Angular-Momentum Projected Potential Energy Surfaces Based on a Combined Method. Jianzhong Gu. (China Institute of Atomic Energy, Beijing, China)

Size: px
Start display at page:

Download "Angular-Momentum Projected Potential Energy Surfaces Based on a Combined Method. Jianzhong Gu. (China Institute of Atomic Energy, Beijing, China)"

Transcription

1 Angular-Momentum Projected Potential Energy Surfaces Based on a Combined Method Jianzhong Gu (China Institute of Atomic Energy, Beijing, China) 2011 KLFTP-BLTP Joint Workshop on Nuclear Physics (Sep. 6-8, 2011, ITP, Beijing)

2 The work was done in collaboration with Wenhua Zou (CIAE), Yuan Tian (CIAE), Bangbao Peng (CIAE) Jiangming Yao (Southwest U), Zhongyu Ma (CIAE), and Shuifa Shen (East China Institute of Technolgy).

3 Outline The combined method and its justification 80,82,84 Zr Hg isotopes Summary

4 There are many nuclear models and theories, their connections are not so clear. Collecting their merits together one may better understand the nuclear many-body problem.

5 The angular momentum projected potential energy surfaces ( AMPPESs) method The Hamiltonian of the PSM does not contain the Coulomb interaction of protons which is indispensable for the potential energy surface (PES). To remedy this shortcoming of the PSM and compute the AMPPESs we combine the PSM with the QCRHB-NL3+separable- Gogny-D1S-force-theory. The quadrupole constrained RHB theory, in which the relativistic mean-field (RMF) Lagrangian is described by the NL3 effective interaction and the pairing correlations by a separable Gogny D1S force (QCRHB-NL3+separable-Gogny-D1S-forcetheory), We first calculate the ground-state PES based on the QCRHB-NL3 +separable-gogny-d1s-force-theory. Then we calculate the PES with a given angular momentum in the framework of the PSM. Finally, the energy difference between the PSM calculated PES with a non-zero angular momentum and that with zero spin is added to the ground-state PES, and a new PES is then formed, which, roughly speaking, has a given angular momentum. Certainly, since angular momentum projection has not yet been performed to the ground-state PES, anything added to the top of it is also unprojected. Those new PESs together with the ground-state PES constitute a group of the PESs with (approximate) given angular momenta. We would say that the ground-state PES serves as a kind of the band head of the PES group.

6 We would furthermore give some justifications for our combined method of calculation of the AMPPESs as follows. (a) For a great variety of many-body systems (including the nucleus), it is possible to describe the excitation spectra in terms of elementary modes of excitation representing the different, approximately independent, fluctuations about equilibrium( A. Bohr and B. R. Mottelson, Nuclear Structure (World Scientific, Singapore, 1998), Vol. 2). This implies a separation of scale between the excitations of many-body systems and their ground-state energies and justifies therefore our combined method where nuclear ground states are treated with the RHB, and nuclear excitations are described by the PSM. (b) The Hamiltonian used in the PSM is rather schematic for nuclear excitations, however, it takes into account the most important long-range correlations (the quadrupole-quadrupole correlation) and the most important short-range correlations (the pairing forces) (see, for example, P. Ring and P. Schuck, The nuclear many body problem, Spinger-Verlag (1980)). In this sense, the PSM is a shell-model like approach.

7 80,82,84 Zr near the N=Z line, abundant and exotic nuclear structure due to large parts of protons and neutrons in pfg orbitals and the intruder of the 1g 9/2.

8 A=80 mass region,shapes, shape coexistence, shape transitions and decay out of the super-deformed bands.

9 The decay out could be rather fragmented since the energy difference between the SD states and ND (spherical) states is as high as 6-8 MeV for 82 Zr and 84 Zr nuclei at high spins. Nevertheless, for 80 Zr nucleus, there is no decay out of the SD band since the barrier is so thick. Decay out in 84 Zr C. J. Chiara et al., Phys. Rev. C 73 (2006) (R).

10 The quadrupole constrained RHB theory, in which the relativistic mean-field (RMF) Lagrangian is described by the NL3 effective interaction and the pairing correlations by a separable Gogny D1S force (QCRHB-NL3+separable- Gogny-D1S-force-theory), Phys. Rev. C 82(2010) The quadrupole constrained relativistic mean-field framework with PC-PK1 parameter set. The pairing correlation is considered through a standard BCS method with a density-independent delta pairing force (AMP-QCPC-PK1+BCS approach). P. W. Zhao, Z. P. Li, J. M. Yao et al., New parametrization for the nuclear covariant energy density functional with point-coupling interaction, arxiv: v1 [nucl-th]; Phys. Rev. C 82 (2010) Hartree-Fock-Bogoliubov (HFB) axial mean field calculations based on the D1S Gogny interaction (HFB-full-Gogny-D1S), Eur. Phys. J. A 33 (2007) 237.

