TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Size: px
Start display at page:

Download "TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode"

Transcription

1 Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode C G E Automotive AEC Q101 qualified Designed for DC/AC converters for Automotive Application Very low V CE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 C Short circuit withstand time 5 s TrenchStop and Fieldstop technology for 600 V applications offers : very tight parameter distribution high ruggedness, temperature stable behavior very high switching speed Positive temperature coefficient in V CE(sat) Low EMI Low Gate Charge Green Package Very soft, fast recovery antiparallel Emitter Controlled HE diode PGTO2473 Type V CE I C V CE(sat),Tj=25 C T j,max Marking Package 600V 1.5V 175 C K20T6 PGTO2473 Maximum Ratings Parameter Symbol Value Unit Collectoremitter voltage, T j 25 C V C E 600 V DC collector current, limited by T jmax T C = 25 C T C = 100 C 40 I C 20 Pulsed collector current, t p limited by T jmax I C p ul s 60 Turn off safe operating area, V CE 600V, T j 175 C, t p 1µs 60 Diode forward current, limited by T jmax T C = 25 C T C = 100 C I F Diode pulsed current, t p limited by T jmax I F p ul s 60 Gateemitter voltage V G E 20 V Short circuit withstand time 1) V GE = 15V, V CC 400V, T j 150 C t S C 5 s Power dissipation T C = 25 C P t o t 166 W Operating junction temperature T j Storage temperature T s t g Soldering temperature (wavesoldering only allowed at leads, 1.6mm (0.063 in.) from case for 10s) T s o l d 260 A C 1) Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Rev

2 Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic IGBT thermal resistance, junction case Diode thermal resistance, junction case Thermal resistance, junction ambient R t h J C 0.9 K/W R t h J C D 1.5 R t h J A 40 Electrical Characteristic, at T j = 25 C, unless otherwise specified Parameter Symbol Conditions Static Characteristic Value min. Typ. max. Collectoremitter breakdown voltage V ( B R ) C E S V G E =0V, I C =0.2mA 600 V Collectoremitter saturation voltage V C E ( s a t ) V G E = 15V, I C = T j =25 C T j =175 C Diode forward voltage V F V G E =0V, I F = T j =25 C T j =175 C Gateemitter threshold voltage V G E ( t h) I C =290µA,V C E =V G E Zero gate voltage collector current I C E S V C E =600V, V G E =0V T j =25 C T j =175 C Gateemitter leakage current I G E S V C E =0V,V G E =20V 100 na Transconductance g f s V C E =20V, I C = 11 S Integrated gate resistor R G i n t Ω Unit µa Dynamic Characteristic Input capacitance C i s s V C E =25V, 1100 pf Output capacitance C o s s V G E =0V, 71 Reverse transfer capacitance C r s s f=1mhz 32 Gate charge Q G a t e V C C =480V, I C = Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current Allowed number of short circuits: <1000; time between short circuits: >1s. L E I C ( S C ) V G E =15V TO TO22031 V G E =15V,t S C 5 s V C C = 400V, T j 150 C 120 nc 13 7 nh A Power Semiconductors 2 Rev

3 Switching Characteristic, Inductive Load, at T j =25 C Parameter Symbol Conditions IGBT Characteristic Value min. Typ. max. Turnon delay time t d ( o n ) T j=25 C, 18 ns Rise time t r V C C=400V,I C=, V G E=0/15V, 14 Turnoff delay time t d ( o f f ) R G=12, L =131nH, 199 Fall time t f C =31pF 42 Turnon energy E o n L, C from Fig. E Energy losses include 0.31 mj Turnoff energy E o f f tail and diode reverse 0.46 recovery. Total switching energy E t s 0.77 AntiParallel Diode Characteristic Diode reverse recovery time t r r T j =25 C, Diode reverse recovery charge Q r r V R =400V, I F =, 0.31 µc Diode peak reverse recovery current I r r m di F /dt=88/ s 13.3 A Unit 41 ns Diode peak rate of fall of reverse di r r /dt 711 A/ s recovery current during t b Switching Characteristic, Inductive Load, at T j =175 C Parameter Symbol Conditions IGBT Characteristic Value min. Typ. max. Turnon delay time t d ( o n ) T j=175 C, 18 ns Rise time t r V C C=400V,I C=, V G E=0/15V, 18 Turnoff delay time t d ( o f f ) R G=12, L =131nH, 223 Fall time t f C =31pF 76 Turnon energy E o n L, C from Fig. E Energy losses include 0.51 mj Turnoff energy E o f f tail and diode reverse 0.64 recovery. Total switching energy E t s 1.15 AntiParallel Diode Characteristic Diode reverse recovery time t r r T j =175 C Diode reverse recovery charge Q r r V R =400V, I F =, 1.46 µc Diode peak reverse recovery current I r r m di F /dt=88/ s 18.9 A Unit 176 ns Diode peak rate of fall of reverse di r r /dt 467 A/ s recovery current during t b Power Semiconductors 3 Rev

4 t p =2µs 6 10µs IC, COLLECTOR CURRENT I c I c T C =80 C T C =110 C IC, COLLECTOR CURRENT 1A DC 50µs 1ms 10ms 10Hz 100Hz 1kHz 10kHz 100kHz 0.1A 1V 10V 100V 1000V f, SWITCHING FREQUENCY V CE, COLLECTOREMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency (T j 175 C, D = 0.5, V CE = 400V, V GE = 0/15V, R G = 12 ) Figure 2. Safe operating area (D = 0, T C = 25 C, T j 175 C; V GE =0/15V) 160W 140W 3 Ptot, POWER DISSIPATION 120W 100W 80W 60W 40W IC, COLLECTOR CURRENT 25A 15A 20W 5A 0W 25 C 50 C 75 C 100 C 125 C 150 C 25 C 75 C 125 C T C, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (T j 175 C) T C, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (V GE 15V, T j 175 C) Power Semiconductors 4 Rev

