 1 = 1 + it s 2 = 1 it

41 ( P m (, 1 + it), P n (, 1 + it) = 1 ( n ) it 4 πt π mn m t j 1 + a ( n m a j (m)a j (n) π(t j t) π(t j + t) ) ir φ a m ( ir) φ a n ( ir) π(r t) π(r + t) πrdr ). ( 1 4 n mn m ) it πt t {u j } Γ 0 (q) 1 4 +t2 j u j (z) = n 0 a j(n) yk it (2π n y)e(nx) m, n 1 t R 2it πt c>0 c 0 q 4π mn i S(m, n; c) c 2 = π a j (m)a j (n) π(t j 1 j t) π(t j + t) + a i ( ) 4π mn dv K 2it v c ( n m v + δ t mn π πt ) ir φ a m ( ir) φ a n ( ir) π(r t) π(r + t) πrdr. a Γ 0 (q) {u j }

42 {b n } M N 1 πt j t j K b n a j (n) 2 (K 2 + M ϵ N) b n 2. t πte (t/k)2 b m b n t j 1 t j + 1 (tj/k)2 e πt j K 3 + a b n c c>0 c 0 q b n a j (n) 2 ( r + 1)e (r/k)2 m=m+1 b n n ir φ a n ( ir ) 2 dr 4π mn b m b n S(m, n; c)φ c ( 4π mn c ), Φ (x) = t 2 e (t/k)2 i i K 2it (xv) dv v. Φ Φ (x) = πik 3 e (ξk)2 ξ ξ (x ξ)dξ 1 0 xφ (x) = ( πik 3 e (ξk)2 1 ξ ξ 2ξ 2 K 2) dξ (x ξ) ξ xk 2. 0 c > K 2 M c K 2 M ϕ(c, K, M, N) = m=m+1 4π mn b m b n S(m, n; c)φ c ( 4π mn c ).

43 c > M 2 Φ(c, K, M, N) c 1 2 +ϵ M 2 b n 2. M 1 ϵ < c M 2 Φ(c, K, M, N) M ϵ N b n 2. K 2 M < c M 1 ϵ ξ 1 ξ 1 Φ(c, K, M, N) M ϵ (Ke K2 c 1 MN + K 2 c M 4 N 4 ) b n 2. c K 2 M Φ(c, K, M, N) M ϵ (Ke K2 c 1 MN + c M 4 N 4 ) b n 2. c>0 c 0 q 1 c ϕ(c, K, M, N) KN(M ϵ + MKe K2 ) b n 2,

44 t j + 1 πt j t j K b n a j (n) 2 K(K 2 + M ϵ N + MNKe K2 ) b n 2. K K K + M ϵ t j + 1 πt j t j K b n a j (n) 2 K(K 2 + M ϵ N) b n 2, 1 πt j t j K b n a j (n) 2 (K 2 + M ϵ N) b n 2.

45 L L L L L L GL(2) L

46 L(s, f) L Γ 0 (q) w = 1 + iv L L (s, f) = ρ 1 + O( q( v + 2)), s ρ ρ L(s, f) ρ w 1 L L(s, f) Q(f, v, r) L(s, f) s (1 + iv) r Q(f, v, r) r q( v + 2) + 1. m 0 {b j } z 1 z 2 z n. ν m + 1 ν m + n ( ) n b 1 z1 ν + b 2 z2 ν + + b n zn ν z 1 ν n 24e 2 (m + 2n) b b j. 1 j n

47 L(s, f) w = 1 + iv v T r 0, A, B, C L(s, f) s w r 1 T r r 0 x T A x B x x<p y a f (p) p a f (1)p w dy y x Cr 2 x, p s w 1/2 L (s, f) = L ρ w O( T ). s ρ s w 1/4 d k 1 L (s, f) = k! ds k ( 1)k L ρ w 1 1 (s ρ) k+1 + O(4k T ). s = w+r r < 1/4 λ r λ 1/4 ρ 2 j λ < ρ w 2 j+1 λ 2 j λ T ρ 1 (s ρ) k+1 (2 j λ) (k+1) ρ w > λ (2 j λ) k T λ k T. j=0 λ 1/4 ρ w > λ d k 1 L (s, f) = k! ds k ( 1)k L ρ w λ 1 (s ρ) k+1 + O(λ k T ).

