The Behaviour of Gases

Size: px
Start display at page:

Download "The Behaviour of Gases"

Transcription

1 INTRAMOLECULAR VS. INTERMOLECULAR FORCES LEARNING GOAL: to understand why gases behave the way they do The Behaviour of Gases intramolecular chemical changes: breaking and forming of INTRAMOLECULAR FORCES physical changes: (dissolving, changing state, etc) breaking and forming of INTERMOLECULAR FORCES COMPARING SOLIDS LIQUIDS AND GASES SOLIDS: definite volume definite shape incompressible LIQUIDS definite volume no definite shape incompressible weak intermolecular forces strong intermolecular forces more disorder of molecules very ordered molecular arrangement possesses vibrational and rotational energy possesses vibrational energy only 1

2 GASES no definite volume, changes with a change in pressure or temperature no definite shape very compressible weakest (practically none) intermolecular forces KINETIC MOLECULAR THEORY OF GASES when talking about gases, kinetic energy is important in explaining why they behave the way they do. high disorder possesses vibrational, rotational and translational energy FIVE POSTULATES OF THE KMT The volume of the gas particles is negligible compared to the volume of the container, because gas molecules are small and far apart. There are no intermolecular forces between particles Gas molecules are in constant straight line random motion When gas molecules collide with each other, no kinetic energy is lost THE KINETIC MOLECULAR THEORY DESCRIBES AN IDEAL GAS A gas behaves like an ideal gas when temperature is high, And pressure is low **temperature and pressure greatly affect the volume of a gas** The average kinetic energy of gas molecules is directly related to the temperature. The greater the temperature, the greater their average kinetic energy (the faster they move) 2

3 Let s talk a bit about temperature: Temperature is a measure of the average kinetic energy of the gas molecules The higher the temperature, the faster the molecules will move because they have more kinetic energy (the energy of motion) Temperature is increased by adding heat. Temperature is measured Celsius or Kelvins Converting Celsius to Kelvins Kelvin is absolute temperature.it has NO NEGATIVE VALUES Kelvin starts at 0, 0K is zero Kelvins To convert from celsius to kelvins, add 273. To convert from kelvins to celsius, subtract 273 slide over 25 C = 298 K ( ) 45 C = 228 K ( ) 320 K = 47 C ( ) Try these. Let s talk about pressure. Pressure is caused by the gas molecules bouncing around and hitting the walls of the container. The more often they hit the walls of the container, the higher the pressure. 3

4 Millimetres of Mercury (mmhg) Atmospheres (atm) Pascals.kilopascals (kpa) Units of Pressure 1.2 atm = kpa 110 kpa = 825 mmhg TRY THESE: 1 atm = 760 mmhg = kpa SI unit of pressure measurement: kpa Charles Law: the effect of temperature on gas volume SO HOW DOES TEMPERATURE AND PRESSURE AFFECT THE VOLUME OF A GAS? THE VOLUME OF A FIXED MASS OF A GAS VARIES DIRECTLY WITH ITS TEMPERATURE, AT CONSTANT PRESSURE At constant pressure, increasing the temperature causes the volume of a gas to INCREASE 4

5 Boyle s Law: the effect of pressure on the gas volume THE VOLUME OF A FIXED MASS OF A GAS VARIES INVERSELY WITH ITS PRESSURE, AT CONSTANT TEMPERATURE At constant temperature, increasing the pressure causes the volume of a gas to DECREASE Gay Lussac s Law: the effect of temperature on gas pressure THE PRESSURE OF A FIXED MASS OF A GAS VARIES DIRECTLY WITH ITS TEMPERATURE, AT CONSTANT VOLUME. At constant volume, increasing the temperature will increase the pressure of a gas Homework: Checkpoint 1 on Gases Checklist (also: review questions from Solutions Checklist: Checkpoint 15 and 16) 5

Name: Regents Chemistry: Notes: Unit 8 Gases.

Name: Regents Chemistry: Notes: Unit 8 Gases. Name: Regents Chemistry: Notes: Unit 8 Gases 1 Name: KEY IDEAS The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Unit 3 - Part 2: Gas Laws. Objective - learn the main gas laws that all molecules follow.

Unit 3 - Part 2: Gas Laws. Objective - learn the main gas laws that all molecules follow. Unit 3 - Part 2: Gas Laws Objective - learn the main gas laws that all molecules follow. Pressure - Pressure = Force / Area Created by collisions of the gas molecules with each other and with surfaces.

