Introduction to Error Analysis

Size: px
Start display at page:

Download "Introduction to Error Analysis"

Transcription

1 Introduction to Error Analysis This is a brief and incomplete discussion of error analysis. It is incomplete out of necessity; there are many books devoted entirely to the subject, and we cannot hope to learn it all here! So, I will introduce a few methods of error analysis commonly used by scientists that will be helpful in our labs. 0.1 The main point to keep in mind! It all boils down to this: Every measurement or calculated value of a physical quantity, let s say X, must include a value for the experimental uncertainty on that quantity (i.e. X). If it does not include this uncertainty, the measurement is meaningless. If you measure the length of a, say a piece of chalk, what would you report? It would depend on two things: the instrument you use to measure the length, and (not to be trivialized) how you define the length. For exemple, suppose you have a brand new untouched piece of chalk, and you measured it with a ruler. You would likely just lay the chalk down next to the ruler and read the length visually. If you were careful with this, you could probably report the length to within ±1 mm, or if you re super careful, about ±0.5 mm. If you used a micrometer, you could likely obtain an accuracy of ±0.025 mm. Could you do better than this? Possibly, but the point I am trying to make here is that you need to report an uncertainty for each measurement. What that uncertainty value is, depends upon your choice of measurement device is. To address the second point (i.e. how you define length, to continue the example), suppose we think in detail about measuring the length of the chalk. I was careful in this example to say a brand new, untouched piece of chalk, because I wanted you to picture in your head, a perfect cylindrical solid whereby the idea of it s length is obvious. But what about a real piece of chalk? If you measure it s length with a ruler, should you measure the length with the chalk lying on a table, standing on end, or is it better to do so on the international space station? Does it matter? In this case, although it DOES matter in actuality, the ruler and human eye are not precise enough to measure this difference. If you had a sufficiently precise measuring instrument, all three of the above methods would yield different results. It would be up to the scientist in this case clearly state what 1

2 2 measurement method and under what conditions the measurement took place (i.e. horizontally, vertically, in free fall, etc.) An additional complication arises from the fact that a real piece of chalk is not a perfect euclidian solid, the two ends may not really be parallel, the surface of the ends of the chalk is not locally flat if you look closely enough. This may all seem absurd to you and you might be thinking : I mean come on, you re just splitting hairs, right? Well, no, it s actually important to think about measurements in this way ALL the time when conducting scientific research. The uncertainty value you attach to a measurement is a quantitative reflection of the instrument used and the care and conditions the object was in during the measurement. You have to boil all this down to a number and describe in the text of your paper how you arrived at this uncertainty. This being the case, let s be a little quantitative and address a common occurrence in the laboratory: how to attach uncertainty to repeated measurements of a quantity. 0.2 Uncertainty from repeated measurements Suppose that you measure some physical quantity repeatedly. For example, suppose you measure the time for an object to accelerate (starting from rest) through some distance, x. Suppose that you measure the following times: TRIAL # Time (s) If asked to report the best value for the time, a sensible thing to do is to report the average (often called the mean) value of the time data, 1 where the average time, t or t, is given by t = t 1 N N t j, where N is the number of measurements of t in the example above, N = 8. Hence, for the above data, t = t = ( ) 8 = = sec. 1 you should be aware that there are other ways to calculate the best value; the mean is only one of several possibilities.

3 0.2. UNCERTAINTY FROM REPEATED MEASUREMENTS 3 Thus, we would report our best estimate for the time as roughly 5.41 seconds (rounded to 3 significant figures). Now, what is the uncertainty on this number? Again, there are several ways to go. A conservative approach The first method is to be very conservative (this has nothing to do with one s political leanings!) and state the maximum and minimum possible values relative to the mean. For example, in the data above, the maximum time is 5.75 seconds, and the minimum time is 5.03 seconds. These values differ from the mean by and seconds, respectively. So, one could use the higher of these two values (to be the most cautious) and state the time plus an uncertainty as t = t = (5.41 ± 0.40) seconds This is perhaps the most straightforward way to get the uncertainty, and it says that we are confident that the time lies pretty close to 5.41 seconds, but may vary by as much as 0.40 seconds from this time. RMS deviation Notice however, that this uncertainty is very cautious; indeed, all but one measurement lies significantly closer to the mean value. Hence, it is reasonable to quote a smaller uncertainty. So here is another way to estimate the uncertainty. This second method is called the root mean square deviation (RMS deviation) and is computed by first calculating the deviation of each point from the mean; i.e. t j = t j t. In this way, values higher than the mean are positive deviations, and values smaller than than the mean are considered negative deviations. The table below shows the deviations for the original data: TRIAL # Time (s) t j Notice that the uncertainty for trials 2 and 7 are not zero; this is because I used the full value for t ( seconds) in calculating t j. At this point, you might be tempted to say Oh great! So now I just take the deviations, add them together and compute the average value and this will be the uncertainty! Bad