48 A 1 λ T A 1 s w r ρ s ρ 2r z j 1 s ρ b j = 1 z 1 1 2r m A 1λ T k m k 2m 1 (s ρ) k+1 (Dr) (k+1) ρ w λ D λ = A 2 Dr r 0 λ 1/4 A 2 O(λ k T ) r 1 T 1 k! d k L ds k L (s, f) (Dr) (k+1), m k 2m m A 1 λ T = Er T E = A 1 A 2 D L L (s, f) = Λ f (n)n s, n=1 Λ f (p j ) = { λ f (p) j p p q, (α f,1 (p) j + α f,2 (p) j ) p p q Λ f (n) = 0 n Λ f (p) = λ f (p) p Λ(f)(p j ) p 7 64 j+ϵ n=1 Λ f (n) n p k(r n) D k w r,

49 p k (u) = e u u k. k! B 1 B 2 p k p k (u) (2D) k u B 1 k p k (u) (2D) k e u/2 u B 1 k A = B 1 E x T A m = B 1 1 r x m Er T k m k 2m B = 2B 2 /B 1 Λ f (n) n p k(r n) (2D) k Λ f (n) w n n x n x Λ f (n) n p k(r n) (2D) k Λ f (n) w n 1+ r n>x B n>x B 2 (2D) k k r, (2D) k. r L(s, f) n x Λ f(n) x n x n > x B Λ f (n) n p k(r n) D k w r. x<n x B Λ(f)(p j ) p 7 64 j+ϵ p j j 2 S(y) = x<p y Λ f (p) p w = x<p y λ f (p) p p w = x<p y a f (p) p a f (1)p w. x B x p k (r y)ds(y) = p k (r x B )S(x B ) x B x S(y)p k(r y)r dy y.

50 (2D) k k p r k 1 x B x S(y) dy y D k r 2 x Cr 2 x. S(t) = n=1 a n n it T T S(t) 2 dt T 2 0 y<n ye 1/T a n 2 dy y. {u j } Γ 0 (q) u j t2 j u j (z) = n 0 a j(n) yk it (2π n y)e(nx) {b n } b n a j (n) n=1 1 πt j t j K T T b n a j (n)n 2dt it n=1 (K 2 T + n 1+ϵ ) b n 2. n=1

51 T 2 1 πt j 0 t j K ye 1/T b n a j (n) y 2 dy y. 1 πt j t j K ye 1/T 2 b n a j (n) ( K 2 + y ϵ (e 1/T 1) ) ye1/t b n 2. y y b n 2 T 2 K 2 n ne 1/T dy y + T ( 2 e 1/T 1 ) n ne 1/T y ϵ dy K 2 T + T 2 ( e 1/T 1 ) ( 1 e 1/T ) 1+ϵ n 1+ϵ K 2 T + n 1+ϵ T 1 2(1 α) r T 0 1 α 1 T α r = 2(1 α) x = T (A,3) L(s, f j )

52 s w r x B x Cr 2 x x x p y a j (p) p a j (1)p w dy y 1, p c = 4C (A, 3) T c(1 α) 3 T x B x x p y a j (p) p a j (1)p w 2 dy y 1. s w 2(1 α) ((1 α) T ) 1 α w 1 α w = 1 + iv N j (α, T ) T c(1 α) 2 T x B T x T x p y a j (p) p a j (1)p 1+iv 2 dv dy y. {f j } {u j } a j (1) 2 N j (α, T ) 1 x B T T c(1 α) 2 T πt j πt j x T t j T t j T x p y a j (p) p p 1+iv 2 dv dy y, {f j } {u j } b p = p p b n = 0 t j T a j (1) 2 x B N j (α, T ) T c(1 α) 2 T πt j x x p y ( ) 2 p (T 3 + p 1+ϵ dy ) p y.

53 x T 3 T x p x B p ϵ 2 p T ϵ,

54 Γ 0 (m) GL(3) σ = 1 L GL(n, R) L

55 GL(3) L L L GL 4 GL 2 ax 2 + by 2 + cz 2 + dt 2 L

56 L L L L GL 3

E E I M (E, I) E I 2 E M I I X I Y X Y I X, Y I X > Y x X \ Y Y {x} I B E B M E C E C C M r E X E r (X) X X r (X) = X E B M X E Y E X Y X B E F E F F E E E M M M M M M E B M E \ B M M 0 M M M 0 0 M x M

More information

An application of the projections of C automorphic forms

An application of the projections of C automorphic forms ACTA ARITHMETICA LXXII.3 (1995) An application of the projections of C automorphic forms by Takumi Noda (Tokyo) 1. Introduction. Let k be a positive even integer and S k be the space of cusp forms of weight

More information

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib, #4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0

More information

PETERSSON AND KUZNETSOV TRACE FORMULAS

PETERSSON AND KUZNETSOV TRACE FORMULAS PETERSSON AND KUZNETSOV TRACE FORMUAS JIANYA IU AND YANGBO YE In memory of Professor Armand Borel With whom we worked together At the University of Hong Kong over a three-year period This article is an