More information

The Gas Laws. Learning about the special behavior of gases

The Gas Laws. Learning about the special behavior of gases The Gas Laws Learning about the special behavior of gases The States of Matter What are the 3 states of matter that chemists work with? Solids, liquids, and gases We will explain the behavior of gases

More information

Unit 10: Gases. Section 1: Kinetic Molecular Theory and the Combined Gas Law

Unit 10: Gases. Section 1: Kinetic Molecular Theory and the Combined Gas Law Unit 10: Gases Section 1: Kinetic Molecular Theory and the Combined Gas Law Introduction Molecules in a gas behave uniquely Gas molecules move rapidly and expand to fill their space Kinetic Molecular Theory:

More information

Unit 8 Kinetic Theory of Gases. Chapter 13-14

Unit 8 Kinetic Theory of Gases. Chapter 13-14 Unit 8 Kinetic Theory of Gases Chapter 13-14 This tutorial is designed to help students understand scientific measurements. Objectives for this unit appear on the next slide. Each objective is linked to

More information

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws Lesson Topics Covered Handouts to Print 1 Note: The States of Matter solids, liquids and gases state and the polarity of molecules the

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages )

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages ) Name Date Class 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains

More information

Introduction to Gases Guided Inquiry

Introduction to Gases Guided Inquiry Introduction to Gases Guided Inquiry Part 1 - The Kinetic Molecular Theory Adapted from a POGIL authored by Linda Padwa and David Hanson, Stony Brook University Why? The kinetic-molecular theory is a model

More information

I. Gas Laws A. Four properties of gases 1. Volume - V

I. Gas Laws A. Four properties of gases 1. Volume - V Gas Laws Learning Objectives TLW know the variables that influence the behavior of gases (TEKS 9) TLW be able to describe interrelationships between temperature, number of moles, pressure, and volume of

More information

CHEMISTRY Matter and Change. Chapter 13: Gases

CHEMISTRY Matter and Change. Chapter 13: Gases CHEMISTRY Matter and Change Chapter 13: Gases CHAPTER 13 Table Of Contents Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry Click a hyperlink to view the corresponding

More information

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory Ideal gas: a gas in which all collisions between atoms or molecules are perfectly elastic (no energy lost) there are no intermolecular attractive forces Think of an ideal gas as a collection of perfectly

More information

THE CORPUSCULAR NATURE OF MATTER AND ITS PHYSICAL STATES

THE CORPUSCULAR NATURE OF MATTER AND ITS PHYSICAL STATES THE CORPUSCULAR NATURE OF MATTER AND ITS PHYSICAL STATES In this unit we are going to study the matter from a microscopic point of view using the kinetic theory. We will understand the properties of the

More information

Centimeters of mercury

Centimeters of mercury CHAPTER 11 PROPERTIES OF GASES Gases have an indefinite shape: a gas takes the shape of its container and fills it uniformly. If the shape of the container changes, so does the shape of the gas. Gases

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Chapter 11 THE NATURE OF GASES States of Matter Describe the motion of gas particles according to the kinetic theory Interpret gas pressure in terms of kinetic theory Key Terms: 1. kinetic energy 2. gas

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

Gases, Their Properties and the Kinetic Molecular Theory

Gases, Their Properties and the Kinetic Molecular Theory Up to this point of the school year we have covered mostly just two of the four states of matter we mentioned at the beginning. Those, of course, are solids and liquids. While plasmas are pretty neat,

More information

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws!

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws! Gases n Properties n Kinetic Molecular Theory n Variables n The Atmosphere n Gas Laws Properties of a Gas n No definite shape or volume n Gases expand to fill any container n Thus they take the shape of

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 13 Gases Properties of

More information

Unit 08 Review: The KMT and Gas Laws

Unit 08 Review: The KMT and Gas Laws Unit 08 Review: The KMT and Gas Laws It may be helpful to view the animation showing heating curve and changes of state: http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/031_changesstate.mov

More information

Gases. Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry

Gases. Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry Gases Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry Click a hyperlink or folder tab to view the corresponding slides. Exit Section 13.1 The Gas Laws State the

More information

Chemistry Joke. Once you ve seen 6.02 x You ve seen a mole!

