Release from Active Learning / Model Selection Dilemma: Optimizing Sample Points and Models at the Same Time

Size: px
Start display at page:

Download "Release from Active Learning / Model Selection Dilemma: Optimizing Sample Points and Models at the Same Time"

Transcription

1 IJCNN2002 May 12-17, 2002 Release from Active Learning / Model Selection Dilemma: Optimizing Sample Points and Models at the Same Time Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan Masashi Sugiyama Hidemitsu Ogawa

2 Supervised Learning: 2 Function Approximation y 1 y 2 x1 x2 L L x M y M f (x) :Learning target f ˆ( x ) :Learned result { } M : Samples x y m, m m= 1 y = f ( ) + ε m x m m { } M m ˆ x From x m, y m = 1, find f ( ) so that it is as close to f (x) as possible

3 Active Learning 3 Target function Learned result x1 x2 x1 x2 Location of sample points AFFECTS heavily { } M m Determine x m = 1 for optimal generalization min J { xm} G J G : Generalization error

4 Model Selection 4 Target function Learned result Too simple Appropriate Too complex Choice of models AFFECTS heavily (Model refers to, e.g., order of polynomials) Select a model S for optimal generalization min J S C G C : Set of model candidates J G : Generalization error

5 Simultaneous Optimization of 5 Sample Points and Models So far, active learning and model selection have been studied thoroughly, but INDEPENDENTLY Simultaneously determine sample points { x } M m m 1 and a model for optimal generalization min JG { }, x m S C = S C : Set of model candidates J G : Generalization error

6 Active Learning / Model Selection 6 Dilemma We can NOT directly optimize sample points and models simultaneously by simply combining existing active learning and model selection methods Because Model should be fixed for active learning Sample points should be fixed for model selection

7 How to Dissolve the Dilemma 7 Model candidates : C = { S1, S2, S3} A set of sample points arg min J G for S1 arg min for S { x m } { x m } J G 2 { x m } (OPT) { x m } = arg min J { x for m } all G S C arg min { x m } J G for S 3 { } M m ( OPT ) 1. Find sample points x m that are = 1 commonly optimal for all models 2. Just perform model selection as usual

8 Is It Just Idealistic? 8 No! Commonly optimal sample points surely exist for trigonometric polynomial models Trigonometric polynomial model fˆ ( x) From here on, we assume Least mean squares (LMS) estimate Generalization measure: n ( θ + ) 2 p sin px θ2 p+ 1 px = θ1 + cos p= 1 J G = E fˆ( x) f ( x) dx π π of order E :Expectation over n noise

9 Theorem 9 For all trigonometric polynomial models that include learning target function, equidistance sampling gives the optimal generalization capability 1-dimensional input x1 x2 x3 L x M π 2π M π M :Number of samples

10 10 Multi-Dimensional Input Cases 2-dimensional input L x 15 x1 x2 L Sampling on regular grid is optimal

11 Computer Simulations 11 (Artificial, Realizable) Learning target function: f S 50 S n : Trigonometric polynomial model of order n Model candidates: C Generalization measure: Sampling schemes: Equidistance sampling Random sampling = { S0, S1, S2, K, S100} J G = fˆ( x) f ( x) dx π 1 2π π

12 12 Simulation Results (Large Samples) Number of samples = 500 Noise variance = 0.02 Noise variance = Horizontal: Vertical: Order of models Generalization error Averaged over 100 trials Equidistance sampling outperforms random sampling for all models!

13 13 Simulation Results (Small Samples) Number of samples = 230 Noise variance = 0.02 Noise variance = Horizontal: Order of models Vertical: Generalization error Averaged over 100 trials With small samples, equidistance sampling performs excellently for all models!

14 Computer Simulations 14 (Unrealizable) Interpolate 600 chaotic series (red) from noisy samples (blue) Model candidates: C = { S0, S1, S2, K, S40} S n : Trigonometric polynomial model of order n

15 Simulation Results 15 (Unrealizable) ( M, σ 2 ) = (300, 0.04) ( M, σ 2 ) = (100, 0.07) Horizontal: Vertical: Order of models Averaged over 100 trials Test error at all 600 points Equidistance sampling outperforms random sampling for all models!