More information

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the

More information

Basic Background on Mock Modular Forms and Weak Harmonic Maass Forms

Basic Background on Mock Modular Forms and Weak Harmonic Maass Forms Basic Background on Mock Modular Forms and Weak Harmonic Maass Forms 1 Introduction 8 December 2016 James Rickards These notes mainly derive from Ken Ono s exposition Harmonic Maass Forms, Mock Modular

More information

Y'* C 0!),.1 / ; ')/ Y 0!)& 1 0R NK& A Y'. 1 ^. ]'Q 1 I1 )H ;". D* 1 = Z)& ^. H N[Qt C =

Y'* C 0!),.1 / ; ')/ Y 0!)& 1 0R NK& A Y'. 1 ^. ]'Q 1 I1 )H ;. D* 1 = Z)& ^. H N[Qt C = (-) 393 F!/ $5 $% T K&L =>-? J (&A )/>2 I B!" GH 393/05/07 :K 393/07/23 :7b +B 0 )NO M / Y'* C a23 N/ * = = Z)& ^. ;$ 0'* Y'2 8 OI 53 = ;" ~" O* Y.b ;" ; ')/ Y'* C 0!),. / ; ')/ Y 0!)& 0R NK& A Y'. ^.

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C! 393/09/0 393//07 :,F! ::!n> b]( a.q 5 O +D5 S ١ ; ;* :'!3Qi C+0;$ < "P 4 ; M V! M V! ; a 4 / ;0$ f;g,7k ;! / C+!< 8R+^ ;0$ Z\ \ K S;4 "* < 8c0 5 *

More information

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X

More information

f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t

f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t S T A S B T f : S T f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T f : S T S T f y T f 1 ({y) f(d 1 D 2 ) = f(d 1 ) f(d 2 ) D 1 D 2 S F x 0 x F x = 0 x = 0 x y = x y x, y F x +

More information

PRISON POLICY INITIATIVE ANNUAL REPORT

PRISON POLICY INITIATIVE ANNUAL REPORT PRISON POLICY INITIATIVE 2015-2016 2016-2017 ANNUAL REPORT N 2016 2017 PO Bx 127 N MA 01061 :// (413) 527-0845 1 T Ex D 1 W 3 P k 4 C R - 7 S j 8 B j 10 P x 12 P j 14 P 16 Wk 18 C x 19 Y P Nk S R 15 B

More information

Periods and congruences of various lifts

Periods and congruences of various lifts Miyama Conference Periods and congruences of various lifts KATSURADA Hidenori (Muroran I. T.) October 2010 1. Introduction G 12 (z) := Γ(12) 2(2π) 12 (c,d) Z 2 \{(0,0)} (cz + d) 12 the Eisenstein series

More information

Prime Numbers and Irrational Numbers

Prime Numbers and Irrational Numbers Chapter 4 Prime Numbers and Irrational Numbers Abstract The question of the existence of prime numbers in intervals is treated using the approximation of cardinal of the primes π(x) given by Lagrange.

More information

RESEARCH ANNOUNCEMENTS PROJECTIONS OF C AUTOMORPHIC FORMS BY JACOB STURM 1

RESEARCH ANNOUNCEMENTS PROJECTIONS OF C AUTOMORPHIC FORMS BY JACOB STURM 1 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 2, Number 3, May 1980 RESEARCH ANNOUNCEMENTS PROJECTIONS OF C AUTOMORPHIC FORMS BY JACOB STURM 1 The purpose of this paper is to exhibit

More information

LOWELL. MICHIGAN, THURSDAY, AUGUST 16, Specialty Co. Sells to Hudson Mfg. Company. Ada Farmer Dies When Boat Tips

LOWELL. MICHIGAN, THURSDAY, AUGUST 16, Specialty Co. Sells to Hudson Mfg. Company. Ada Farmer Dies When Boat Tips K N» N - K V XXXV - N 22 N 5 V N N q N 0 " " - x Q- & V N -" Q" 24-?? 2530 35-6 9025 - - K ; ) ) ( _) ) N K : ; N - K K ) q ( K N ( x- 89830 z 7 K $2000 ( - N " " K : K 89335 30 4 V N

More information

MATH 797MF PROBLEM LIST

MATH 797MF PROBLEM LIST MATH 797MF PROBLEM LIST PAUL E. GUNNELLS Please complete 20 of these problems. You can hand them in at any time, but please try to submit them in groups of 5 at a time. The problems cover a lot of different

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

Riemann Mapping Theorem (4/10-4/15)

Riemann Mapping Theorem (4/10-4/15) Math 752 Spring 2015 Riemann Mapping Theorem (4/10-4/15) Definition 1. A class F of continuous functions defined on an open set G is called a normal family if every sequence of elements in F contains a