Chemistry Joke. Once you ve seen 6.02 x You ve seen a mole! States of Matter Chemistry Joke Once you ve seen 6.02 x 10 23 atoms You ve seen a mole! Kinetic Theory Kinetic Theory explains the states of matter based on the concept that the particles in all forms

More information

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K Thermal Physics Internal Energy: total potential energy and random kinetic energy of the molecules of a substance Symbol: U Units: J Internal Kinetic Energy: arises from random translational, vibrational,

More information

Chapter 3. States of Matter

Chapter 3. States of Matter Chapter 3 States of Matter 1. Solid 2. Liquid 3. Gas States of Matter Two More (discuss later) Plasma Bose-Einstein condensate States of Matter Solid (definite shape and volume) Particles are tightly packed

More information

Chapter 16 Simple Kinetic Theory of Matter

Chapter 16 Simple Kinetic Theory of Matter Chapter 16 Simple Kinetic Theory of Matter MCQ 1: Air trapped inside a single-piston-cylinder exerts a pressure of 760 mmhg. If its volume is increased by 30% at a constant temperature, then the pressure

More information

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet Kinetic Molecular Theory and Gas Law Honors Packet Name: Period: Date: Requirements for honors credit: Read all notes in packet Watch the 10 Brighstorm videos shown on the right and take Cornell notes

More information

Boyle s law states the relationship between the pressure and the volume of a sample of gas.

Boyle s law states the relationship between the pressure and the volume of a sample of gas. The Ideal Gas Law Boyle s law states the relationship between the pressure and the volume of a sample of gas. Charles s law states the relationship between the volume and the absolute temperature of a

More information

UNIT 7: The Gas Laws. Mrs. Howland Chemistry 10 Rev. April 2016

UNIT 7: The Gas Laws. Mrs. Howland Chemistry 10 Rev. April 2016 UNIT 7: The Gas Laws ì Mrs. Howland Chemistry 10 Rev. April 2016 ì Learners will be able to ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì Unit 7: Gas Laws Describe atmospheric pressure and explain how a barometer works

More information

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

CHEMISTRY NOTES Chapter 12. The Behavior of Gases Goals : To gain an understanding of : 1. The kinetic theory of matter. 2. Avogadro's hypothesis. 3. The behavior of gases and the gas laws. NOTES: CHEMISTRY NOTES Chapter 12 The Behavior of Gases The kinetic

More information

Comparison of Solids, Liquids, and Gases

Comparison of Solids, Liquids, and Gases CHAPTER 8 GASES Comparison of Solids, Liquids, and Gases The density of gases is much less than that of solids or liquids. Densities (g/ml) Solid Liquid Gas H O 0.97 0.998 0.000588 CCl 4.70.59 0.00503

More information

SOLID 1. Make sure your state of matter is set on solid. Write your observations below:

SOLID 1. Make sure your state of matter is set on solid. Write your observations below: Chemistry Ms. Ye Name Date Block Properties of Matter: Particle Movement Part 1: Follow the instructions below to complete the activity. Click on the link to open the simulation for this activity: http://phet.colorado.edu/sims/states-of-matter/states-of-matterbasics_en.jnlp***note:

More information

Question Bank Study of Gas Laws

Question Bank Study of Gas Laws Study of Gas Laws. Fill in the blank spaces with appropriate words given within the brackets. (i) Pressure remaining constant, the (mass/volume) of an enclosed gas is directly proportional to the kelvin

More information

Properties of Gases. 5 important gas properties:

Properties of Gases. 5 important gas properties: Gases Chapter 12 Properties of Gases 5 important gas properties: 1) Gases have an indefinite shape 2) Gases have low densities 3) Gases can compress 4) Gases can expand 5) Gases mix completely with other

More information

Gases CHAPTER. Section 10.1 Properties of Gases

Gases CHAPTER. Section 10.1 Properties of Gases CHAPTER Gases 10 Section 10.1 Properties of Gases 2. The following are observed properties of gases: (a) Gases have a variable volume. (b) Gases expand infinitely. (c) Gases compress uniformly. (d) Gases

More information

Chapter 8 Part 1 - Gases

Chapter 8 Part 1 - Gases Chapter 8 Part 1 - Gases 8.1 States of Matter and Their Changes Matter can exist in 3 primary states or phases:. Review the overall Kinetic Molecular Theory of Matter. Solid particles are in fixed positions

More information

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works. Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? n understanding of real world phenomena. n understanding of how science works. Gas Uniformly fills any container. Mixes completely

More information

Unit 13 Gas Laws. Gases

Unit 13 Gas Laws. Gases Unit 13 Gas Laws Gases The Gas Laws Kinetic Theory Revisited 1. Particles are far apart and have negligible volume. 2. Move in rapid, random, straight-line motion. 3. Collide elastically. 4. No attractive