4 4 luck. You see, the problem is that if you do this, you will get zero... try it and see! And the problem is even worse than this the average deviation computed in this way will always be zero because of the definition of the mean and the deviation we have used. So, we need a way around this trouble. This is where the terms root, and mean square come into play. The reason the average deviation is zero is because some of the deviations are positive and some are negative (in just the right amounts so that they sum to zero). So, we can make the deviations positive by first squaring them. Then if we add them together they will not sum to zero, and if we divide by the number of trials, we have the mean square deviation: ( t) 2 = 1 N ( t j ) 2. N Of course, if t has units of seconds, then ( t) 2 has units of (seconds) 2, and the obvious way to remedy this situation is to take the square root, thus ending up with the root mean square deviation: t RMS = 1 N ( t j ) N 2. Adding onto the previous data table, we have TRIAL # Time (s) t j ( t j ) ( t) 2 : sec 2 The average squared deviation is s 2 and, taking the square root, the RMS deviation is seconds. Hence, by the root mean square method of calculating the uncertainty, we have, as our estimate of t: t = (5.41 ± 0.21) seconds Notice that this uncertainty is considerably smaller than that derived from the conservative approach. The reasoning is that while some of the time one may measure a time that falls outside of the RMS bounds, on average, the majority will fall within this range. Mean absolute deviation The last way of estimating the uncertainty is called the mean absolute deviation, and proceeds along similar lines to the RMS method. However, instead of calculating the squares of the

5 0.2. UNCERTAINTY FROM REPEATED MEASUREMENTS 5 deviations and then averaging them, we merely calculate the absolute value of the deviation and average those values. That is, ADev = t = 1 N t j t. N for the given data, here is what the absolute deviations would look like: TRIAL # Time (s) t j t : sec Hence, by this method, we would report our time and its uncertainty as RMS.vs. mean absolute deviation t = (5.41 ± 0.15) seconds. Notice that of the three methods I have outlined, the mean absolute deviation has given the smallest uncertainty. The mean absolute deviation is often referred to as a robust estimate of the uncertainty meaning that it is less sensitive to points far away from the mean than in the RMS method. You can see this for yourself in the following simple example. Suppose that you measure a distance, x, three times (this is not enough times to get a good estimate of the average value I am just using it to show the difference between the rms and mean absolute deviations!) and obtain 3.0 m, 3.5 m, and 6.5 m. The average value is therefore m and the deviations are , and , respectively. Hence the rms and mean absolute deviations are: 1 RMS deviation = 3 [( 1.333)2 + ( ) 2 + (2.1667) 2 ] = 1.54 m Mean absolute deviation = 1 3 [ ] = 1.44 m The RMS deviation is very sensitive to the points far from the average, since it sums the squares of the deviations. Thus the mean absolute deviation will consistently produce an uncertainty which is less than or equal to the RMS value. Hence, one data point far from the mean value will strongly effect your uncertainty estimate. Partly because the RMS method is very sensitive to these outlying points, the mean absolute method is gaining wider usage in scientific circles these days.

6 6 Which method should I use? As far as this class is concerned, you may use any one of the three methods. But make sure you indicate which you are using! If you do not have many measurements of a quantity (which there is little excuse for), it is probably best to err on the conservative side, and use the cautious approach. But for most cases, you should be using the RMS or the mean absolute deviations to compute your uncertainties. Take care to stick with one method for each lab; you might try RMS deviations in the first lab and use absolute deviations for the second lab, so that you get practice with both methods. QUESTIONS 1. Calculate the RMS and Absolute deviations for the following data points: x = 0.10 m, 0.08 m, 0.12 m, 0.09 m, 0.10 m, and 0.11 m. Make a table showing the relevant deviations and their averages. 2. Prove the claim made on page 2:... the average deviation computed in this way will always be zero... ; i.e. prove that for any set of N values x i, the average deviation x = 1 N N x j = Suppose that you measure two times with a stopwatch, t=1.51 sec and t=1.51 sec. What if anything is wrong with saying that the uncertainty in t is zero? 4. Suppose that you measure four time with a stopwatch, t=1.51, t=1.50, t=1.40, and t=1.48 seconds. What is the uncertainty you should report in your lab report? (There are several possible answers here, depending on which method you use. In your report of the uncertainty, label the method used to obtain it.