11 From Fig.2 one can see that the AMP-QCPC-PK1+BCS approach yields the equilibrium shapes which are consistent with the experimental data. However, the QCHFB-full-Gogny- D1S approach predicts the spherical equilibriumshapes for the three nuclei, which are inconsistent with the experimental data. So it is not a good approach to study the ground-state PESs. The experimental data: a strongly prolate shape > +0.4 for 80 Zr, approx 0.3 for 82 Zr and approx 0.2 for 84 Zr.

12 We recalculated the AMPPESs of 80,82,84 Zr nuclei by replacing the QCRHB- NL3+separable-Gogny-D1S-force-theory by the AMP-QCPC-PK1+BCS approach, and found that the two kinds of AMPPESs have a few common features:the strong shape mixing in 82 Zr and the decay out of the SD bands in nuclei 82,84 Zr although at low spins they are different from each other. The common features imply that the strong shape mixing and the decay out of the SD bands are not so sensitive to the choice of the band heads.

13 Experiments: for A=190 mass region, I=8-12 hbar at decay out points. Calculations: the barrier gets thin and low at such spins, and the decay out suddenly happens. Information for the excitation energies and spins at decay out points can be obtained, which is the most wanted for experiments. Bandheads here are taken from Eur. Phys. J. A 33 (2007) 237. A HFB approach based on the D1S Gogny force. Jianzhong Gu, Bangbao Peng, Wenhua Zou and Shuifa Shen, Nucl. Phys. A 834 (2010) 87c.

14 Feeding and Decay Process a beautiful double cycle between disorder and order A nucleus Suddenly changes its shape at low spins.

15 Over 300 SD bands in total up to now! Around 200 SD bands in these mass regions Total number of paths around 40 for 152Dy, while around 100 for 192Hg. 133Nd, path completely clear, 59Cu almost clear.

16 The intensities of the E2 gamma transitions within a SD band show a remarkable feature: The intra-band E2 transitions follow the band down with practically constant intensity. At some point, the transition intensity starts to drop sharply. This phenomenon is referred to as the decay out of a SD band. It is due to the mixing of the SD state and the normally deformed (ND) states with equal (similar) spin. The barrier separating the first and second minima of the deformation potential depends on and decreases with decreasing spin. Decay out of the SD band sets in at a certain spin value for which penetration through the barrier is competitive with the E2 decay within the SD band. The decay mechanism for the rapid depopulation?

17 E. Vigezzi, R. A. Broglia and T. Dossing, Nucl. Phys. A 520 (1990) 179c; Phys. Lett. B 249 (1990) 163. The theoretical description of the mixing between SD and ND states uses a statistical model for the ND states first proposed by Vigezzi et al. The ND states to which the SD state is coupled, lie several MeV above the ground state. The spectrum of these states is expected to be rather complex. The ND states can be described in terms of random--matrix theory, more precisely, by the Gaussian Orthogonal Ensemble (GOE) of random matrices. The results of this approach have been used to analyze experimental data. The formula actually used by Vigezzi et al. is not really derived from the statistical model. It is rather based on physically plausible and intuitive reasoning.

18 The Basic Picture

19 J. Z. Gu and H. A. Weidenmueller, Nucl. Phys. A 660 (1999) 197. exactly treated the model analytically and numerically The Hamiltonian H of the system is a matrix of dimension K+1 and has the form (j,l=1, K)

20

21 Using the supersymmetry approach developed in Phys. Rep. 129 (1985) 367

22 A link among the most relevant observables for the decay out process has been established. Valid for A=150, 190 mass regions.

23 Comparison with the approach by Vigezzi et al J. Z. Gu and H. A. Weidenmueller, Nucl. Phys. A 660 (1999) 197. J. Z. Gu, Int. J. Mod. Phys. E 17 (Supplement ) (2008) 292. H. A. Weidenmueller et al., Rev. Mod. Phys. 81 (2009) 539.

24 Chaoticity dependence of the decay out intensity Aberg once concluded that the enhancement of the decay out of the SD band is due to the onset of Chaos (S. Aberg, Phys. Rev. Lett. 82 (1999) 299.) How does the degree of the chaoticity affect the decay out intensity?

25

26

27 We conclude that the decay-out intensity less depends on the degree of chaoticity of the normal deformed states, putting Aberg s conclusion into question!