More information

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department GASEOUS STATE Engr. Yvonne Ligaya F. Musico Chemical Engineering Department TOPICS Objective Properties of Gases Kinetic Molecular Theory of Gases Gas Laws OBJECTIVES Determine how volume, pressure and

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Understanding KMT using Gas Properties and States of Matter

Understanding KMT using Gas Properties and States of Matter Understanding KMT using Gas Properties and States of Matter Learning Goals: Students will be able to describe matter in terms of particle motion. The description should include Diagrams to support the

More information

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 A Gas fills any container. completely

More information

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different *STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

More information

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles.

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles. Ch. 15.1 Kinetic Theory 1.All matter is made of atoms and molecules that act like tiny particles. Kinetic Theory 2.These tiny particles are always in motion. The higher the temperature, the faster the

More information

Chapter 10 States of Matter

Chapter 10 States of Matter Chapter 10 States of Matter 1 Section 10.1 The Nature of Gases Objectives: Describe the assumptions of the kinetic theory as it applies to gases. Interpret gas pressure in terms of kinetic theory. Define

More information

1 Points to Remember Subject: Chemistry Class: XI Chapter: States of matter Top concepts 1. Intermolecular forces are the forces of attraction and repulsion between interacting particles (atoms and molecules).

More information

UNIT 5 : STATES OF MATTER Concept 1. INTERMOLECULAR FORCES

UNIT 5 : STATES OF MATTER Concept 1. INTERMOLECULAR FORCES www.tiwariacademy.in UNIT 5 : STATES OF MATTER CONCEPT WISE HANDOUTS KEY CONCEPTS : 1. Intermolecular Forces 2. Gas Laws 3. Behaviour of gases Concept 1. INTERMOLECULAR FORCES Intermolecular forces- forces

More information

Chemistry B11 Chapter 6 Gases, Liquids, and Solids

Chemistry B11 Chapter 6 Gases, Liquids, and Solids Chapter 6 Gases, Liquids, and Solids States of matter: the physical state of matter depends on a balance between the kinetic energy of particles, which tends to keep them apart, and the attractive forces

More information

Chapter 10. Gases. The Gas Laws

Chapter 10. Gases. The Gas Laws Page 1 of 12 10.1 Characteristics of Gases. Chapter 10. Gases. All substances have three phases; solid, liquid and gas. Substances that are liquids or solids under ordinary conditions may also exist as

More information

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state Chapter 5 Gases and Their Properties Why Study Gases? some very common elements exist in a gaseous state our gaseous atmosphere provides one means of transferring energy and material throughout the globe

More information

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion Chapter 3 Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

Conceptual Chemistry

Conceptual Chemistry Conceptual Chemistry Objective 1 Describe, at the molecular level, the difference between a gas, liquid, and solid phase. Solids Definite shape Definite volume Particles are vibrating and packed close

More information

Chemistry 2 nd Semester Final Exam Review

Chemistry 2 nd Semester Final Exam Review Chemistry 2 nd Semester Final Exam Review Chemical Bonds 1. Give a physical description of how the atoms and molecules are arranged in solids, liquids, and gases. A: In a liquid, the forces between the

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L)

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L) Unit 9: The Gas Laws 9.5 1. Write the formula for the density of any gas at STP. Name: KEY Text Questions from Corwin density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L) Ch.

More information

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry UNIT 6 GASES OUTLINE States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry STATES OF MATTER Remember that all matter exists in three physical states: Solid Liquid

More information

Fig Note the three different types of systems based on the type of boundary between system and surroundings.

Fig Note the three different types of systems based on the type of boundary between system and surroundings. CHAPTER 1 LECTURE NOTES System, Surroundings, and States Fig. 1.4 Note the three different types of systems based on the type of boundary between system and surroundings. Intensive and Extensive Properties

More information

REVISION: GAS LAWS & MOLE CALCULATIONS 18 JUNE 2013

REVISION: GAS LAWS & MOLE CALCULATIONS 18 JUNE 2013 REVISION: GAS LAWS & MOLE CALCULATIONS 18 JUNE 2013 Lesson Description In this lesson we revise how to: apply the gas laws to perform calculations apply the mole concept to perform calculations Key Concepts

More information

Name. Objective 1: Describe, at the molecular level, the difference between a gas, liquid, and solid phase.