16 16 Interpolated Chaotic Series After model selection with equidistance sampling, Selected model : S 13

17 Compared with True Series Compared with True Series We obtained good estimates from sparse data! 17

18 Conclusions 18 Active learning / model selection dilemma: Sample points and models can not be simultaneously optimized by simply combining existing active learning and model selection methods How to dissolve the dilemma: Find commonly optimal sample points for all models Is it realistic? Commonly optimal sample points surely exist for trigonometric polynomial models: equidistance sampling Is it practical? Computer simulations showed that the proposed method works excellently even in unrealizable cases

Designing Kernel Functions Using the Karhunen-Loève Expansion

Designing Kernel Functions Using the Karhunen-Loève Expansion July 7, 2004. Designing Kernel Functions Using the Karhunen-Loève Expansion 2 1 Fraunhofer FIRST, Germany Tokyo Institute of Technology, Japan 1,2 2 Masashi Sugiyama and Hidemitsu Ogawa Learning with Kernels

More information

Input-Dependent Estimation of Generalization Error under Covariate Shift

Input-Dependent Estimation of Generalization Error under Covariate Shift Statistics & Decisions, vol.23, no.4, pp.249 279, 25. 1 Input-Dependent Estimation of Generalization Error under Covariate Shift Masashi Sugiyama (sugi@cs.titech.ac.jp) Department of Computer Science,

More information

Theoretical and Experimental Evaluation of Subspace Information Criterion

Theoretical and Experimental Evaluation of Subspace Information Criterion Machine Learning, vol.48, no./2/3, pp.25 5, 22. (Special Issue on New Methods for Model Selection and Model Combination) Theoretical and Experimental Evaluation of Subspace Information Criterion Masashi

More information

A Conditional Expectation Approach to Model Selection and Active Learning under Covariate Shift

A Conditional Expectation Approach to Model Selection and Active Learning under Covariate Shift In J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence (Eds.), Dataset Shift in Machine Learning, Chapter 7, pp.107 130, MIT Press, Cambridge, MA, USA, 2009. 1 A Conditional Expectation

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

That s Hot: Predicting Daily Temperature for Different Locations

That s Hot: Predicting Daily Temperature for Different Locations That s Hot: Predicting Daily Temperature for Different Locations Alborz Bejnood, Max Chang, Edward Zhu Stanford University Computer Science 229: Machine Learning December 14, 2012 1 Abstract. The problem

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Active Policy Iteration: Efficient Exploration through Active Learning for Value Function Approximation in Reinforcement Learning

Active Policy Iteration: Efficient Exploration through Active Learning for Value Function Approximation in Reinforcement Learning Active Policy Iteration: fficient xploration through Active Learning for Value Function Approximation in Reinforcement Learning Takayuki Akiyama, Hirotaka Hachiya, and Masashi Sugiyama Department of Computer

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

An exponentially graded mesh for singularly perturbed problems

An exponentially graded mesh for singularly perturbed problems An exponentially graded mesh for singularly perturbed problems Christos Xenophontos Department of Mathematics and Statistics University of Cyprus joint work with P. Constantinou (UCY), S. Franz (TU Dresden)

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

7.4: Integration of rational functions

7.4: Integration of rational functions A rational function is a function of the form: f (x) = P(x) Q(x), where P(x) and Q(x) are polynomials in x. P(x) = a n x n + a n 1 x n 1 + + a 0. Q(x) = b m x m + b m 1 x m 1 + + b 0. How to express a

More information

The Subspace Information Criterion for Infinite Dimensional Hypothesis Spaces

The Subspace Information Criterion for Infinite Dimensional Hypothesis Spaces Journal of Machine Learning Research 3 (22) 323-359 Submitted 12/1; Revised 8/2; Published 11/2 The Subspace Information Criterion for Infinite Dimensional Hypothesis Spaces Masashi Sugiyama Department

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 2: Estimation Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Classical Estimation

More information

DIRECT AND INDIRECT LEAST SQUARES APPROXIMATING POLYNOMIALS FOR THE FIRST DERIVATIVE FUNCTION

DIRECT AND INDIRECT LEAST SQUARES APPROXIMATING POLYNOMIALS FOR THE FIRST DERIVATIVE FUNCTION Applied Probability Trust (27 October 2016) DIRECT AND INDIRECT LEAST SQUARES APPROXIMATING POLYNOMIALS FOR THE FIRST DERIVATIVE FUNCTION T. VAN HECKE, Ghent University Abstract Finite difference methods