5 5 5 IC, COLLECTOR CURRENT 4 3 V GE =20V 15V 13V 11V 9V 7V IC, COLLECTOR CURRENT 4 3 V GE =20V 15V 13V 11V 9V 7V 0V 1V 2V 3V V CE, COLLECTOREMITTER VOLTAGE Figure 5. Typical output characteristic (T j = 25 C) 0V 1V 2V 3V 4V V CE, COLLECTOREMITTER VOLTAGE Figure 6. Typical output characteristic (T j = 175 C) IC, COLLECTOR CURRENT 35A 3 25A 15A 5A =175 C 25 C 0V 2V 4V 6V 8V VCE(sat), COLLECTOREMITT SATURATION VOLTAGE 2.5V 2.0V 1.5V 1.0V 0.5V I C =4 I C = I C = 0.0V 0 C 50 C 100 C 150 C V GE, GATEEMITTER VOLTAGE Figure 7. Typical transfer characteristic (V CE =10V), JUNCTION TEMPERATURE Figure 8. Typical collectoremitter saturation voltage as a function of junction temperature (V GE = 15V) Power Semiconductors 5 Rev

6 t d(off) t d(off) t, SWITCHING TIMES 100ns 10ns t d(on) t f t, SWITCHING TIMES 100ns t f t d(on) t r 1ns 5A 15A 25A 3 35A 10ns t r I C, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, =175 C, V CE = 400V, V GE = 0/15V, R G = 12Ω, R G, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, = 175 C, V CE = 400V, V GE = 0/15V, I C =, 7V t, SWITCHING TIMES 100ns t d(on) 10ns 25 C 50 C 75 C 100 C 125 C 150 C t r t d(off) t f VGE(th), GATEEMITT TRSHOLD VOLTAGE 6V 5V 4V 3V 2V 1V min. typ. max., JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/15V, I C =, R G =12Ω, 0V 50 C 0 C 50 C 100 C 150 C, JUNCTION TEMPERATURE Figure 12. Gateemitter threshold voltage as a function of junction temperature (I C = 0.29mA) Power Semiconductors 6 Rev

7 E, SWITCHING ENERGY LOSSES ) E 2.4mJ on and E ts include losses E ts due to diode recovery 2.0mJ 1.6mJ 1.2mJ 0.8mJ E off 0.4mJ E on 0.0mJ 5A 15A 25A 3 35A E, SWITCHING ENERGY LOSSES 2.4mJ 2.0mJ 1.6mJ 1.2mJ 0.8mJ 0.4mJ ) E on and E ts include losses due to diode recovery E on 0.0mJ E off E ts I C, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, = 175 C, V CE = 400V, V GE = 0/15V, R G = 12Ω, R G, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, = 175 C, V CE = 400V, V GE = 0/15V, I C =, E, SWITCHING ENERGY LOSSES 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ E off E on ) E on and E ts include losses due to diode recovery E ts E, SWITCHING ENERGY LOSSES 2.0mJ 1.8mJ 1.6mJ 1.4mJ 1.2mJ 1.0mJ 0.8mJ 0.6mJ 0.4mJ ) E on and E ts include losses due to diode recovery E ts E on E off 0.2mJ 0.0mJ 25 C 50 C 75 C 100 C 125 C 150 C, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/15V, I C =, R G = 12Ω, 0.0mJ 300V 350V 400V 450V 500V 550V V CE, COLLECTOREMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, = 175 C, V GE = 0/15V, I C =, R G = 12Ω, Power Semiconductors 7 Rev

8 1nF C iss VGE, GATEEMITTER VOLTAGE 15V 10V 5V 120V 480V c, CAPACITANCE 100pF C oss C rss 0V 0nC 30nC 60nC 90nC 120nC Q GE, GATE CHARGE Figure 17. Typical gate charge (I C =20 A) 10pF 0V 10V 20V 30V 40V V CE, COLLECTOREMITTER VOLTAGE Figure 18. Typical capacitance as a function of collectoremitter voltage (V GE =0V, f = 1 MHz) 12µs IC(sc), short circuit COLLECTOR CURRENT V 14V 16V 18V tsc, SHORT CIRCUIT WITHSTAND TIME 10µs 8µs 6µs 4µs 2µs 0µs 10V 11V 12V 13V 14V V GE, GATEEMITTETR VOLTAGE Figure 19. Typical short circuit collector current as a function of gateemitter voltage (V CE 400V, T j 150 C) V GE, GATEEMITETR VOLTAGE Figure 20. Short circuit withstand time as a function of gateemitter voltage (V CE =400V, start at =25 C, max <150 C) Power Semiconductors 8 Rev