More information

DETERMINATION OF GL(3) CUSP FORMS BY CENTRAL VALUES OF GL(3) GL(2) L-FUNCTIONS, LEVEL ASPECT

DETERMINATION OF GL(3) CUSP FORMS BY CENTRAL VALUES OF GL(3) GL(2) L-FUNCTIONS, LEVEL ASPECT DETERMIATIO OF GL(3 CUSP FORMS BY CETRAL ALUES OF GL(3 GL( L-FUCTIOS, LEEL ASPECT SHEG-CHI LIU Abstract. Let f be a self-dual Hecke-Maass cusp form for GL(3. We show that f is uniquely determined by central

More information

Horocycle Flow at Prime Times

Horocycle Flow at Prime Times Horocycle Flow at Prime Times Peter Sarnak Mahler Lectures 2011 Rotation of the Circle A very simple (but by no means trivial) dynamical system is the rotation (or more generally translation in a compact

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

Infinite Series. 1 Introduction. 2 General discussion on convergence

Infinite Series. 1 Introduction. 2 General discussion on convergence Infinite Series 1 Introduction I will only cover a few topics in this lecture, choosing to discuss those which I have used over the years. The text covers substantially more material and is available for

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

Hyperbolic volumes and zeta values An introduction

Hyperbolic volumes and zeta values An introduction Hyperbolic volumes and zeta values An introduction Matilde N. Laĺın University of Alberta mlalin@math.ulberta.ca http://www.math.ualberta.ca/~mlalin Annual North/South Dialogue in Mathematics University

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Eisenstein series June 18, 2006

Eisenstein series June 18, 2006 Eisenstein series June 18, 2006 Brazil vs. Australia June 18, 2006 Let H = {x + iy : y > 0} be the upper half-plane. It is a symmetric space. The group G = SL 2 (R) acts by Möbius transformations ( ) a

More information

On the investigation of summable series *

On the investigation of summable series * On the investigation of summable series * Leonhard Euler 9 If the sum of the series whose terms contain the variable quantity x was known and which will therefore be a function of x, then, whatever value

More information

A class of trees and its Wiener index.

A class of trees and its Wiener index. A class of trees and its Wiener index. Stephan G. Wagner Department of Mathematics Graz University of Technology Steyrergasse 3, A-81 Graz, Austria wagner@finanz.math.tu-graz.ac.at Abstract In this paper,

More information

MIS S BALLS, L.L.A.]

MIS S BALLS, L.L.A.] & N k k QY GN ( x - N N & N & k QY GN x 00 - XX N X ± - - - - ---------------- N N G G N N N Y NG 5 880N GN N X GN x ( G ) 8N ---- N 8 Y 8 - N N ( G () G ( ) (N) N? k [ x-k NNG G G k k N NY Y /( Q G (-)

More information

Converse theorems for modular L-functions

Converse theorems for modular L-functions Converse theorems for modular L-functions Giamila Zaghloul PhD Seminars Università degli studi di Genova Dipartimento di Matematica 10 novembre 2016 Giamila Zaghloul (DIMA unige) Converse theorems 10 novembre

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2015 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 6 questions printed on 10 pages. PLEASE CHECK

More information

LHS Grads Are 89 in Number Hahn,

LHS Grads Are 89 in Number Hahn, KMU D N Q «««v v 8 v K v C Cv U v U v M M D M 3 v U v 8 v x M v Dv Dv v v v v v ( 6 : C C N 4 M C v v U C C «v q v q M - 8 v v v v M: v : x v v v v : v : x vv x v v v x - x x $00000 - v x 73 x 80 Y-X Y

More information

Complex Analysis, Stein and Shakarchi The Fourier Transform

Complex Analysis, Stein and Shakarchi The Fourier Transform Complex Analysis, Stein and Shakarchi Chapter 4 The Fourier Transform Yung-Hsiang Huang 2017.11.05 1 Exercises 1. Suppose f L 1 (), and f 0. Show that f 0. emark 1. This proof is observed by Newmann (published

More information

Gauge-Higgs Unification and the LHC

Gauge-Higgs Unification and the LHC Gauge-Higgs Unification and the LHC If the Higgs boson is 124 or 126 or? GeV with SM couplings, Explain SM Higgs. with non-sm couplings, is not seen at LHC, Higgs is stable. Higgs does not exist. 2 If

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

I. An overview of the theory of Zeta functions and L-series. K. Consani Johns Hopkins University

I. An overview of the theory of Zeta functions and L-series. K. Consani Johns Hopkins University I. An overview of the theory of Zeta functions and L-series K. Consani Johns Hopkins University Vanderbilt University, May 2006 (a) Arithmetic L-functions (a1) Riemann zeta function: ζ(s), s C (a2) Dirichlet