28 Overview theoretical activities of the decay out problem Decay out of a SD band continues to receive considerable theoretical attention. Sargeant et al. derived the formulae for the energy average and variance of the intraband decay intensity. They are strictly valid when the ND states are well overlapped. A. Sargeant, M. Hussein, M. Pato et al., Phys. Rev. C 65 (2002)

29 Stafford et al. calculated the decay out intensity based on a so-called two-level model (C. Stafford and B. Barrett, Phys. Rev. C60 (1999) ) where only one ND state is involved in the decay out process. This approach could be valid when the coupling between the SD state and ND states is rather weak, namely spreading width is small. Very recently, however, this approach was used to analyze the data in the 190 mass region (D. Cardamone, B. Barrett and C. Stafford, Phys. Lett. B 661 (2008) 233). However, in the 190 mass region, the decay from the SD to the normal states is spread over many different available paths. This means the SD state are coupled to many ND states. Therefore it is difficult to understand how the single ND state model is able to account for the data in the 190 mass region. In addition, we notice that the decay out intensity based on this model depends on the same ratios as those appearing in the Vigezzi model. The decay out intensity, therefore, is independent of the value of the fine structure constant, which is not physically plausible. The two-level model was generalized by Dzyublik and Utyuzh (Phys. Rev. C 68 (2003) ) a few years ago. They considered infinite equidistant ND states in their calculations.

30 Shimizu et al. studied the decay out problem by using the cranked Nilsson-Strutinsky model (Nucl. Phys. A 682 (2001) 464c; 696 (2001) 85). This model allows one to calculate the action for the superfluid tunnelling through the potential barrier separating the SD and ND potential wells. It predicts the dependence of the action on the spin of the state for which decay out of the SD band occurs. The action is related to the spreading width. Nevertheless, the large overestimation of the spreading width by this model has not been understood. A cluster model was suggested to study the decay out process by Adamian et al.( Phys. Rev. C 67 (2003) ; 69 (2004) ), in which a collective Hamiltonian depends only on a special degree of freedom (mass asymmetry coordinate) and determines the contribution of each cluster component to the total wave function of a nucleus.

31 Table 1 Tunneling width Γ tunn (in units of ev) J 188 Hg 190 Hg 192 Hg 194 Hg 196 Hg E-5 1.7E-7 2.1E-9 6.7E E E-4 5.7E-4 9.1E-7 2.3E E E-3 1.5E-6 3.8E-8 1.8E E-6 1.4E-8 The tunneling width could be identical to the spreading width, which shares the same order of magnitude as those predicted by the GW model (for instance, R. Kruecken et al., Phys. Rev. C 64 (2001) ).

32 Summary: (a) We proposed a new method to compute angular momentum projected nuclear potential energy surfaces; (b) The equilibrium shapes, shape coexistence, shape transitions and decay out of super-deformed bands for 80,82,84 Zr nuclei were studied; (c) The decay out for Hg isotopes is isospin dependent, the barrier gets thin and low at low spins, and the decay out suddenly happens, not the degree of the chaoticity, putting Aberg's conclusion into question (Phys. Rev. Lett. 82 (1999) 299). A challenge : describe the evolution of nuclear structure in a wide range of deformation!

33 There is no one size fits all nuclear theory. If you think all of the extant models and theories are useful, and if you want to develop a unified theory for the nuclear many-body problem you have to consider the relationship of the extant models and theories, which could be tough. Let us first bring them together, we may learn more and better.

34 Large amplitude collective motions (LACM) such as fission and shape coexistence. Microscopic understanding of the LACM is a long-standing fundamental subject of nuclear structure physics.

35 Shape coexistence stems from the competition between the pairing and deformation. An unstable HB minimum could serve as a starting point of time evolution of a manybody system.

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 509 514 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca DONG

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H.

Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities. G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Benchmarking the Hartree-Fock and Hartree-Fock-Bogoliubov approximations to level densities G.F. Bertsch, Y. Alhassid, C.N. Gilbreth, and H. Nakada 5th Workshop on Nuclear Level Density and Gamma Strength,

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

Antimagnetic rotation in 108,110 In with tilted axis cranking relativistic mean-field approach *

Antimagnetic rotation in 108,110 In with tilted axis cranking relativistic mean-field approach * Antimagnetic rotation in 108,110 In with tilted axis cranking relativistic mean-field approach * Wu-Ji Sun( ) Hai-Dan Xu( ) Jian Li( ) 1) Yong-Hao Liu( ) Ke-Yan Ma( ) Dong Yang( ) Jing-Bing Lu( ) Ying-Jun

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Nuclear uncertainties in the evaluation of fission observables. L.M. Robledo Universidad Autónoma de Madrid Spain

Nuclear uncertainties in the evaluation of fission observables. L.M. Robledo Universidad Autónoma de Madrid Spain Nuclear uncertainties in the evaluation of fission observables L.M. Robledo Universidad Autónoma de Madrid Spain Nucleo-synthesis of elements A large chemical elements are produced in violent stellar environments

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Ground-state properties of some N=Z medium mass heavy nuclei. Keywords: Nuclear properties, neutron skin thickness, HFB method, RMF model, N=Z nuclei