9 ZthJC, TRANSIENT THERMAL RESISTANCE 10 1 K/W 10 2 K/W D= single pulse R, ( K / W ), ( s ) R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 ZthJC, TRANSIENT THERMAL RESISTANCE 10 0 K/W D= K/W single pulse R, ( K / W ), ( s ) R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 1µs 10µs 100µs 1ms 10ms 100ms t P, PULSE WIDTH Figure 21. IGBT transient thermal resistance (D = t p / T) 10 2 K/W 1µs 10µs 100µs 1ms 10ms 100ms t P, PULSE WIDTH Figure 22. Diode transient thermal impedance as a function of pulse width (D=t P /T) 1.8µC 250ns 1.6µC =175 C trr, REVERSE RECOVERY TIME 200ns 150ns 100ns 50ns =175 C =25 C Qrr, REVERSE RECOVERY CHARGE 1.4µC 1.2µC 1.0µC 0.8µC 0.6µC 0.4µC 0.2µC =25 C 0ns 60/µs 90/µs 120/µs di F /dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery time as a function of diode current slope (V R =400V, I F =, 60/µs 90/µs 120/µs di F /dt, DIODE CURRENT SLOPE Figure 24. Typical reverse recovery charge as a function of diode current slope (V R = 400V, I F =, Power Semiconductors 9 Rev

10 24A =175 C 75/µs =25 C Irr, REVERSE RECOVERY CURRENT 16A 12A 8A 4A =25 C dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT 60/µs 45/µs 30/µs 15/µs =175 C 60/µs 90/µs 120/µs /µs 60/µs 90/µs 120/µs di F /dt, DIODE CURRENT SLOPE Figure 25. Typical reverse recovery current as a function of diode current slope (V R = 400V, I F =, di F /dt, DIODE CURRENT SLOPE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V R =400V, I F =, 5 =25 C 2.0V I F =4 175 C IF, FORWARD CURRENT 4 3 VF, FORWARD VOLTAGE 1.5V 1.0V 0.5V 0V 1V 2V 0.0V 0 C 50 C 100 C 150 C V F, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature Power Semiconductors 10 Rev

11 Power Semiconductors 11 Rev

12 i,v di F /dt t =t Q =Q + t r r S F + Q r r S F t r r I F t S t F Q S Q F 10% I r r m t I r r m di 90% I r r m r r /dt V R Figure C. Definition of diodes switching characteristics T (t) j 1 r1 2 r 2 r n n p(t) r r 1 2 n r Figure A. Definition of switching times T C Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Power Semiconductors 12 Rev

13 Revision History Revision: , Rev. 2.2 Previous Revision Revision Date Subjects (major changes since last revision) Preliminary datasheet Release of final datasheet 2.2 Update minor changes Published by Infineon Technologies AG München, Germany 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in lifesupport devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 13 Rev

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode Very low V CE(sat) 1.5V (typ.) Maximum Junction Temperature 175 C Short

More information

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode Features: Very low V CE(sat) 1.5V (typ.) Maximum Junction Temperature 175

More information

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode Best in class TO247 Short circuit withstand time 10 s Designed for : Frequency

More information

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode Features: Very low V CE(sat) 1.5V (typ.) Maximum Junction Temperature 175

More information

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode C G E Features: Automotive AEC Q101 ualified Designed for DC/AC converters

More information

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time

More information

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time

More information

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time

More information

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time

More information

TrenchStop Series. P t o t 270 W

TrenchStop Series. P t o t 270 W Low Loss IGBT in TrenchStop and Fieldstop technology C Short circuit withstand time 10 s Designed for : Frequency Converters Uninterrupted Power Supply TrenchStop and Fieldstop technology for 1200 V applications

More information

IKW40N120T2 TrenchStop 2 nd Generation Series

IKW40N120T2 TrenchStop 2 nd Generation Series Low Loss DuoPack : IGBT in 2 nd generation TrenchStop with soft, fast recovery antiparallel Emitter Controlled Diode Best in class TO247 Short circuit withstand time 10 s Designed for : Frequency Converters

More information

IGW25T120. TrenchStop Series

IGW25T120. TrenchStop Series Low Loss IGBT in TrenchStop and Fieldstop technology Short circuit withstand time 10µs Designed for : Frequency Converters Uninterrupted Power Supply TrenchStop and Fieldstop technology for 1200 V applications

More information

TrenchStop Series I C

TrenchStop Series I C Low Loss IGBT in TrenchStop and Fieldstop technology Very low V CE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 C Short circuit withstand time 5µs Designed for : Freuency Converters Uninterrupted

More information

IGW15T120. TrenchStop Series

IGW15T120. TrenchStop Series Low Loss IGBT in TrenchStop and Fieldstop technology Approx. 1.0V reduced V CE(sat) compared to BUP313 Short circuit withstand time 10µs Designed for : Frequency Converters Uninterrupted Power Supply TrenchStop

More information

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode Fast IGBT in NPTtechnology with soft, fast recovery antiparallel EmCon diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 µs Designed

More information

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

SGP20N60 SGW20N60. Fast IGBT in NPT-technology Fast IGBT in NPTtechnology 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 µs Designed for: Motor controls Inverter NPTTechnology for

More information

PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62

PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62 Fast IGBT in NPTtechnology 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 µs Designed for: Motor controls Inverter NPTTechnology for

More information

Soft Switching Series

Soft Switching Series Reverse Conducting IGBT with monolithic body diode Features: 1.5V Forward voltage of monolithic body Diode Full Current Rating of monolithic body Diode Specified for T Jmax = 175 C Trench and Fieldstop

More information

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current Reverse Conducting IGBT with monolithic body diode Features: 1.5V typical saturation voltage of IGBT Trench and Fieldstop technology for 900 V applications offers : very tight parameter distribution high

More information

SKP10N60 SKB10N60, SKW10N60

SKP10N60 SKB10N60, SKW10N60 Fast SIGBT in NPTtechnology with soft, fast recovery antiparallel EmCon diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 µs Designed

More information

TRENCHSTOP Series. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology. Maximum Ratings Parameter Symbol Value Unit.