Name. Objective 1: Describe, at the molecular level, the difference between a gas, liquid, and solid phase. Unit 6 Notepack States of Matter Name Unit 4 Objectives 1. Describe, at the molecular level, the difference between a gas, liquid, and solid phase. (CH 10) 2. Describe states of matter using the kinetic

More information

Chapter Ten- Gases. STUDY GUIDE AP Chemistry

Chapter Ten- Gases. STUDY GUIDE AP Chemistry STUDY GUIDE AP Chemistry Chapter Ten- Gases Lecture Notes 10.1 Characteristics of Gases All substances have three phases: solid, liquid and gas. Substances that are liquids or solids under ordinary conditions

More information

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works. 10/16/018 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 1 10/16/018 A Gas Uniformly fills any container.

More information

Warm-Up. 1)Convert the following pressures to pressures in standard atmospheres:

Warm-Up. 1)Convert the following pressures to pressures in standard atmospheres: Warm-Up 1)Convert the following pressures to pressures in standard atmospheres: A. 151.98 kpa B. 456 torr Conversions 1 atm=101.3 kpa= 760 mm Hg= 760 torr Standard temp. & pressure = 1 atm & 0 C (STP)

More information

Gases, Liquids and Solids

Gases, Liquids and Solids Chapter 5 Gases, Liquids and Solids The States of Matter Gases Pressure Forces between one molecule and another are called intermolecular forces. Intermolecular forces hold molecules together and kinetic

More information

where k is a constant for the gas in a closed system at a temperature in a closed system, as k would be the same.

where k is a constant for the gas in a closed system at a temperature in a closed system, as k would be the same. Unit 3 The 3 rd planet in the solar system, Earth Ch. 10: Boyle s Law This law shows the relation between pressure and volume of a gas in a closed system at a constant temperature. Volume and pressure

More information

Thermal Properties and Ideal Gases: Boyle's law and Charle's law *

Thermal Properties and Ideal Gases: Boyle's law and Charle's law * OpenStax-CNX module: m39083 1 Thermal Properties and Ideal Gases: Boyle's law and Charle's law * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

More information

Gases. What are the four variables needed to describe a gas?

Gases. What are the four variables needed to describe a gas? Gases What are the four variables needed to describe a gas? 1 Gases The simplest state of matter K.E. >> intermolecular forces Random motion Predictable behavior 2 Gases at STP Few Elements: H 2 N 2 O

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

Gases Over View. Schweitzer

Gases Over View. Schweitzer Gases Over View Schweitzer Collision theory Describing Ideal gases Particles are very far apart relative to their size. Particles are traveling very fast Particles are traveling in straight lines Collisions

More information

Pg , Syllabus

Pg , Syllabus Pg. 169 171, 173-175 Syllabus 5.7 5.14 www.cgrahamphysics.com What do you remember? End www.cgrahamphysics.com How do particles move? 3 of 30 Boardworks Ltd 2012 4 of 30 Boardworks Ltd 2012 States of matter

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 5 GASES Properties of Gases Pressure History and Application of the Gas Laws Partial Pressure Stoichiometry of

More information

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Characteristics of Unlike liquids and solids, they Expand to fill their containers.

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1 Chemistry TOPIC 2 States of Matter (I) - Gases Topic 2. States of Matter (I) - Gases. 1 Contents 1. Introduction 2. Pressure measurement 3. The Ideal Gas equation 4. Efusion and Diffusion 5. Kinetic Molecular

More information

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship 7/6/0 Chapter Five: GASES Characteristics of Gases Uniformly fills any container. Mixes completely with any other gas. Exerts pressure on its surroundings. When subjected to pressure, its volume decreases.

More information

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All Preparation of the standard solution Exp 5: Copyright Houghton Mifflin Company.All 1 1 Mass of KHP: 5.2 5.5 g Volume of volumetric flask: 250.0 cm Molarity of standard (KHP) solution: M = n/v Copyright

More information

Gases. Pressure is formally defined as the force exerted on a surface per unit area:

Gases. Pressure is formally defined as the force exerted on a surface per unit area: Gases Pressure is formally defined as the force exerted on a surface per unit area: Force is measure in Newtons Area is measured in m 2 and it refers to the Area the particle/object is touching (From the

More information

States of matter Part 1

States of matter Part 1 Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties 5.1 Elements That Exist as Gases at 25 C, 1 atm Chapter 5 The Gaseous State YOU READ AND BE RESPONSIBLE FOR THIS SECTION! Gaseous compounds include CH 4, NO, NO 2, H 2 S, NH 3, HCl, etc. Gas Properties

More information

Copyright 2015 Edmentum - All rights reserved. During which of the following phase changes is there a gain in energy? I.