More information

Post-exam 2 practice questions 18.05, Spring 2014

Post-exam 2 practice questions 18.05, Spring 2014 Post-exam 2 practice questions 18.05, Spring 2014 Note: This is a set of practice problems for the material that came after exam 2. In preparing for the final you should use the previous review materials,

More information

Sufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities

Sufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities JMLR: Workshop and Conference Proceedings 30:1 16, 2015 ACML 2015 Sufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities Hiroaki Sasaki Graduate School

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review. Fall, 2011 Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

y Xw 2 2 y Xw λ w 2 2

y Xw 2 2 y Xw λ w 2 2 CS 189 Introduction to Machine Learning Spring 2018 Note 4 1 MLE and MAP for Regression (Part I) So far, we ve explored two approaches of the regression framework, Ordinary Least Squares and Ridge Regression:

More information

sine wave fit algorithm

sine wave fit algorithm TECHNICAL REPORT IR-S3-SB-9 1 Properties of the IEEE-STD-57 four parameter sine wave fit algorithm Peter Händel, Senior Member, IEEE Abstract The IEEE Standard 57 (IEEE-STD-57) provides algorithms for

More information

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10). MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and

More information

Improving Importance Estimation in Pool-based Batch Active Learning for Approximate Linear Regression

Improving Importance Estimation in Pool-based Batch Active Learning for Approximate Linear Regression Neural Networks, vol.36, pp.73 82, 2012. 1 Improving Importance Estimation in Pool-based Batch Active Learning for Approximate Linear Regression Nozomi Kurihara and Masashi Sugiyama Department of Computer

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

An optimized filter to detect galaxy clusters in optical surveys

An optimized filter to detect galaxy clusters in optical surveys An optimized filter to detect galaxy clusters in optical surveys Alexander Gelsin a.gelsin@stud.uni-heidelberg.de Institute for Theoretical Astrophysic Heidelberg under supervision of Prof. Matthias Bartelmann

More information

Summer Assignment MAT 414: Calculus

Summer Assignment MAT 414: Calculus Summer Assignment MAT 414: Calculus Calculus - Math 414 Summer Assignment Due first day of school in September Name: 1. If f ( x) = x + 1, g( x) = 3x 5 and h( x) A. f ( a+ ) x+ 1, x 1 = then find: x+ 7,

More information

Sun Sensor Model. Center for Distributed Robotics Technical Report Number

Sun Sensor Model. Center for Distributed Robotics Technical Report Number Sun Sensor Model Nikolas Trawny and Stergios Roumeliotis Department of Computer Science & Engineering University of Minnesota Center for Distributed Robotics Technical Report Number -2005-00 January 2005

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

Approximating the Best Linear Unbiased Estimator of Non-Gaussian Signals with Gaussian Noise

Approximating the Best Linear Unbiased Estimator of Non-Gaussian Signals with Gaussian Noise IEICE Transactions on Information and Systems, vol.e91-d, no.5, pp.1577-1580, 2008. 1 Approximating the Best Linear Unbiased Estimator of Non-Gaussian Signals with Gaussian Noise Masashi Sugiyama (sugi@cs.titech.ac.jp)

More information

Functions, Graphs, Equations and Inequalities

Functions, Graphs, Equations and Inequalities CAEM DPP Learning Outcomes per Module Module Functions, Graphs, Equations and Inequalities Learning Outcomes 1. Functions, inverse functions and composite functions 1.1. concepts of function, domain and

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring /

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring / Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring 2015 http://ce.sharif.edu/courses/93-94/2/ce717-1 / Agenda Combining Classifiers Empirical view Theoretical

More information

f-divergence Estimation and Two-Sample Homogeneity Test under Semiparametric Density-Ratio Models

f-divergence Estimation and Two-Sample Homogeneity Test under Semiparametric Density-Ratio Models IEEE Transactions on Information Theory, vol.58, no.2, pp.708 720, 2012. 1 f-divergence Estimation and Two-Sample Homogeneity Test under Semiparametric Density-Ratio Models Takafumi Kanamori Nagoya University,

More information

Sparse Support Vector Machines by Kernel Discriminant Analysis

Sparse Support Vector Machines by Kernel Discriminant Analysis Sparse Support Vector Machines by Kernel Discriminant Analysis Kazuki Iwamura and Shigeo Abe Kobe University - Graduate School of Engineering Kobe, Japan Abstract. We discuss sparse support vector machines