TRENCHSTOP Series. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology. Maximum Ratings Parameter Symbol Value Unit. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology Features: Very low V CE(sat) 1.5V (typ.) Maximum Junction Temperature 175 C Short circuit withstand time 5 s Designed for : Freuency Converters

More information

Soft Switching Series I C I F I FSM

Soft Switching Series I C I F I FSM Reverse Conducting IGBT with monolithic body diode Features: Powerful monolithic Body Diode with very low forward voltage Body diode clamps negative voltages TrenchStop and Fieldstop technology for 1200

More information

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldsto technology with soft, fast recovery antiarallel Emitter Controlled HE diode Features Very low V CE(sat) 1.5V (ty.) Maximum Junction Temerature 175 C Short

More information

SGP30N60HS SGW30N60HS

SGP30N60HS SGW30N60HS High Speed IGBT in NPT-technology 30% lower E off compared to previous generation Short circuit withstand time 10 µs Designed for operation above 30 khz G C E NPT-Technology for 600V applications offers:

More information

IGP03N120H2 IGW03N120H2

IGP03N120H2 IGW03N120H2 HighSpeed 2Technology Designed for: SMPS Lamp Ballast ZVSConverter optimised for softswitching / resonant topologies G C E 2 nd generation HighSpeedTechnology for 1200V applications offers: loss reduction

More information

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07 Fast IGBT in NPT-technology Lower E off compared to previous generation Short circuit withstand time 10 µs Designed for: - Motor controls - Inverter - SMPS NPT-Technology offers: - very tight parameter

More information

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40. Fast IGBT in NPT-technology 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 µs Designed for: - Motor controls - Inverter G C E NPT-Technology

More information

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62. Fast IGBT in NPT-technology 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 µs Designed for: - Motor controls - Inverter NPT-Technology

More information

IGD06N60T q. IGBT in TRENCHSTOP and Fieldstop technology. TRENCHSTOP Series. IFAG IPC TD VLS 1 Rev. 2.2,

IGD06N60T q. IGBT in TRENCHSTOP and Fieldstop technology. TRENCHSTOP Series. IFAG IPC TD VLS 1 Rev. 2.2, Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology Features: Very low V CE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 C Short circuit withstand time 5 s TRENCHSTOP and Fieldstop technology

More information

I C P tot 138 W

I C P tot 138 W High Speed IGBT in NPT-technology 30% lower E off compared to previous generation C Short circuit withstand time 10 µs Designed for operation above 30 khz G E NPT-Technology for 600V applications offers:

More information

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3. HighSpeed 2-Technology Designed for frequency inverters for washing machines, fans, pumps and vacuum cleaners 2 nd generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant

More information

SGP20N60, SGB20N60, SGW20N60

SGP20N60, SGB20N60, SGW20N60 SGP2N6, SGB2N6, SGW2N6 Fast SIGBT in NPTTechnology 75 % lower E off compared to previous generation combined with low conduction losses Short circuit withstand time µs Designed for moderate and high frequency

More information

SGP30N60, SGB30N60, SGW30N60

SGP30N60, SGB30N60, SGW30N60 SGPN6, SGBN6, SGWN6 Fast SIGBT in NPTTechnology 75 % lower E off compared to previous generation combined with low conduction losses Short circuit withstand time µs Designed for moderate and high frequency

More information

IDP30E120. Fast Switching Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C

IDP30E120. Fast Switching Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C Fast Switching Diode Features 1200 V diode technology Fast recovery Soft switching Low reverse recovery charge Low forward voltage Product Summary V RRM 1200 V I F 30 V F 1.65 V T jmax 150 C PGTO2202 Easy

More information

BSS123. Rev K/W. R thja

BSS123. Rev K/W. R thja Thermal Characteristics Parameter Symbol Values Unit min. typ. max. Characteristics Thermal resistance, junction - ambient at minimum footprint R thj - - 35 K/W Electrical Characteristics, at T j = 25

More information

SPP08P06P H. SIPMOS Power-Transistor V DS -60 V I D T C = 25 C T C = 100 C. I D puls E AS I D = -8.8 A, V DD = -25 V, R GS = 25 W

SPP08P06P H. SIPMOS Power-Transistor V DS -60 V I D T C = 25 C T C = 100 C. I D puls E AS I D = -8.8 A, V DD = -25 V, R GS = 25 W H SIPMOS PowerTransistor Features PChannel Enhancement mode valanche rated dv/dt rated 175 C operating temperature Product Summary Drain source voltage V DS 6 V Drainsource onstate resistance R DS(on).3

More information

IDP45E60. Fast Switching Diode. Product Summary V RRM 600 V I F 45 A V F 1.5 V T jmax 175 C. Features 600V Emitter Controlled technology

IDP45E60. Fast Switching Diode. Product Summary V RRM 600 V I F 45 A V F 1.5 V T jmax 175 C. Features 600V Emitter Controlled technology Fast Switching Diode Features 600V Emitter Controlled technology Fast recovery Soft switching Low reverse recovery charge Low forward voltage Easy paralleling Pb-free lead plating; RoHS compliant Halogen-free

More information

TRENCHSTOP TM RC-Series for hard switching applications. IGBT chip with monolithically integrated diode in packages offering space saving advantage

TRENCHSTOP TM RC-Series for hard switching applications. IGBT chip with monolithically integrated diode in packages offering space saving advantage IGBT chip with monolithically integrated diode in packages offering space saving advantage Features: TRENCHSTOP TM Reverse Conducting (RC) technology for 600V applications offering: Optimised V CEsat and