More information

The Langlands Program: Beyond Endoscopy

The Langlands Program: Beyond Endoscopy The Langlands Program: Beyond Endoscopy Oscar E. González 1, oscar.gonzalez3@upr.edu Kevin Kwan 2, kevinkwanch@gmail.com 1 Department of Mathematics, University of Puerto Rico, Río Piedras. 2 Department

More information

Appendix A. Touchpoint Counting Patterns

Appendix A. Touchpoint Counting Patterns Ax A C P 0 O O,,, O,, O,,, q O,,,,, 1 x, x O,, x O,, x, 7, 8 O,, x, C, O,, x,, 9 A, APPENDIX B A 3 A E A U OUCH MAH q N,,8 E B U N 3,,7 E C C N 1,4,9 + 7 + 7 +8 10 3 + 9 +3 9 3 +7 10 1 +4 4 +1 1 +9 10

More information

Meromorphic Continuation of Eisenstein Series. Gideon Providence

Meromorphic Continuation of Eisenstein Series. Gideon Providence Meromorphic Continuation of Eisenstein Series by Gideon Providence A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Mathematics University

More information

5 n N := {1, 2,...} N 0 := {0} N R ++ := (0, ) R + := [0, ) a, b R a b := max{a, b} f g (f g)(x) := f(x) g(x) (Z, Z ) bz Z Z R f := sup z Z f(z) κ: Z R ++ κ f : Z R f(z) f κ := sup z Z κ(z). f κ < f κ

More information

Lecture 1: Small Prime Gaps: From the Riemann Zeta-Function and Pair Correlation to the Circle Method. Daniel Goldston

Lecture 1: Small Prime Gaps: From the Riemann Zeta-Function and Pair Correlation to the Circle Method. Daniel Goldston Lecture 1: Small Prime Gaps: From the Riemann Zeta-Function and Pair Correlation to the Circle Method Daniel Goldston π(x): The number of primes x. The prime number theorem: π(x) x log x, as x. The average

More information

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts I Fk E M C k C C EN CN INI & NYU CN EN INI @ y @ F Lzz M M zz@ M y IDE I - y W y W q : y; y y y; yz y ; y q j W I y y /y y /k W W j - y W - CCCk M y C O y C j D D [D q]: D G D q/ D D q D4 / V D5 D G D

More information

Poincaré Models of Hyperbolic Geometry

Poincaré Models of Hyperbolic Geometry Chapter 9 Poincaré Models of Hyperbolic Geometry 9.1 The Poincaré Upper Half Plane Model The next model of the hyperbolic plane that we will consider is also due to Henri Poincaré. We will be using the

More information

Extension of the Barut-Girardello Coherent State and Path Integral

Extension of the Barut-Girardello Coherent State and Path Integral Extension of the Barut-Girardello Coherent State and Path Integral Kazuyuki FUJII and Kunio FUNAHASHI Department of Mathematics, Yokohama City University, Yokohama 36, Japan April, 997 Abstract We extend

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2013 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 4 questions printed on 10 pages. PLEASE CHECK

More information

M e t ir c S p a c es

M e t ir c S p a c es A G M A A q D q O I q 4 78 q q G q 3 q v- q A G q M A G M 3 5 4 A D O I A 4 78 / 3 v D OI A G M 3 4 78 / 3 54 D D v M q D M 3 v A G M 3 v M 3 5 A 4 M W q x - - - v Z M * A D q q q v W q q q q D q q W q

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

GORAN DJANKOVIĆ AND RIZWANUR KHAN

GORAN DJANKOVIĆ AND RIZWANUR KHAN A CONJECTURE FOR THE REGULARIZED FOURTH MOMENT OF EISENSTEIN SERIES GORAN DJANKOVIĆ AND RIZWANUR KHAN Abstract. We formulate a version of the Random Wave Conjecture for the fourth moment of Eisenstein

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Explicit Maass forms.

Explicit Maass forms. Explicit Maass forms. Kevin Buzzard April 26, 2012 [version of 9 Nov 2007] 1 Classical modular forms. I m going to do this in a bit of a kooky way. If z is in the upper half plane and if n is a positive

More information

Regularity of flat level sets in phase transitions

Regularity of flat level sets in phase transitions Annals of Mathematics, 69 (2009), 4 78 Regularity of flat level sets in phase transitions By Ovidiu Savin Abstract We consider local minimizers of the Ginzburg-Landau energy functional 2 u 2 + 4 ( u2 )

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Awards Screening Test. February 25, Time Allowed: 90 Minutes Maximum Marks: 40