Ground-state properties of some N=Z medium mass heavy nuclei. Keywords: Nuclear properties, neutron skin thickness, HFB method, RMF model, N=Z nuclei Ground-state properties of some N=Z medium mass heavy nuclei Serkan Akkoyun 1, Tuncay Bayram 2, Şevki Şentürk 3 1 Department of Physics, Faculty of Science, Cumhuriyet University, Sivas, Turkey 2 Department

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

WEAKLY BOUND NEUTRON RICH C ISOTOPES WITHIN RMF+BCS APPROACH

WEAKLY BOUND NEUTRON RICH C ISOTOPES WITHIN RMF+BCS APPROACH NUCLEAR PHYSICS WEAKLY BOUND NEUTRON RICH C ISOTOPES WITHIN RMF+BCS APPROACH G. SAXENA 1,2, D. SINGH 2, M. KAUSHIK 3 1 Department of Physics, Govt. Women Engineering College, Ajmer-305002 India, E-mail:

More information

arxiv:nucl-th/ v1 14 Nov 2005

arxiv:nucl-th/ v1 14 Nov 2005 Nuclear isomers: structures and applications Yang Sun, Michael Wiescher, Ani Aprahamian and Jacob Fisker Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre

More information

arxiv: v1 [nucl-th] 24 Oct 2007

arxiv: v1 [nucl-th] 24 Oct 2007 February 2, 28 :28 WSPC/INSTRUCTION FILE kazi27d International Journal of Modern Physics E c World Scientific Publishing Company arxiv:71.4411v1 [nucl-th] 24 Oct 27 Cluster radioactivity of isotopes in

More information

Projected shell model analysis of tilted rotation

Projected shell model analysis of tilted rotation PHYSICAL REVIEW C VOLUME 57, NUMBER 1 JANUARY 1998 Projected shell model analysis of tilted rotation J. A. Sheikh, 1.2 Y. Sun, 3,4,5 and P. M. Walker 1 1 Department of Physics, University of Surrey, Surrey,

More information

arxiv:nucl-th/ v1 19 May 2004

arxiv:nucl-th/ v1 19 May 2004 1 arxiv:nucl-th/0405051v1 19 May 2004 Nuclear structure of 178 Hf related to the spin-16, 31-year isomer Yang Sun, a b Xian-Rong Zhou c, Gui-Lu Long, c En-Guang Zhao, d Philip M. Walker 1e a Department

More information

Microscopic study of the properties of identical bands in the A 150 mass region

Microscopic study of the properties of identical bands in the A 150 mass region PHYSICAL REVIEW C VOLUME 59, NUMBER 6 JUNE 1999 Microscopic study of the properties of identical bands in the A 150 mass region C. Rigollet* CRN, IN2P3-CNRS, F-67037 Strasbourg, France P. Bonche SPhT,

More information

Relativistic Hartree-Bogoliubov description of sizes and shapes of A = 20 isobars

Relativistic Hartree-Bogoliubov description of sizes and shapes of A = 20 isobars Relativistic Hartree-Bogoliubov description of sizes and shapes of A = 20 isobars G.A. Lalazissis 1,2, D. Vretenar 1,3, and P. Ring 1 arxiv:nucl-th/0009047v1 18 Sep 2000 1 Physik-Department der Technischen

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

Shell evolution and nuclear forces

Shell evolution and nuclear forces 1 st Gogny Conference Campus Teratec, Bruyères-le-Châtel Dec. 8-11 (9), 2015 Shell evolution and nuclear forces Takaharu Otsuka University of Tokyo / MSU / KU Leuven Priority Issue project (field 9) by

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2 2358-20 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 2 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60 E.Clément-GANIL IS451 Collaboration Shape Transition at N=60 P. Campbell, I.D. Moore, M.R. Pearson Progress in Particle and Nuclear

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Theoretical study of structure & synthesis mechanism of superheavy nuclei

Theoretical study of structure & synthesis mechanism of superheavy nuclei Humboldt Kolleg Interfacing Structure & Reaction Dynamics in the Synthesis of the Heaviest Nuclei, ECT*, Trento, Sep. 1-4, 2015 Theoretical study of structure & synthesis mechanism of superheavy nuclei

More information

Isospin and Symmetry Structure in 36 Ar

Isospin and Symmetry Structure in 36 Ar Commun. Theor. Phys. (Beijing, China) 48 (007) pp. 1067 1071 c International Academic Publishers Vol. 48, No. 6, December 15, 007 Isospin and Symmetry Structure in 36 Ar BAI Hong-Bo, 1, ZHANG Jin-Fu, 1

More information

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Andreas Görgen Service de Physique Nucléaire CEA Saclay Sunniva Siem Department of Physics University of Oslo 1 Context

More information

Effect of pairing correlations on nuclear low-energy structure: BCS and Bogoliubov descriptions

Effect of pairing correlations on nuclear low-energy structure: BCS and Bogoliubov descriptions Proceedings of the 15th National Conference on Nuclear Structure in China Guilin Oct. 5-8th 1 Ê3IØ(Œ? 014c10 5-8F Effect of pairing correlations on nuclear low-energy structure: BCS and Bogoliubov descriptions

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar.