More information

Product Summary V RRM 600 V I F 23 A V F 1.5 V T jmax 175 C 600V diode technology

Product Summary V RRM 600 V I F 23 A V F 1.5 V T jmax 175 C 600V diode technology Fast Switching Diode Features Product Summary V RRM 600 V I F 23 V F 1.5 V T jmax 175 C 600V diode technology Fast recovery Soft switching Low reverse recovery charge Low forward voltage Easy paralleling

More information

OptiMOS -5 Power-Transistor

OptiMOS -5 Power-Transistor IPCN4S5L-R9 OptiMOS -5 Power-Transistor Product Summary V DS 4 V R DS(on),max.9 mw Features OptiMOS - power MOSFET for automotive applications I D A PG-TDSON-8-34 N-channel - Enhancement mode - Logic Level

More information

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor SIPMOS Small-Signal-Transistor Features N-channel Enhancement mode Logic level Product Summary V DS 6 V R DS(on),max 3.5 Ω I D.28 A dv /dt rated Pb-free lead-plating; RoHS compliant Qualified according

More information

SPP20N60S5. Cool MOS Power Transistor V DS 600 V

SPP20N60S5. Cool MOS Power Transistor V DS 600 V SPPN6S Cool MOS Power Transistor V DS 6 V Feature New revolutionary high voltage technology Worldwide best R DS(on) in TO Ultra low gate charge Periodic avalanche rated Extreme dv/dt rated Ultra low effective

More information

Product Summary Drain source voltage. Maximum Ratings,at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

Product Summary Drain source voltage. Maximum Ratings,at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current SIPMOS SmallSignalTransistor Features PChannel Enhancement mode valanche rated Logic Level dv/dt rated Product Summary Drain source voltage V DS 6 V Drainsource onstate resistance R DS(on) 2 W Continuous

More information

PG-TO220FP P G-TO262 PG-TO220. Maximum Ratings Parameter Symbol Value Unit

PG-TO220FP P G-TO262 PG-TO220. Maximum Ratings Parameter Symbol Value Unit SPP21N5C3 SPI21N5C3, SP21N5C3 Cool MOS Power Transistor V DS @ T jmax 56 V Feature R DS(on).19 Ω New revolutionary high voltage technology Worldwide best R DS(on) in TO 22 I D 21 Ultra low gate charge

More information

BSS670S2L. OptiMOS Buck converter series. Avalanche rated 1) Qualified according to AEC Q101 Halogen-free according to IEC

BSS670S2L. OptiMOS Buck converter series. Avalanche rated 1) Qualified according to AEC Q101 Halogen-free according to IEC BSS67S2L OptiMOS Buck converter series Feature NChannel Logic Level valanche rated ) Enhancement mode Qualified according to EC Q Halogenfree according to IEC624922 Product Summary V DS 55 V R DS(on) 65

More information

Product Summary Drain source voltage V DS -60 V Drain-source on-state resistance R DS(on) 8 W Continuous drain current I D A

Product Summary Drain source voltage V DS -60 V Drain-source on-state resistance R DS(on) 8 W Continuous drain current I D A SIPMOS SmallSignalTransistor Features PChannel Enhancement mode valanche rated Logic Level dv/dt rated Product Summary Drain source voltage V DS 6 V Drainsource onstate resistance R DS(on) 8 W Continuous

More information

CoolMOS Power Transistor

CoolMOS Power Transistor CoolMOS Power Transistor Features Lowest figure-of-merit R ON xq g Ultra low gate charge Extreme dv/dt rated Product Summary V DS @ T j,max 65 V R DS(on),max.199 Ω Q g,typ 32 nc High peak current capability

More information

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor Type BSS225 SIPMOS Small-Signal-Transistor Feature n-channel enhancement mode Logic level Product Summary 1) V DS 6 V R DS(on),max 45 Ω I D.9 A dv /dt rated Qualified according to AEC Q11 Halogen free

More information

OptiMOS -P2 Power-Transistor

OptiMOS -P2 Power-Transistor Type IPD5P4P4-13 OptiMOS -P2 Power-Transistor Package Marking Features P-channel - Normal Level - Enhancement mode AEC qualified MSL1 up to 26 C peak reflow Product Summary V DS -4 V R DS(on) 12.6 mw I

More information

OptiMOS -5 Power-Transistor

OptiMOS -5 Power-Transistor OptiMOS -5 Power-Transistor Product Summary V DS 4 V R DS(on),max mw Features OptiMOS - power MOSFET for automotive applications I D A PG-HSOF-5 N-channel - Enhancement mode - Normal Level AEC Q qualified

More information

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor CoolMOS TM Power Transistor Features New revolutionary high voltage technology Extreme dv/dt rated High peak current capability Qualified according to JEDEC 1) for target applications Pb-free lead plating;

More information

CoolMOS Power Transistor

CoolMOS Power Transistor CoolMOS Power Transistor Features Lowest figure-of-merit R ON x Q g Extreme dv/dt rated High peak current capability Product Summary V DS @ T J =25 C 9 V R DS(on),max @ T J = 25 C.5 Ω Q g,typ 68 nc Qualified

More information

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev Diode Silicon Carbide Schottky Diode IDH05G120C5 Final Datasheet Rev. 2.0 20150828 Industrial Power Control thinq! TM SiC Schottky Diode Features: Revolutionary semiconductor material Silicon Carbide No

More information

Product Summary Drain source voltage. Lead free Yes I D. I D puls -320 E AS. P tot 340 W