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

Measurement Error PHYS Introduction

Measurement Error PHYS Introduction PHYS 1301 Measurement Error Introduction We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its

More information

MEASUREMENT IN THE LABORATORY

MEASUREMENT IN THE LABORATORY 1 MEASUREMENT IN THE LABORATORY INTRODUCTION Today's experiment will introduce you to some simple but important types of measurements commonly used by the chemist. You will measure lengths of objects,

More information

Physics 2020 Laboratory Manual

Physics 2020 Laboratory Manual Physics 00 Laboratory Manual Department of Physics University of Colorado at Boulder Spring, 000 This manual is available for FREE online at: http://www.colorado.edu/physics/phys00/ This manual supercedes

More information

Measurement and Measurement Errors

Measurement and Measurement Errors 1 Measurement and Measurement Errors Introduction Physics makes very general yet quite detailed statements about how the universe works. These statements are organized or grouped together in such a way

More information

PHY 101L - Experiments in Mechanics

PHY 101L - Experiments in Mechanics PHY 101L - Experiments in Mechanics introduction to error analysis What is Error? In everyday usage, the word error usually refers to a mistake of some kind. However, within the laboratory, error takes

More information

Systematic Uncertainty Max Bean John Jay College of Criminal Justice, Physics Program

Systematic Uncertainty Max Bean John Jay College of Criminal Justice, Physics Program Systematic Uncertainty Max Bean John Jay College of Criminal Justice, Physics Program When we perform an experiment, there are several reasons why the data we collect will tend to differ from the actual

More information

HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM. Common mistakes made on the final exam and how to avoid them

HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM. Common mistakes made on the final exam and how to avoid them HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM Common mistakes made on the final exam and how to avoid them HOW TO GET A GOOD GRADE ON THE MME 2273B EXAM Introduction You now have a lot

More information

Uncertainty: A Reading Guide and Self-Paced Tutorial

Uncertainty: A Reading Guide and Self-Paced Tutorial Uncertainty: A Reading Guide and Self-Paced Tutorial First, read the description of uncertainty at the Experimental Uncertainty Review link on the Physics 108 web page, up to and including Rule 6, making

More information

Measurement Error PHYS Introduction

Measurement Error PHYS Introduction PHYS 1301 Measurement Error Introduction We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its

More information

Introduction to Measurement

Introduction to Measurement Units and Measurement Introduction to Measurement One of the most important steps in applying the scientific method is experiment: testing the prediction of a hypothesis. Typically we measure simple quantities

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world experiment. Suppose you wanted to forecast the results

More information

Significant Figures and an Introduction to the Normal Distribution

Significant Figures and an Introduction to the Normal Distribution Significant Figures and an Introduction to the Normal Distribution Object: To become familiar with the proper use of significant figures and to become acquainted with some rudiments of the theory of measurement.

More information

Physics 115 Experiment 1. Introduction to Measurement and Error Analysis (PHY 115 and 117)

Physics 115 Experiment 1. Introduction to Measurement and Error Analysis (PHY 115 and 117) Physics 115 Experiment 1 Introduction to Measurement and Error Analysis (PHY 115 and 117) Introduction In the sciences, measurement plays an important role. The accuracy of the measurement, as well as

More information

EXPERIMENTAL UNCERTAINTY

EXPERIMENTAL UNCERTAINTY 3 EXPERIMENTAL UNCERTAINTY I am no matchmaker, as you well know, said Lady Russell, being much too aware of the uncertainty of all human events and calculations. --- Persuasion 3.1 UNCERTAINTY AS A 95%

More information

Q25: Record the wavelength of each colored line according to the scale given.

Q25: Record the wavelength of each colored line according to the scale given. C. Measurement Errors and Uncertainties The term "error" signifies a deviation of the result from some "true" value. Often in science, we cannot know what the true value is, and we can only determine estimates

More information

Lecture 2: Reporting, Using, and Calculating Uncertainties 2. v = 6050 ± 30 m/s. v = 6047 ± 3 m/s

Lecture 2: Reporting, Using, and Calculating Uncertainties 2. v = 6050 ± 30 m/s. v = 6047 ± 3 m/s 1 CHAPTER 2: Reporting and Using Uncertainties Quoting a result as: Best Estimate ± Uncertainty In the Archimedes experiment result, we had a table which read Measurement of Crown Density by Two Experts

More information

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation Lab 1: Measurement, Uncertainty, and Uncertainty Propagation 17 ame Date Partners TA Section Lab 1: Measurement, Uncertainty, and Uncertainty Propagation The first principle is that you must not fool yourself

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

The SuperBall Lab. Objective. Instructions

The SuperBall Lab. Objective. Instructions 1 The SuperBall Lab Objective This goal of this tutorial lab is to introduce data analysis techniques by examining energy loss in super ball collisions. Instructions This laboratory does not have to be

More information

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Lecture 02 Groups: Subgroups and homomorphism (Refer Slide Time: 00:13) We looked

More information

Module 3 Study Guide. GCF Method: Notice that a polynomial like 2x 2 8 xy+9 y 2 can't be factored by this method.