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar. Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory C. R. Praharaj Institute of Physics. India INT Workshop Nov 2007 1 Outline of talk Motivation Formalism HF calculation

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

arxiv: v2 [nucl-th] 8 May 2014

arxiv: v2 [nucl-th] 8 May 2014 Oblate deformation of light neutron-rich even-even nuclei Ikuko Hamamoto 1,2 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, Lund Institute of Technology at the

More information

Microscopic analysis of nuclear quantum phase transitions in the N 90 region

Microscopic analysis of nuclear quantum phase transitions in the N 90 region PHYSICAL REVIEW C 79, 054301 (2009) Microscopic analysis of nuclear quantum phase transitions in the N 90 region Z. P. Li, * T. Nikšić, and D. Vretenar Physics Department, Faculty of Science, University

More information

Transition quadrupole moments in γ -soft nuclei and the triaxial projected shell model

Transition quadrupole moments in γ -soft nuclei and the triaxial projected shell model 17 May 2001 Physics Letters B 507 (2001) 115 120 www.elsevier.nl/locate/npe Transition quadrupole moments in γ -soft nuclei and the triaxial projected shell model Javid A. Sheikh a,yangsun b,c,d, Rudrajyoti

More information

QUANTUM CHAOS IN NUCLEAR PHYSICS

QUANTUM CHAOS IN NUCLEAR PHYSICS QUANTUM CHAOS IN NUCLEAR PHYSICS Investigation of quantum chaos in nuclear physics is strongly hampered by the absence of even the definition of quantum chaos, not to mention the numerical criterion of

More information

Shape decoupling in deformed halo nuclei

Shape decoupling in deformed halo nuclei ECT* Workshop: Towards consistent approaches for nuclear structure and reactions, Jun. 6 10, 2016, Trento Shape decoupling in deformed halo nuclei Shan-Gui Zhou ( 周善贵 ) Institute of Theoretical Physics,

More information

arxiv: v1 [nucl-th] 8 Sep 2011

arxiv: v1 [nucl-th] 8 Sep 2011 Tidal Waves a non-adiabatic microscopic description of the yrast states in near-spherical nuclei S. Frauendorf, Y. Gu, and J. Sun Department of Physics, University of Notre Dame, Notre Dame, IN 6556, USA

More information

Montecarlo simulation of the decay of warm superdeformed nuclei

Montecarlo simulation of the decay of warm superdeformed nuclei Montecarlo simulation of the decay of warm superdeformed nuclei E. Vigezzi INFN Milano Understanding the dynamics in the SD well: probing γ strength functions, energy barriers, level densities, residual

More information

Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes CEA Saclay (A. Görgen, W. Korten, A. Obertelli, B. Sulignano, Ch. Theisen) Univ. Oslo (A. Bürger, M. Guttormsen,

More information

Band crossing and signature splitting in odd mass fp shell nuclei

Band crossing and signature splitting in odd mass fp shell nuclei Nuclear Physics A 686 (001) 19 140 www.elsevier.nl/locate/npe Band crossing and signature splitting in odd mass fp shell nuclei Victor Velázquez a, Jorge G. Hirsch b,,yangsun c,d a Institute de Recherches

More information

Spectroscopy of 74 Ge: from soft to rigid triaxiality

Spectroscopy of 74 Ge: from soft to rigid triaxiality Spectroscopy of 7 Ge: from soft to rigid triaxiality J. J. Sun a, Z. Shi b, X. Q. Li a,, H. Hua a,, C. Xu a, Q. B. Chen a, S. Q. Zhang a, C. Y. Song b, J. Meng a, X. G. Wu c, S. P. Hu c, H. Q. Zhang c,

More information

Surface energy coefficient determination in global mass formula from fission barrier energy Serkan Akkoyun 1,* and Tuncay Bayram 2

Surface energy coefficient determination in global mass formula from fission barrier energy Serkan Akkoyun 1,* and Tuncay Bayram 2 Surface energy coefficient determination in global mass formula from fission barrier energy Serkan Akkoyun 1,* and Tuncay Bayram 2 1 Cumhuriyet University, Faculty of Science, Department of Physics, Sivas,

More information

Collective excitations of Λ hypernuclei

Collective excitations of Λ hypernuclei Collective excitations of Λ hypernuclei Kouichi Hagino (Tohoku Univ.) J.M. Yao (Southwest Univ.) Z.P. Li (Southwest Univ.) F. Minato (JAEA) 1. Introduction 2. Deformation of Lambda hypernuclei 3. Collective

More information

Nuclear Landscape not fully known

Nuclear Landscape not fully known Nuclear Landscape not fully known Heaviest Elements? Known Nuclei Limit of proton rich nuclei? Fission Limit? Possible Nuclei Limit of Neutron Rich Nuclei? Nuclear Radii Textbooks: R = r 00 A 1/3 1/3 I.