More information

552 Final Exam Preparation: 3/12/14 9:39 AM Page 1 of 7

552 Final Exam Preparation: 3/12/14 9:39 AM Page 1 of 7 55 Final Exam Preparation: 3/1/1 9:39 AM Page 1 of 7 ATMS 55: Objective Analysis Final Preparation 1. A variable y that you wish to predict is correlated with x at.7, and with z at.. The two predictors

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Towards airborne seismic. Thomas Rapstine & Paul Sava

Towards airborne seismic. Thomas Rapstine & Paul Sava Towards airborne seismic Thomas Rapstine & Paul Sava Research goal measure a strong motion signal from an airborne platform 2 Proposed method Monitor ground motion from an UAV using cameras Unmanned Aerial

More information

MATHEMATICS. Higher 2 (Syllabus 9740)

MATHEMATICS. Higher 2 (Syllabus 9740) MATHEMATICS Higher (Syllabus 9740) CONTENTS Page AIMS ASSESSMENT OBJECTIVES (AO) USE OF GRAPHING CALCULATOR (GC) 3 LIST OF FORMULAE 3 INTEGRATION AND APPLICATION 3 SCHEME OF EXAMINATION PAPERS 3 CONTENT

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013 Learning Theory Ingo Steinwart University of Stuttgart September 4, 2013 Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 1 / 62 Basics Informal Introduction Informal Description

More information

Introduction to Supervised Learning. Performance Evaluation

Introduction to Supervised Learning. Performance Evaluation Introduction to Supervised Learning Performance Evaluation Marcelo S. Lauretto Escola de Artes, Ciências e Humanidades, Universidade de São Paulo marcelolauretto@usp.br Lima - Peru Performance Evaluation

More information

N13/5/MATHL/HP1/ENG/TZ0/XX MATHEMATICS HIGHER LEVEL PAPER 1. Candidate session number 0 0. Monday 11 November 2013 (afternoon)

N13/5/MATHL/HP1/ENG/TZ0/XX MATHEMATICS HIGHER LEVEL PAPER 1. Candidate session number 0 0. Monday 11 November 2013 (afternoon) 883720 MATHEMATICS HIGHER LEVEL PAPER Monday November 203 (afternoon) 2 hours Candidate session number 0 0 Examination code 8 8 3 7 2 0 INSTRUCTIONS TO CANDIDATES Write your session number in the boxes

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Extension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Approved scientific calculators and templates

More information

Approximation Theoretical Questions for SVMs

Approximation Theoretical Questions for SVMs Ingo Steinwart LA-UR 07-7056 October 20, 2007 Statistical Learning Theory: an Overview Support Vector Machines Informal Description of the Learning Goal X space of input samples Y space of labels, usually

More information

4. Numerical Quadrature. Where analytical abilities end... continued

4. Numerical Quadrature. Where analytical abilities end... continued 4. Numerical Quadrature Where analytical abilities end... continued Where analytical abilities end... continued, November 30, 22 1 4.3. Extrapolation Increasing the Order Using Linear Combinations Once

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. (a) 5

More information

Module 10 Polar Form of Complex Numbers

Module 10 Polar Form of Complex Numbers MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex

More information

Motion Models (cont) 1 2/15/2012

Motion Models (cont) 1 2/15/2012 Motion Models (cont 1 Odometry Motion Model the key to computing p( xt ut, xt 1 for the odometry motion model is to remember that the robot has an internal estimate of its pose θ x t 1 x y θ θ true poses

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

Issues and Techniques in Pattern Classification

Issues and Techniques in Pattern Classification Issues and Techniques in Pattern Classification Carlotta Domeniconi www.ise.gmu.edu/~carlotta Machine Learning Given a collection of data, a machine learner eplains the underlying process that generated

More information

Review session Midterm 1

Review session Midterm 1 AS.110.109: Calculus II (Eng) Review session Midterm 1 Yi Wang, Johns Hopkins University Fall 2018 7.1: Integration by parts Basic integration method: u-sub, integration table Integration By Parts formula

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

The Learning Problem and Regularization

The Learning Problem and Regularization 9.520 Class 02 February 2011 Computational Learning Statistical Learning Theory Learning is viewed as a generalization/inference problem from usually small sets of high dimensional, noisy data. Learning