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Awards Screening Test. February 25, Time Allowed: 90 Minutes Maximum Marks: 40 NATIONAL BOARD FOR HIGHER MATHEMATICS Research Awards Screening Test February 25, 2006 Time Allowed: 90 Minutes Maximum Marks: 40 Please read, carefully, the instructions on the following page before you

More information

RIEMANN S FIRST PROOF OF THE ANALYTIC CONTINUATION OF ζ(s) AND L(s, χ)

RIEMANN S FIRST PROOF OF THE ANALYTIC CONTINUATION OF ζ(s) AND L(s, χ) RIEMANN S FIRST PROOF OF THE ANALYTIC CONTINUATION OF ζ(s AND L(s, χ FELIX RUBIN SEMINAR ON MODULAR FORMS, WINTER TERM 6 Abstrat. In this hapter, we will see a proof of the analyti ontinuation of the Riemann

More information

Math 259: Introduction to Analytic Number Theory More about the Gamma function

Math 259: Introduction to Analytic Number Theory More about the Gamma function Math 59: Introduction to Analytic Number Theory More about the Gamma function We collect some more facts about Γs as a function of a complex variable that will figure in our treatment of ζs and Ls, χ.

More information

PROBLEMS ON LINEAR ALGEBRA

PROBLEMS ON LINEAR ALGEBRA 1 Basic Linear Algebra PROBLEMS ON LINEAR ALGEBRA 1. Let M n be the (2n + 1) (2n + 1) for which 0, i = j (M n ) ij = 1, i j 1,..., n (mod 2n + 1) 1, i j n + 1,..., 2n (mod 2n + 1). Find the rank of M n.

More information

Resonance sums for Rankin-Selberg products

Resonance sums for Rankin-Selberg products University of Iowa Iowa Research Online Theses and Dissertations Spring 16 Resonance sums for Rankin-Selberg products Kyle Jeffrey Czarnecki University of Iowa Copyright 16 Kyle Czarnecki This dissertation

More information

Starting from Heat Equation

Starting from Heat Equation Department of Applied Mathematics National Chiao Tung University Hsin-Chu 30010, TAIWAN 20th August 2009 Analytical Theory of Heat The differential equations of the propagation of heat express the most

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt MA526 Homework 4 Group 4 April 26, 26 Qn 6.2 Show that H is not bounded as a map: L L. Deduce from this that H is not bounded as a map L L. Let {ϕ n } be an approximation of the identity s.t. ϕ C, sptϕ

More information

FOURIER TRANSFORMS OF SURFACE MEASURE ON THE SPHERE MATH 565, FALL 2017

FOURIER TRANSFORMS OF SURFACE MEASURE ON THE SPHERE MATH 565, FALL 2017 FOURIER TRANSFORMS OF SURFACE MEASURE ON THE SPHERE MATH 565, FALL 17 1. Fourier transform of surface measure on the sphere Recall that the distribution u on R n defined as u, ψ = ψ(x) dσ(x) S n 1 is compactly

More information

Complex Representation in Two-Dimensional Theory of Elasticity

Complex Representation in Two-Dimensional Theory of Elasticity Complex Representation in Two-Dimensional Theory of Elasticity E. Vondenhoff 7-june-2006 Literature: Muskhelishvili : Some Basic Problems of the Mathematical Theory of Elasticity, Chapter 5 Prof. ir. C.

More information

Alan Turing and the Riemann hypothesis. Andrew Booker

Alan Turing and the Riemann hypothesis. Andrew Booker Alan Turing and the Riemann hypothesis Andrew Booker Introduction to ζ(s) and the Riemann hypothesis The Riemann ζ-function is defined for a complex variable s with real part R(s) > 1 by ζ(s) := n=1 1

More information

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand Concentration inequalities for Feynman-Kac particle models P. Del Moral INRIA Bordeaux & IMB & CMAP X Journées MAS 2012, SMAI Clermond-Ferrand Some hyper-refs Feynman-Kac formulae, Genealogical & Interacting

More information

The Path Integral: Basics and Tricks (largely from Zee)

The Path Integral: Basics and Tricks (largely from Zee) The Path Integral: Basics and Tricks (largely from Zee) Yichen Shi Michaelmas 03 Path-Integral Derivation x f, t f x i, t i x f e H(t f t i) x i. If we chop the path into N intervals of length ɛ, then

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k L = λw L = λw L λ W 25 l 1 R l 1 l 1 k j j 0 X {X k,j : k 0; j 0} X k,j k j 0 Y k,j i=j X k,i k j j 0 A k Y k,0 = X k,j k Q k k Y k j,j = k, j 0 A k j Y k j,j A k j k 0 0/0 1 0 n λ k (n) 1 n Q k (n) 1