More information

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco Rotational motion in thermally excited nuclei S. Leoni and A. Bracco 4. Rotational motion in thermally excited nuclei * 4.1. Introduction The study of the nucleus at the limits of excitation energy and

More information

Microscopic description of fission in the neutron-deficient Pb region

Microscopic description of fission in the neutron-deficient Pb region Microscopic description of fission in the neutron-deficient Pb region Micha l Warda Maria Curie-Sk lodowska University, Lublin, Poland INT Seattle, 1-1-213 Fr 87 At 85 Rn 86 Po 84 Bi 83 Pb 82 Tl 81 Pb

More information

Shell model Monte Carlo level density calculations in the rare-earth region

Shell model Monte Carlo level density calculations in the rare-earth region Shell model Monte Carlo level density calculations in the rare-earth region Kadir Has University Istanbul, Turkey Workshop on Gamma Strength and Level Density in Nuclear Physics and Nuclear Technology

More information

4. Rotational motion in thermally excited nuclei *

4. Rotational motion in thermally excited nuclei * 4. Rotational motion in thermally excited nuclei * 4.1. Introduction The study of the nucleus at the limits of excitation energy and angular momentum is one of the central topics addressed with EUROBALL

More information

Nuclear structure at high excitation energies

Nuclear structure at high excitation energies PRAMANA cfl Indian Academy of Sciences Vol. 57, Nos 2 & 3 journal of Aug. & Sept. 2001 physics pp. 459 467 Nuclear structure at high excitation energies A ANSARI Institute of Physics, Bhubaneswar 751 005,

More information

MOMENTUM OF INERTIA FOR THE 240 Pu ALPHA DECAY

MOMENTUM OF INERTIA FOR THE 240 Pu ALPHA DECAY MOMENTUM OF INERTIA FOR THE 240 Pu ALPHA DECAY M. MIREA Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Teoretical Physics, Reactorului 30, RO-077125, POB-MG6, Măgurele-Bucharest,

More information

Theoretical study of fission barriers in odd-a nuclei using the Gogny force

Theoretical study of fission barriers in odd-a nuclei using the Gogny force Theoretical study of fission barriers in odd-a nuclei using the Gogny force S. Pérez and L.M. Robledo Departamento de Física Teórica Universidad Autónoma de Madrid Saclay, 9th May 2006 Workshop on the

More information

E(5) and X(5) shape phase transitions within a Skyrme-Hartree-Fock + BCS approach

E(5) and X(5) shape phase transitions within a Skyrme-Hartree-Fock + BCS approach PHYSICAL REVIEW C 7, 33 (7) E(5) and X(5) shape phase transitions within a Skyrme-Hartree-Fock + BCS approach R. Rodríguez-Guzmán and P. Sarriguren * Instituto de Estructura de la Materia, CSIC, Serrano

More information

Nuclear Physics News Publication details, including instructions for authors and subscription information:

Nuclear Physics News Publication details, including instructions for authors and subscription information: This article was downloaded by: [Dario Vretenar] On: 1 December 011, At: 11:40 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 107954 Registered office: Mortimer

More information

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY International Journal of Modern Physics E Vol. 17, No. 8 (2008) 1441 1452 c World Scientific Publishing Company PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY J. LI, B.

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

Fusion Barrier of Super-heavy Elements in a Generalized Liquid Drop Model

Fusion Barrier of Super-heavy Elements in a Generalized Liquid Drop Model Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 594 598 c International Academic Publishers Vol. 42, No. 4, October 15, 2004 Fusion Barrier of Super-heavy Elements in a Generalized Liquid Drop Model

More information

Shell Eects in Atomic Nuclei

Shell Eects in Atomic Nuclei L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 1/37 Shell Eects in Atomic Nuclei Laurent Gaudefroy 1 Alexandre Obertelli 2 1 CEA, DAM, DIF - France 2 CEA, Irfu - France Shell Eects in Finite Quantum

More information

Collective excitations of Lambda hypernuclei

Collective excitations of Lambda hypernuclei Collective excitations of Lambda hypernuclei Kouichi Hagino (Tohoku Univ.) Myaing Thi Win (Lashio Univ.) J.M. Yao (Southwest Univ.) Z.P. Li (Southwest Univ.) 1. Introduction 2. Deformation of Lambda hypernuclei

More information

Magnetic rotation past, present and future

Magnetic rotation past, present and future PRAMANA c Indian Academy of Sciences Vol. 75, No. 1 journal of July 2010 physics pp. 51 62 Magnetic rotation past, present and future A K JAIN and DEEPIKA CHOUDHURY Department of Physics, Indian Institute