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Evaluating Limits Analytically. By Tuesday J. Johnson

Evaluating Limits Analytically. By Tuesday J. Johnson Evaluating Limits Analytically By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Rationalizing numerators and/or denominators Trigonometric skills reviews

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

Generative adversarial networks

Generative adversarial networks 14-1: Generative adversarial networks Prof. J.C. Kao, UCLA Generative adversarial networks Why GANs? GAN intuition GAN equilibrium GAN implementation Practical considerations Much of these notes are based

More information

Chapter 8: Least squares (beginning of chapter)

Chapter 8: Least squares (beginning of chapter) Chapter 8: Least squares (beginning of chapter) Least Squares So far, we have been trying to determine an estimator which was unbiased and had minimum variance. Next we ll consider a class of estimators

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Aggregation of Spectral Density Estimators

Aggregation of Spectral Density Estimators Aggregation of Spectral Density Estimators Christopher Chang Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, USA; chrchang@alumni.caltech.edu Dimitris Politis Department

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

Generalized Cross Validation

Generalized Cross Validation 26 november 2009 Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion Plan 1 Generals 2 What

More information

COURSE Numerical integration of functions

COURSE Numerical integration of functions COURSE 6 3. Numerical integration of functions The need: for evaluating definite integrals of functions that has no explicit antiderivatives or whose antiderivatives are not easy to obtain. Let f : [a,

More information

Maximum and Minimum Values section 4.1

Maximum and Minimum Values section 4.1 Maximum and Minimum Values section 4.1 Definition. Consider a function f on its domain D. (i) We say that f has absolute maximum at a point x 0 D if for all x D we have f(x) f(x 0 ). (ii) We say that f

More information

Lexington High School Mathematics Department Honors Pre-Calculus Final Exam 2002

Lexington High School Mathematics Department Honors Pre-Calculus Final Exam 2002 Name Teacher (circle): Roos/Andersen Kelly Kresser Class block (circle): A B C D E F G H Lexington High School Mathematics Department Honors Pre-Calculus Final Exam 00 This is a 90-minute exam, but you

More information

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x AFM Midterm Review I Fall 06. Determine if the relation is a function.,6,,, 5,. Determine the domain of the function 7 h ( ). 4. Sketch the graph of f 4. Sketch the graph of f 5. Sketch the graph of f

More information

ME FINITE ELEMENT ANALYSIS FORMULAS

ME FINITE ELEMENT ANALYSIS FORMULAS ME 2353 - FINITE ELEMENT ANALYSIS FORMULAS UNIT I FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS 01. Global Equation for Force Vector, {F} = [K] {u} {F} = Global Force Vector [K] = Global Stiffness

More information

Chapter 4 Neural Networks in System Identification

Chapter 4 Neural Networks in System Identification Chapter 4 Neural Networks in System Identification Gábor HORVÁTH Department of Measurement and Information Systems Budapest University of Technology and Economics Magyar tudósok körútja 2, 52 Budapest,

More information

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes LESSON SIX - Trigonometric Identities I Example Understanding Trigonometric Identities. a) Why are trigonometric identities considered to be a special type of trigonometric equation? Trigonometric Identities

More information

Covariance Matrix Simplification For Efficient Uncertainty Management

Covariance Matrix Simplification For Efficient Uncertainty Management PASEO MaxEnt 2007 Covariance Matrix Simplification For Efficient Uncertainty Management André Jalobeanu, Jorge A. Gutiérrez PASEO Research Group LSIIT (CNRS/ Univ. Strasbourg) - Illkirch, France *part

More information

Applied Numerical Analysis Homework #3

Applied Numerical Analysis Homework #3 Applied Numerical Analysis Homework #3 Interpolation: Splines, Multiple dimensions, Radial Bases, Least-Squares Splines Question Consider a cubic spline interpolation of a set of data points, and derivatives

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

Scalable kernel methods and their use in black-box optimization

Scalable kernel methods and their use in black-box optimization with derivatives Scalable kernel methods and their use in black-box optimization David Eriksson Center for Applied Mathematics Cornell University dme65@cornell.edu November 9, 2018 1 2 3 4 1/37 with derivatives