Product Summary Drain source voltage. Lead free Yes I D. I D puls -320 E AS. P tot 340 W SPB8P6P G SIPMOS PowerTransistor Features PChannel Enhancement mode valanche rated dv/dt rated 175 C operating temperature Pbfree lead plating: RoHS compliant Halogenfree according to IEC61249221 Qualified

More information

14.5 Pulsed drain current. 200 Gate source voltage V GS ± 20 V ESD-Sensitivity HBM as per MIL-STD 883 Class 1 Power dissipation

14.5 Pulsed drain current. 200 Gate source voltage V GS ± 20 V ESD-Sensitivity HBM as per MIL-STD 883 Class 1 Power dissipation SIPMOS Power Transistor BUZ 31 H N channel Enhancement mode valanche-rated Normal Level Pin 1 Pin 2 Pin 3 G D S Type V DS R DS(on) Package Pb-free BUZ 31 H 2 V 14.5.2 Ω PG-TO-22-3 Yes Maximum Ratings Parameter

More information

OptiMOS -5 Power-Transistor

OptiMOS -5 Power-Transistor OptiMOS -5 Power-Transistor Product Summary V DS 8 V R DS(on).2 m Features N-channel - Enhancement mode AEC qualified I D 3 A H-PSOF-8- Tab MSL up to 26 C peak reflow 75 C operating temperature Green product

More information

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor IPW6R125CP CoolMOS TM Power Transistor Features Lowest figure-of-merit R ON xq g Ultra low gate charge Extreme dv/dt rated Product Summary V DS @ T j,max 65 V R DS(on),max.125 Ω Q g,typ 53 nc High peak

More information

OptiMOS 2 Small-Signal-Transistor

OptiMOS 2 Small-Signal-Transistor OptiMOS Small-Signal-Transistor Features N-channel Enhancement mode Logic level (4.5V rated) Avalanche rated Product Summary V DS 3 V R DS(on),max V GS =1 V 16 mω V GS =4.5 V 8 I D 1.4 A Qualified according

More information

BSS 223PW. ESD Class; JESD22-A114-HBM Class 0. Product Summary V DS -20 V R DS(on) 1.2 Ω I D A. Qualified according to AEC Q101

BSS 223PW. ESD Class; JESD22-A114-HBM Class 0. Product Summary V DS -20 V R DS(on) 1.2 Ω I D A. Qualified according to AEC Q101 OptiMOS -P Small-Signal-Transistor Feature P-Channel Enhancement mode Super Logic Level (2.5 V rated) 5 C operating temperature valanche rated dv/dt rated Product Summary V DS -2 V R DS(on).2 Ω I D -.39

More information

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor CoolMOS TM Power Transistor Features New revolutionary high voltage technology Extreme dv/dt rated High peak current capability Product Summary V DS 8 V R DS(on)max @ T j = 5 C.7 Ω Q g,typ 1 nc Qualified

More information

OptiMOS -T Power-Transistor

OptiMOS -T Power-Transistor IPB35N2S3L-26 OptiMOS -T Power-Transistor Product Summary V DS 2 V R DS(on),max 26.3 mw Features OptiMOS - power MOSFET for automotive applications N-channel - Enhancement mode I D 35 A PG-TO263-3-2 Tab

More information

CoolMOS Power Transistor

CoolMOS Power Transistor CoolMOS Power Transistor Features Product Summary V DS @ T j,max 65 V Lowest figure-of-merit R ON xq g R DS(on),max @T j = 25 C.25 Ω Ultra low gate charge 6.6 Q g,typ Extreme dv/dt rated 26 nc High peak

More information

OptiMOS P2 Small-Signal-Transistor

OptiMOS P2 Small-Signal-Transistor OptiMOS P Small-Signal-Transistor Features P-channel Enhancement mode Super Logic Level (.5V rated) Avalanche rated Qualified according to AEC Q % lead-free; RoHS compliant Product Summary V DS - V R DS(on),max

More information

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D. SIPMOS SmallSignalTransistor Feature NChannel Enhancement mode Logic Level dv/dt rated Pbfree lead plating; RoHS compliant Qualified according to EC Q Product Summary V DS V R DS(on) 6 Ω I D.37 PGSOT3

More information

OptiMOS -T2 Power-Transistor

OptiMOS -T2 Power-Transistor OptiMOS -T2 Power-Transistor Product Summary V DS 4 V R DS(on),max 4.1 mω Features N-channel - Enhancement mode AEC qualified I D 9 A PG-TO252-3-313 MSL1 up to 26 C peak reflow 175 C operating temperature

More information

OptiMOS TM -T2 Power-Transistor

OptiMOS TM -T2 Power-Transistor OptiMOS TM -T2 Power-Transistor Product Summary V DS 1 V R DS(on),max 6.7 mw Features N-channel - Normal Level - Enhancement mode AEC qualified I D 9 A PG-TO252-3-313 TAB MSL1 up to 26 C peak reflow 175

More information

OptiMOS -5 Power-Transistor

OptiMOS -5 Power-Transistor OptiMOS -5 Power-Transistor Product Summary V DS V R DS(on).5 m Features N-channel - Enhancement mode AEC qualified MSL up to 26 C peak reflow 75 C operating temperature I D 3 A P/G-HSOF-8- Tab 8 Tab Green

More information

Data Sheet BUY25CS54A-01

Data Sheet BUY25CS54A-01 HiRel RadHard Power-MOS Low R DS(on) Single Event Effect (SEE) hardened LET 85, Range: 118µm LET 55, Range: 90µm V GS = -10V, V DS = 250V V GS = -15V, V DS = 250V V GS = -15V, V DS = 120V V GS = -20V,