More information

Magic Numbers of Ultraheavy Nuclei

Magic Numbers of Ultraheavy Nuclei Physics of Atomic Nuclei, Vol. 68, No. 7, 25, pp. 1133 1137. Translated from Yadernaya Fizika, Vol. 68, No. 7, 25, pp. 1179 118. Original Russian Text Copyright c 25 by Denisov. NUCLEI Theory Magic Numbers

More information

Modern nuclear mass models

Modern nuclear mass models Modern nuclear mass models S. Goriely Institut d Astronomie et d Astrophysique Université Libre de Bruxelles in collaboration with N. Chamel, M. Pearson, S. Hilaire, M. Girod, S. Péru, D. Arteaga, A. Skabreux

More information

in covariant density functional theory.

in covariant density functional theory. Nuclear Particle ISTANBUL-06 Density vibrational Functional coupling Theory for Excited States. in covariant density functional theory. Beijing, Sept. 8, 2011 Beijing, May 9, 2011 Peter Peter Ring Ring

More information

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University Nuclear Symmetry Energy Constrained by Cluster Radioactivity Chang Xu ( 许昌 ) Department of Physics, Nanjing University 2016.6.13-18@NuSym2016 Outline 1. Cluster radioactivity: brief review and our recent

More information

DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER

DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER 1 DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER B. Y. SUN School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, People s Republic of China E-mail: sunby@lzu.edu.cn Based

More information

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach Shape coexistence and beta decay in proton-rich A~ nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline

More information

Spherical-deformed shape coexistence for the pf shell in the nuclear shell model

Spherical-deformed shape coexistence for the pf shell in the nuclear shell model PHYSICAL REVIEW C, VOLUME 63, 044306 Spherical-deformed shape coexistence for the pf shell in the nuclear shell model Takahiro Mizusaki, 1 Takaharu Otsuka, 2,3 Michio Honma, 4 and B. Alex Brown 5 1 Department

More information

Symmetry breaking and symmetry restoration in mean-field based approaches

Symmetry breaking and symmetry restoration in mean-field based approaches Symmetry breaking and symmetry restoration in mean-field based approaches Héloise Goutte GANIL Caen, France goutte@ganil.fr Cliquez pour modifier le style des sous-titres du masque With the kind help of

More information

FIGURE 1. Excitation energy versus angular-momentum plot of the yrast structure of 32 S calculated with the Skyrme III interaction. Density distributi

FIGURE 1. Excitation energy versus angular-momentum plot of the yrast structure of 32 S calculated with the Skyrme III interaction. Density distributi KUNS1529 Exotic Shapes in 32 S suggested by the Symmetry-Unrestricted Cranked Hartree-Fock Calculations 1 Masayuki Yamagami and Kenichi Matsuyanagi Department of Physics, Graduate School of Science, Kyoto

More information

Shell structure of superheavy elements

Shell structure of superheavy elements Shell structure of superheavy elements Michael Bender Université Bordeaux 1; CNRS/IN2P3; Centre d Etudes Nucléaires de Bordeaux Gradignan, UMR5797 Chemin du Solarium, BP120, 33175 Gradignan, France Workshop

More information

Fission properties of the Barcelona Catania Paris energy density functional

Fission properties of the Barcelona Catania Paris energy density functional Journal of Physics: Conference Series Fission properties of the Barcelona Catania Paris energy density functional To cite this article: L M Robledo et al 211 J. Phys.: Conf. Ser. 321 1215 Related content

More information

A multi-dimensional constrained relativistic mean eld model

A multi-dimensional constrained relativistic mean eld model A multi-dimensional constrained relativistic mean eld model and its application for hypernuclei and heavy nuclei * Bing-Nan Lu * En-Guang Zhao Shan-Gui Zhou Institute of Theoretical Physics, Chinese Academy

More information

Chapter 6. Summary and Conclusions

Chapter 6. Summary and Conclusions Chapter 6 Summary and Conclusions The basic aim of the present thesis was to understand the interplay between single particle and collective degrees of freedom and underlying nuclear phenomenon in mass

More information

Nuclear Models Basic Concepts in Nuclear Theory. Joachim A. Maruhn

Nuclear Models Basic Concepts in Nuclear Theory. Joachim A. Maruhn Nuclear Models Basic Concepts in Nuclear Theory Joachim A. Maruhn Topics Foundations Collective models Single-particle models: phenomenological and self-consistent The Fermi-gas model Literature W. Greiner

More information

Fission in Rapidly Rotating Nuclei

Fission in Rapidly Rotating Nuclei Fission in Rapidly Rotating Nuclei A. K. Rhine Kumar* and Vinay Suram Department of Physics, Indian Institute of Technology Roorkee-247667, Uttarakhand, India *E-mail: rhinekumar@gmail.com Abstract We