More information

Problems for MATH-6300 Complex Analysis

Problems for MATH-6300 Complex Analysis Problems for MATH-63 Complex Analysis Gregor Kovačič December, 7 This list will change as the semester goes on. Please make sure you always have the newest version of it.. Prove the following Theorem For

More information

Complex Analysis Qual Sheet

Complex Analysis Qual Sheet Complex Analysis Qual Sheet Robert Won Tricks and traps. traps. Basically all complex analysis qualifying exams are collections of tricks and - Jim Agler Useful facts. e z = 2. sin z = n=0 3. cos z = z

More information

LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag

LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag / U N K U Y N Y 8 94 N /U/ N N 3 N U NY NUN ;!! - K - - 93 U U - K K»- [ : U K z ; 3 q U 9:3 - : z 353 «- - - q x z- : N / - q - z 6 - x! -! K N - 3 - U N x >» } ( ) - N Y - q K x x x Y 3 z - x x - x 8

More information

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter, March 8, 2017. arxiv:1612.02793, with Anirban Biswas. Aritra Gupta Why Non-Thermal? 1 / 31 The most widely studied

More information

Arithmetic properties of harmonic weak Maass forms for some small half integral weights

Arithmetic properties of harmonic weak Maass forms for some small half integral weights Arithmetic properties of harmonic weak Maass forms for some small half integral weights Soon-Yi Kang (Joint work with Jeon and Kim) Kangwon National University 11-08-2015 Pure and Applied Number Theory

More information

Shimura correspondence of Maass wave forms of half integral weight

Shimura correspondence of Maass wave forms of half integral weight ACTA ARITHMETICA LXIX.4 (1995) Shimura correspondence of Maass wave forms of half integral weight by Hisashi Kojima (Tokyo) Introduction. In [11], Shimura showed the existence of a correspondence between

More information

A Bombieri-Vinogradov theorem for all number fields

A Bombieri-Vinogradov theorem for all number fields A Bombieri-Vinogradov theorem for all number fields M. Ram Murty and Kathleen L. Petersen January 30, 0 Abstract The classical theorem of Bombieri and Vinogradov is generalized to a non-abelian, non-galois

More information

Lecture Discrete dynamic systems

Lecture Discrete dynamic systems Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems Lecture 3.4 Discrete dynamic systems Suppose that we wish to implement an embedded computer system that behaves analogously to a continuous linear

More information

Errata for Robot Vision

Errata for Robot Vision Errata for Robot Vision This is a list of known nontrivial bugs in Robot Vision 1986) by B.K.P. Horn, MIT Press, Cambridge, MA ISBN 0-6-08159-8 and McGraw-Hill, New York, NY ISBN 0-07-030349-5. If you

More information

Chemistry 431 Practice Final Exam Fall Hours

Chemistry 431 Practice Final Exam Fall Hours Chemistry 431 Practice Final Exam Fall 2018 3 Hours R =8.3144 J mol 1 K 1 R=.0821 L atm mol 1 K 1 R=.08314 L bar mol 1 K 1 k=1.381 10 23 J molecule 1 K 1 h=6.626 10 34 Js N A = 6.022 10 23 molecules mol

More information

arxiv: v2 [math.nt] 7 Feb 2009

arxiv: v2 [math.nt] 7 Feb 2009 UFR S.T.M.I.A. École Doctorale IAE + M Université Henri Poincaré - Nancy I D.F.D. Mathématiques arxiv:0902.0955v2 [math.nt] 7 Feb 2009 THÈSE présentée par Yan QU pour l'obtention du Doctorat de l'université

More information

Errata for Robot Vision

Errata for Robot Vision Errata for Robot Vision This is a list of known nontrivial bugs in Robot Vision 1986) by B.K.P. Horn, MIT Press, Cambridge, MA ISBN 0-6-08159-8 and McGraw-Hill, New York, NY ISBN 0-07-030349-5. Thanks

More information

INTRODUCTION TO REAL ANALYTIC GEOMETRY

INTRODUCTION TO REAL ANALYTIC GEOMETRY INTRODUCTION TO REAL ANALYTIC GEOMETRY KRZYSZTOF KURDYKA 1. Analytic functions in several variables 1.1. Summable families. Let (E, ) be a normed space over the field R or C, dim E

More information

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University Section 27 The Central Limit Theorem Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 3000, R.O.C. Identically distributed summands 27- Central

More information

MS 3011 Exercises. December 11, 2013

MS 3011 Exercises. December 11, 2013 MS 3011 Exercises December 11, 2013 The exercises are divided into (A) easy (B) medium and (C) hard. If you are particularly interested I also have some projects at the end which will deepen your understanding