More information

OptiMOS -T Power-Transistor Product Summary

OptiMOS -T Power-Transistor Product Summary OptiMOS -T Power-Transistor Product Summary V DS 1 V R DS(on),max 26 mw Features N-channel - Enhancement mode Automotive AEC Q11 qualified I D 35 A PG-TO252-3-11 MSL1 up to 26 C peak reflow 175 C operating

More information

OptiMOS TM -T2 Power-Transistor

OptiMOS TM -T2 Power-Transistor OptiMOS TM -T2 Power-Transistor Product Summary V DS 4 V R DS(on),max 7.2 mω I D 5 A Features Dual N-channel Logic Level Common Drain - Enhancement mode PG-TO252-5 AEC qualified MSL1 up to 26 C peak reflow

More information

OptiMOS -T2 Power-Transistor Product Summary

OptiMOS -T2 Power-Transistor Product Summary OptiMOS -T2 Power-Transistor Product Summary V DS 55 V R DS(on),max (SMD version) 3. mω Features N-channel - Enhancement mode Automotive AEC Q11 qualified I D 1 A PG-TO263-3-2 PG-TO262-3-1 PG-TO22-3-1

More information

SPN01N60C3. Cool MOS Power Transistor V T jmax 650 V

SPN01N60C3. Cool MOS Power Transistor V T jmax 650 V SPNN6C3 Cool MOS Power Transistor V DS @ T jmax 65 V Feature New revolutionary high voltage technology Ultra low gate charge Extreme dv/dt rated Ultra low effective capacitances Improved transconductance

More information

OptiMOS -P2 Power-Transistor

OptiMOS -P2 Power-Transistor OptiMOS -P2 Power-Transistor Product Summary V DS -4 V R DS(on) (SMD Version) 3.1 mw Features P-channel - Logic Level - Enhancement mode I D -12 A AEC qualified PG-TO263-3-2 PG-TO262-3-1 PG-TO22-3-1 MSL1

More information

OptiMOS -T2 Power-Transistor Product Summary

OptiMOS -T2 Power-Transistor Product Summary OptiMOS -T2 Power-Transistor Product Summary V DS 6 V R DS(on),max.7 mω Features N-channel - Enhancement mode I D 8 A PG-TO263-7-3 AEC Q qualified MSL up to 26 C peak reflow 75 C operating temperature

More information

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor SIPMOS Small-Signal-Transistor Features P-Channel Enhancement mode / Logic level Avalanche rated Product Summary V DS - V R DS(on),max.8 W I D -.36 A Pb-free lead plating; RoHS compliant Footprint compatible

More information

CoolMOS Power Transistor

CoolMOS Power Transistor IPP9R1K2C3 CoolMOS Power Transistor Features Lowest figure-of-merit R ON x Q g Extreme dv/dt rated High peak current capability Qualified according to JEDEC 1) for target applications Pb-free lead plating;

More information

not recommended for new designs

not recommended for new designs CoolMOS Power Transistor Product Summary V DS 6 V R DS(on),max.45 Ω Features Q g,typ 15 nc Worldwide best R ds,on in TO247 Ultra low gate charge Extreme dv/dt rated PG-TO247-3 High peak current capability

More information

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor SIPMOS Small-Signal-Transistor Features N-channel Depletion mode dv /dt rated Product Summary V DS 1 V R DS(on),max 12 Ω I DSS,min.9 A Available with V GS(th) indicator on reel Pb-free lead-plating; RoHS

More information

2 nd Generation thinq! TM SiC Schottky Diode

2 nd Generation thinq! TM SiC Schottky Diode IDH12S6C 2 nd Generation thinq! TM SiC Schottky Diode Features Revolutionary semiconductor material - Silicon Carbide Switching behavior benchmark No reverse recovery/ No forward recovery Product Summary

More information

OptiMOS -T2 Power-Transistor

OptiMOS -T2 Power-Transistor OptiMOS -T2 Power-Transistor Product Summary V DS 4 V R DS(on),max 7.3 mω Features N-channel - Enhancement mode AEC qualified I D 5 A PG-TO252-3-33 MSL up to 26 C peak reflow 75 C operating temperature

More information

SIPMOS Power-Transistor

SIPMOS Power-Transistor SPB18P6P G SIPMOS Power-Transistor Features P-Channel Enhancement mode Avalanche rated Product Summary V DS -6 V R DS(on),max.13 Ω I D -18.6 A dv /dt rated 175 C operating temperature PG-TO63-3 Halogen-free

More information

OptiMOS -P2 Power-Transistor Product Summary

OptiMOS -P2 Power-Transistor Product Summary OptiMOS -P2 Power-Transistor Product Summary V DS -3 V R DS(on),max 1.5 mω I D -5 A Features P-channel - Logic Level - Enhancement mode PG-TO252-3-11 AEC qualified MSL1 up to 26 C peak reflow 175 C operating

More information

OptiMOS -T2 Power-Transistor

OptiMOS -T2 Power-Transistor IPB2N8S4-3 OptiMOS -T2 Power-Transistor Product Summary V DS 8 V R DS(on),max (SMD version) 2.5 mw Features N-channel - Enhancement mode AEC Q qualified I D 2 A PG-TO263-3-2 PG-TO262-3- PG-TO22-3- MSL