More information

Projected total energy surface description for axial shape asymmetry in 172 W

Projected total energy surface description for axial shape asymmetry in 172 W . Article. SCIENCE CHINA Physics, Mechanics & Astronomy November 014 Vol. 57 No. 11: 054 059 doi: 10.1007/s11433-014-557-4 Projected total energy surface description for axial shape asymmetry in 17 W TU

More information

Failures of Nuclear Models of Deformed Nuclei

Failures of Nuclear Models of Deformed Nuclei Failures of Nuclear Models of Deformed Nuclei J F Sharpey-Schafer 1 University of Western Cape Department of Physics, P/B X17, Bellville, ZA-7535 South Africa. E-mail: jfss@tlabs.ac.za In spite of the

More information

Allowed beta decay May 18, 2017

Allowed beta decay May 18, 2017 Allowed beta decay May 18, 2017 The study of nuclear beta decay provides information both about the nature of the weak interaction and about the structure of nuclear wave functions. Outline Basic concepts

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Introduction to the IBM Practical applications of the IBM Overview of nuclear models Ab initio methods: Description of nuclei starting from the

More information

The uncertainty quantification in covariant density functional theory.

The uncertainty quantification in covariant density functional theory. The uncertainty quantification in covariant density functional theory. Anatoli Afanasjev Mississippi State University (MSU), USA 1. Motivation. 2. Basic features of CDFT 3. Assessing statistical errors

More information

Theoretical Study on Alpha-Decay Chains of

Theoretical Study on Alpha-Decay Chains of Commun. Theor. Phys. 55 (2011) 495 500 Vol. 55, No. 3, March 15, 2011 Theoretical Study on Alpha-Decay Chains of 294 293 177117 and 176 117 SHENG Zong-Qiang (âñö) 1, and REN Zhong-Zhou ( ) 1,2,3 1 School

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I École Joliot-Curie 27 September - 3 October 2009 Lacanau - France Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I Marcella

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

Candidate multiple chiral doublet bands in A 100 mass region

Candidate multiple chiral doublet bands in A 100 mass region Candidate multiple chiral doublet bands in A 100 mass region Bin Qi (R) School of Space Science and Physics, Shandong University, Weihai Seventh International Symposium on Chiral Symmetry in Hadrons and

More information

Microscopic description of 258 Fm fission dynamic with pairing

Microscopic description of 258 Fm fission dynamic with pairing Microscopic description of 258 Fm fission dynamic with pairing Guillaume Scamps 1,Cédric Simenel 2 and Denis Lacroix 3 1 Department of Physics, Tohoku University, Sendai 980-8578, Japan 2 Department of

More information

Pre-scission shapes of fissioning nuclei

Pre-scission shapes of fissioning nuclei Pre-scission shapes of fissioning nuclei Micha l Warda Uniwersytet Marii Curie-Sk lodowskiej Lublin, Poland SSNET Workshop Gif-sur-Yvette, 6-11.11.216 Collaboration: J.L. Egido, UAM, Madrid W. Nazarewicz,

More information

Microscopic insight into nuclear structure properties of Dysprosium nuclei

Microscopic insight into nuclear structure properties of Dysprosium nuclei Journal of Biosphere, 1: 38-44, 2012 ISSN 2278 3342 Microscopic insight into nuclear structure properties of Dysprosium nuclei Suram Singh, Amita Dua, Chetan Sharma and Arun Bharti Abstract: Various nuclear

More information

Fission fragment mass distributions via prompt γ -ray spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 379 384 Fission fragment mass distributions via prompt γ -ray spectroscopy L S DANU, D C BISWAS, B K NAYAK and

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

and shape coexistence

and shape coexistence Aspects University of nuclear of Surrey isomerism and shape coexistence - historical introduction - energy storage - enhanced stability - high-k isomers - neutron-rich A 190 isomers Phil Walker Isomer

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Beyond-mean-field approach to low-lying spectra of Λ hypernuclei

Beyond-mean-field approach to low-lying spectra of Λ hypernuclei Beyond-mean-field approach to low-lying spectra of Λ hypernuclei Kouichi Hagino (Tohoku Univ.) Hua Mei (Tohoku Univ.) J.M. Yao (Tohoku U. / Southwest U.) T. Motoba (Osaka Electro-Commun. U. ) 1. Introduction

More information

Projected shell model for nuclear structure and weak interaction rates

Projected shell model for nuclear structure and weak interaction rates for nuclear structure and weak interaction rates Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China E-mail: sunyang@sjtu.edu.cn The knowledge on stellar weak interaction processes

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Nuclear shapes. The question of whether nuclei can rotate became an issue already in the very early days of nuclear spectroscopy

Nuclear shapes. The question of whether nuclei can rotate became an issue already in the very early days of nuclear spectroscopy Shapes Nuclear shapes The first evidence for a non-spherical nuclear shape came from the observation of a quadrupole component in the hyperfine structure of optical spectra The analysis showed that the

More information