More information

XVI. Objective mapping

XVI. Objective mapping SIO 211B, Rudnick, adapted from Davis 1 XVI. Objective mapping An objective map is the minimum mean-square error estimate of a continuous function of a variable, given discrete data. The interpolation

More information

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f Warm-Up: Solve sinx = 2 for x 0,2π 5 (a) graphically (approximate to three decimal places) y (b) algebraically BY HAND EXACTLY (do NOT approximate except to verify your solutions) x x 0,2π, xscl = π 6,y,,

More information

Time Series Classification

Time Series Classification Distance Measures Classifiers DTW vs. ED Further Work Questions August 31, 2017 Distance Measures Classifiers DTW vs. ED Further Work Questions Outline 1 2 Distance Measures 3 Classifiers 4 DTW vs. ED

More information

PENRITH HIGH SCHOOL MATHEMATICS EXTENSION HSC Trial

PENRITH HIGH SCHOOL MATHEMATICS EXTENSION HSC Trial PENRITH HIGH SCHOOL MATHEMATICS EXTENSION 013 Assessor: Mr Ferguson General Instructions: HSC Trial Total marks 100 Reading time 5 minutes Working time 3 hours Write using black or blue pen. Black pen

More information

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters Journal of Modern Applied Statistical Methods Volume 13 Issue 1 Article 26 5-1-2014 Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters Yohei Kawasaki Tokyo University

More information

27 2 x 1 = Solve the equation. Check your solution. 5. Solve the equation. Check your solution. 7. Solve the equation. Check your solution.

27 2 x 1 = Solve the equation. Check your solution. 5. Solve the equation. Check your solution. 7. Solve the equation. Check your solution. Algebra 3-4 Name: 2 nd Semester Exam Review Period: Answer each of the following questions. Some questions may require additional paper in order to show your work. These questions are intended to be a

More information

Subspace Information Criterion for Non-Quadratic Regularizers Model Selection for Sparse Regressors

Subspace Information Criterion for Non-Quadratic Regularizers Model Selection for Sparse Regressors IEEE Transactions on Neural Networks, vol.13, no.1, pp.7 8, 22. 1 Subspace Information Criterion for Non-Quadratic Regularizers Model Selection for Sparse Regressors Koji Tsuda +, Masashi Sugiyama and

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

COMPSTAT2010 in Paris. Hiroki Motogaito. Masashi Goto

COMPSTAT2010 in Paris. Hiroki Motogaito. Masashi Goto COMPSTAT2010 in Paris Ensembled Multivariate Adaptive Regression Splines with Nonnegative Garrote Estimator t Hiroki Motogaito Osaka University Masashi Goto Biostatistical Research Association, NPO. JAPAN

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Metric-based classifiers. Nuno Vasconcelos UCSD

Metric-based classifiers. Nuno Vasconcelos UCSD Metric-based classifiers Nuno Vasconcelos UCSD Statistical learning goal: given a function f. y f and a collection of eample data-points, learn what the function f. is. this is called training. two major

More information

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise Makoto Yamada and Masashi Sugiyama Department of Computer Science, Tokyo Institute of Technology

More information

Math 578: Assignment 2

Math 578: Assignment 2 Math 578: Assignment 2 13. Determine whether the natural cubic spline that interpolates the table is or is not the x 0 1 2 3 y 1 1 0 10 function 1 + x x 3 x [0, 1] f(x) = 1 2(x 1) 3(x 1) 2 + 4(x 1) 3 x

More information

Are atmospheric-model tendency errors perceivable from routine observations?

Are atmospheric-model tendency errors perceivable from routine observations? 1 Working Group on Data Assimilation 3 Are atmospheric-model tendency errors perceivable from routine observations? Michael Tsyrulnikov 1 and Vadim Gorin 2 1: HydroMetCenter of Russia 2: Massachusetts

More information

The Ballistic Pendulum

The Ballistic Pendulum The Ballistic Pendulum Physics 110 Laboratory Angle indicator Vertical upright θ R cm R b Trigger String cm Projectile Launcher Ballistic Pendulum Base m v cm after h Ramrod Steel ball before In this experiment

More information

Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators

Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators Andrea Mambrini 1 University of Birmingham, Birmingham UK 6th June 2013 1 / 33 Andrea Mambrini GSGP: theory-laden

More information

IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice

IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice 1. We have seen that the TI-83 calculator random number generator X = rand defines a uniformly-distributed random

More information