More information

OptiMOS (TM) 3 Power-Transistor

OptiMOS (TM) 3 Power-Transistor Type BSZ123N8NS3 G OptiMOS (TM) 3 Power-Transistor Package Optimized technology for DC/DC converters Excellent gate charge x R DS(on) product (FOM) Superior thermal resistance Product Summary V DS 8 V

More information

SIPMOS Power-Transistor

SIPMOS Power-Transistor SPP18P6P G SIPMOS Power-Transistor Features P-Channel Enhancement mode Avalanche rated dv /dt rated 175 C operating temperature Product Summary V DS -6 V R DS(on),max.13 Ω I D -18.6 A PG-TO22-3 Type Package

More information

This chip is used for: power module BSM 75GD120DN2. Emitter pad size 8 x ( 2.99 x 1.97 ) Thickness 200 µm. Wafer size 150 mm

This chip is used for: power module BSM 75GD120DN2. Emitter pad size 8 x ( 2.99 x 1.97 ) Thickness 200 µm. Wafer size 150 mm IGBT Chip in NPT-technology Features: 1200V NPT technology low turn-off losses short tail current positive temperature coefficient easy paralleling integrated gate resistor This chip is used for: power

More information

OptiMOS -P Small-Signal-Transistor

OptiMOS -P Small-Signal-Transistor OptiMOS -P Small-Signal-Transistor Features P-Channel Enhancement mode Super Logic level ( 2.5 V rated) 5 C operating temperature Avalanche rated Product Summary V DS -2 V R DS(on),max 55 mω I D -.63 A

More information

OptiMOS Small-Signal-Transistor

OptiMOS Small-Signal-Transistor OptiMOS Small-Signal-Transistor Features N-channel Enhancement mode Logic level (4.5V rated) Avalanche rated Qualified according to AEC Q % lead-free; RoHS compliant Product Summary V DS V R DS(on),max

More information

OptiMOS -T2 Power-Transistor

OptiMOS -T2 Power-Transistor OptiMOS -T2 Power-Transistor Product Summary V DS 4 V R DS(on),max (SMD version).8 mω Features N-channel - Enhancement mode I D 2 A PG-TO263-3-2 PG-TO262-3- PG-TO22-3- AEC qualified MSL up to 26 C peak

More information

OptiMOS 2 Small-Signal-Transistor

OptiMOS 2 Small-Signal-Transistor OptiMOS Small-Signal-Transistor Features Dual N-channel Enhancement mode Ultra Logic level (1.8V rated) Avalanche rated Qualified according to AEC Q11 1% lead-free; RoHS compliant Product Summary V DS

More information

OptiMOS Small-Signal-Transistor

OptiMOS Small-Signal-Transistor 2N72DW OptiMOS Small-Signal-Transistor Features Dual N-channel Enhancement mode Logic level Avalanche rated Fast switching Product Summary V DS 6 V R DS(on),max V GS =1 V 3 W V GS =4.5 V 4 I D.3 A Qualified

More information

CoolMOS Power Transistor

CoolMOS Power Transistor CoolMOS Power Transistor Features new revolutionary high voltage technology Extreme dv/dt rated High peak current capability Qualified according to JEDEC 1) for target applications Pb-free lead plating;

More information

OptiMOS -T2 Power-Transistor Product Summary

OptiMOS -T2 Power-Transistor Product Summary OptiMOS -T2 Power-Transistor Product Summary V DS 6 V R DS(on),max 9. mω Features N-channel - Enhancement mode I D 5 A PG-TO252-3-11 AEC qualified MSL1 up to 26 C peak reflow 175 C operating temperature

More information

OptiMOS -P2 Power-Transistor

OptiMOS -P2 Power-Transistor OptiMOS -P2 Power-Transistor Product Summary V DS - V R DS(on),max.6 mw I D -5 A Features P-channel - Logic Level - Enhancement mode PG-TO252-3-313 AEC qualified MSL1 up to 26 C peak reflow 175 C operating

More information

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor CoolMOS TM Power Transistor Features Worldwide best R DS,on in TO22 Lowest figure of merit R ON x Q g Ultra low gate charge Product Summary V DS @T jmax 55 V R DS(on),max.14 Ω Q g,typ 48 nc Extreme dv/dt

More information

OptiMOS (TM) 3 Power-Transistor

OptiMOS (TM) 3 Power-Transistor BSZ67N6LS3 G OptiMOS (TM) 3 Power-Transistor Features Ideal for high frequency switching and sync. rec. Optimized technology for DC/DC converters Excellent gate charge x R DS(on) product (FOM) Product

More information

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor CoolMOS TM Power Transistor Features New revolutionary high voltage technology Extreme dv/dt rated High peak current capability Product Summary V DS 8 V R DS(on)max @ T j = 25 C.29 Ω Q g,typ 88 nc Qualified

More information

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor OptiMOS 3 Power-Transistor Features N-channel, normal level Excellent gate charge x R DS(on) product (FOM) Product Summary V DS 1 V R DS(on),max 7.2 mω I D 8 A Very low on-resistance R DS(on) 175 C operating

More information

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor CoolMOS TM Power Transistor Features Lowest figure of merit R ON x Q g Ultra low gate charge Extreme dv/dt rated Product Summary V DS @T jmax 55 V R DS(on),max.52 Ω Q g,typ 13 nc High peak current capability

More information

Please note the new package dimensions arccording to PCN A

Please note the new package dimensions arccording to PCN A SPW5N5C3 CoolMOS Power Transistor V DS @ T jmax 56 V Feature R DS(on).7 Ω New revolutionary high voltage technology Worldwide best R DS(on) in TO-47 Ultra low gate charge Periodic avalanche rated Extreme

More information