More information

Lectures on Classical Analytic Theory. of L-functions. Amir Akbary

Lectures on Classical Analytic Theory. of L-functions. Amir Akbary Lectures on Classical Analytic Theory of L-functions Amir Akbary IPM, May 006 Acknowledgements First of all I would like to thank Dr. G. B. Khosrovshahi for providing the opportunity of delivering a series

More information

Distribution of Fourier coefficients of primitive forms

Distribution of Fourier coefficients of primitive forms Distribution of Fourier coefficients of primitive forms Jie WU Institut Élie Cartan Nancy CNRS et Nancy-Université, France Clermont-Ferrand, le 25 Juin 2008 2 Presented work [1] E. Kowalski, O. Robert

More information

A Master Theorem for Discrete Divide and Conquer Recurrences. Dedicated to PHILIPPE FLAJOLET

A Master Theorem for Discrete Divide and Conquer Recurrences. Dedicated to PHILIPPE FLAJOLET A Master Theorem for Discrete Divide and Conquer Recurrences Wojciech Szpankowski Department of Computer Science Purdue University U.S.A. September 6, 2012 Uniwersytet Jagieloński, Kraków, 2012 Dedicated

More information

Real Analysis Chapter 8 Solutions Jonathan Conder. = lim n. = lim. f(z) dz dy. m(b r (y)) B r(y) f(z + x y) dz. B r(y) τ y x f(z) f(z) dz

Real Analysis Chapter 8 Solutions Jonathan Conder. = lim n. = lim. f(z) dz dy. m(b r (y)) B r(y) f(z + x y) dz. B r(y) τ y x f(z) f(z) dz 3. (a Note that η ( (t e /t for all t (,, where is a polynomial of degree. Given k N, suppose that η (k (t P k (/te /t for all t (,, where P k (x is some polynomial of degree (k. By the product rule and

More information

MATH 220: MIDTERM OCTOBER 29, 2015

MATH 220: MIDTERM OCTOBER 29, 2015 MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems -3 and one of Problems 4 and 5. Write your solutions to problems and

More information

X i, AX i X i. (A λ) k x = 0.

X i, AX i X i. (A λ) k x = 0. Chapter 4 Spectral Theory In the previous chapter, we studied spacial operators: the self-adjoint operator and normal operators. In this chapter, we study a general linear map A that maps a finite dimensional

More information

Bernoulli polynomials

Bernoulli polynomials Bernoulli polynomials Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto February 2, 26 Bernoulli polynomials For k, the Bernoulli polynomial B k (x) is defined by ze xz

More information

Metric Invariance and Haar Measure

Metric Invariance and Haar Measure CHAPTER Metric Invariance and Haar Measure Suppose G is a locally compact metrizable group. Then G admits a metric ρ which is left invariant and generates G s topology; G also admits a left invariant regular

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Minimax Redundancy for Large Alphabets by Analytic Methods

Minimax Redundancy for Large Alphabets by Analytic Methods Minimax Redundancy for Large Alphabets by Analytic Methods Wojciech Szpankowski Purdue University W. Lafayette, IN 47907 March 15, 2012 NSF STC Center for Science of Information CISS, Princeton 2012 Joint

More information

book 2005/1/23 20:41 page 132 #146

book 2005/1/23 20:41 page 132 #146 book 2005/1/23 20:41 page 132 #146 132 2. BASIC THEORY OF GROUPS Definition 2.6.16. Let a and b be elements of a group G. We say that b is conjugate to a if there is a g G such that b = gag 1. You are

More information

Dimension formulas for vector-valued Hilbert modular forms

Dimension formulas for vector-valued Hilbert modular forms Dimension formulas for vector-valued Hilbert modular forms Fredrik Strömberg (j/w N.-P. Skoruppa) March 29, 2013 Possible applications Jacobi forms over number fields Same type of correspondence as over

More information

Hecke s Converse Theorem

Hecke s Converse Theorem Hecke s Converse Theorem Christoph Rösch January 7, 2007 Introduction In Andrea s Talk we saw how to get a Dirichlet series from a modular form. Moreover we saw that this Dirichlet series can be analytically

More information

Estimates for sums over primes

Estimates for sums over primes 8 Estimates for sums over primes Let 8 Principles of the method S = n N fnλn If f is monotonic, then we can estimate S by using the Prime Number Theorem and integration by parts If f is multiplicative,

More information

III.2. Analytic Functions

III.2. Analytic Functions III.2. Analytic Functions 1 III.2. Analytic Functions Recall. When you hear analytic function, think power series representation! Definition. If G is an open set in C and f : G C, then f is differentiable

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h 1 Sec 4.1 Limits, Informally When we calculated f (x), we first started with the difference quotient f(x + h) f(x) h and made h small. In other words, f (x) is the number f(x+h) f(x) approaches as h gets

More information