Copyright 2015 Edmentum - All rights reserved. During which of the following phase changes is there a gain in energy? I. Study Island Copyright 2015 Edmentum - All rights reserved. Generation Date: 03/16/2015 Generated By: Kristina Brown 1. Examine the phase-change diagram below. During which of the following phase changes

More information

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

Chapter 10: States of Matter

Chapter 10: States of Matter CP Chemistry Mrs. Klingaman Chapter 10: States of Matter Name: Mods: Chapter 10: States of Matter Reading Guide 10.1 The Kinetic Molecular Theory of Matter (pgs. 311-314) 1. The kinetic-molecular theory

More information

States of Matter Unit

States of Matter Unit Learning Target Notes Section 1: Matter and Energy What makes up matter? Matter is made of atoms and molecules that are in constant motion. Kinetic Theory of Matter A. Particles that make up matter are

More information

The Ideal Gas Equation

The Ideal Gas Equation If you pump too much air into a party balloon, the pressure of the air inside will burst it with a loud bang. Put one into the fridge and it will shrink a bit. You have carried out two simple experiments

More information

Introduction Matter has three possible states: - Solid - Liquid - Gas. Chem101 - Lecture 6

Introduction Matter has three possible states: - Solid - Liquid - Gas. Chem101 - Lecture 6 Chem101 - Lecture 6 States of Matter Introduction Matter has three possible states: - Solid - Liquid - Gas We will investigate the differences in the physical properties exhibited by each of these states

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary Worksheet 1.1 Chapter 1: Quantitative chemistry glossary Amount The number of moles of a substance present in a sample. Aqueous solution A solution with water as the solvent. Atmosphere The unit atmosphere

More information

Measurements of Pressure

Measurements of Pressure Measurements of Pressure ì ì ì Pressure can have a variety of methods of measurement These include the atmosphere (atm), the kilopascal (kpa), mm of Mercury (mm of Hg), milibars (mb), and pounds per square

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line.

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line. 10 STATES OF MATTER SECTION 10.1 THE NATURE OF GASES (pages 267 272) This section describes how the kinetic theory applies to gases. It defines gas pressure and explains how temperature is related to the

More information

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9 CHM 111 - Solids, Liquids, and Phase Changes (r15) - 2015 Charles Taylor 1/9 Introduction In CHM 110, we used kinetic theory to explain the behavior of gases. Now, we will discuss solids and liquids. While

More information

What we will learn about now

What we will learn about now Chapter 4: Gases What we will learn about now We will learn how volume, pressure, temperature are related. You probably know much of this qualitatively, but we ll learn it quantitatively as well with the

More information

Electricity and Energy 1 Content Statements

Electricity and Energy 1 Content Statements Keep this in good condition, it will help you pass your final exams. The school will only issue one paper copy per pupil. An e-copy will be placed on the school s web-site. Electricity and Energy 1 Content

More information

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion)

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion) States of Matter The Solid State Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion) Fixed shape and volume Crystalline or amorphous structure

More information

Ch10.4 Attractive Forces

Ch10.4 Attractive Forces Ch10.4 Attractive Forces Intermolecular Forces are the forces holding molecules to each other. Solids have strong forces Gases (vapor) have weak forces Intermolecular forces determine the phase of matter.

More information

Chapter 5. Gases and the Kinetic-Molecular Theory

Chapter 5. Gases and the Kinetic-Molecular Theory Chapter 5 Gases and the Kinetic-Molecular Theory Macroscopic vs. Microscopic Representation Kinetic Molecular Theory of Gases 1. Gas molecules are in constant motion in random directions. Collisions among

More information

Ch. 12 Notes - GASES NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 12 Notes - GASES NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 12 Notes - GASES NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. STANDARD ATMOSPHERIC PRESSURE: 1* atm 760* mm Hg 760* torr 101.3 kpa 14.7 psi * atm, mm Hg,

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

C L A S S I F I C AT I O N O F M AT T E R

C L A S S I F I C AT I O N O F M AT T E R UNIT 2: C L A S S I F I C AT I O N O F M AT T E R MATTER Reflect: What is matter? MATTER Matter: Anything that has mass and occupies space. You can describe matter in terms of quantity by mass NOT weight.

More information