Module 3 Study Guide. GCF Method: Notice that a polynomial like 2x 2 8 xy+9 y 2 can't be factored by this method. Module 3 Study Guide The second module covers the following sections of the textbook: 5.4-5.8 and 6.1-6.5. Most people would consider this the hardest module of the semester. Really, it boils down to your

More information

Introduction to 1118 Labs

Introduction to 1118 Labs Name: Partner(s): 1118 section: Desk # Date: Introduction to 1118 Labs Introductory materials are at: www.langaraphysics.com/lab.html. You may find following 3 links useful for this lab: Measurements:

More information

Measurement of Mass, Length, and Time

Measurement of Mass, Length, and Time Measurement of Mass, Length, and Time INTRODUCTION In an experiment 1 we define and determine the relationship between physical characteristics of nature that have been observed. Measurement of those physical

More information

TAYLOR POLYNOMIALS DARYL DEFORD

TAYLOR POLYNOMIALS DARYL DEFORD TAYLOR POLYNOMIALS DARYL DEFORD 1. Introduction We have seen in class that Taylor polynomials provide us with a valuable tool for approximating many different types of functions. However, in order to really

More information

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph 5 6 7 Middle olume Length/olume vs. Diameter, Investigation page 1 of olume vs. Diameter Teacher Lab Discussion Overview Figure 1 In this experiment we investigate the relationship between the diameter

More information

Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics

Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics Prof. Carolina Caetano For a while we talked about the regression method. Then we talked about the linear model. There were many details, but

More information

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself.

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself. IDS 102 Intensity of Light and Heat When talking about a light source, most people are more comfortable with the word brightness than they are with the word intensity. Scientists generally prefer the word

More information

Laboratory 3: Acceleration due to gravity

Laboratory 3: Acceleration due to gravity Physics 1020 NAME Laboratory 3: Acceleration due to gravity Prelab: Please do this prelab before you read the lab writeup. In Laboratory 1 you made use of the value of g, the acceleration due to gravity

More information

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement Experiment 0 ~ Introduction to Statistics and Excel Tutorial Many of you already went through the introduction to laboratory practice and excel tutorial in Physics 1011. For that reason, we aren t going

More information

MITOCW ocw f99-lec30_300k

MITOCW ocw f99-lec30_300k MITOCW ocw-18.06-f99-lec30_300k OK, this is the lecture on linear transformations. Actually, linear algebra courses used to begin with this lecture, so you could say I'm beginning this course again by

More information

Uncertainty and Graphical Analysis

Uncertainty and Graphical Analysis Uncertainty and Graphical Analysis Introduction Two measures of the quality of an experimental result are its accuracy and its precision. An accurate result is consistent with some ideal, true value, perhaps

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Measurement Uncertainties

Measurement Uncertainties Measurement Uncertainties Introduction We all intuitively know that no experimental measurement can be "perfect''. It is possible to make this idea quantitative. It can be stated this way: the result of

More information

Error Analysis. To become familiar with some principles of error analysis for use in later laboratories.

Error Analysis. To become familiar with some principles of error analysis for use in later laboratories. 1. Object Error Analysis To become familiar with some principles of error analysis for use in later laboratories. 2. Apparatus A plastic tub, water, Saxon Bowls, and a stopwatch. 3. Theory In science one

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 41 Pulse Code Modulation (PCM) So, if you remember we have been talking

More information

Course Project. Physics I with Lab

Course Project. Physics I with Lab COURSE OBJECTIVES 1. Explain the fundamental laws of physics in both written and equation form 2. Describe the principles of motion, force, and energy 3. Predict the motion and behavior of objects based

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

Chapter 3. Introduction to Linear Correlation and Regression Part 3

Chapter 3. Introduction to Linear Correlation and Regression Part 3 Tuesday, December 12, 2000 Ch3 Intro Correlation Pt 3 Page: 1 Richard Lowry, 1999-2000 All rights reserved. Chapter 3. Introduction to Linear Correlation and Regression Part 3 Regression The appearance

More information

Problem Solving. Kurt Bryan. Here s an amusing little problem I came across one day last summer.

Problem Solving. Kurt Bryan. Here s an amusing little problem I came across one day last summer. Introduction Problem Solving Kurt Bryan Here s an amusing little problem I came across one day last summer. Problem: Find three distinct positive integers whose reciprocals add up to one. Prove that the

More information

Every time a measurement is taken, we must be aware of significant figures! Define significant figures.

Every time a measurement is taken, we must be aware of significant figures! Define significant figures. SCHM 103: FUNDAMENTALS OF CHEMISTRY Ch. 2: Numerical Side of Chemistry Types of data collected in experiments include: Qualitative: Quantitative: Making Measurements Whenever a piece of data is collected,

More information

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored.

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored. Chapter 2 Error Analysis Name: Lab Partner: Section: 2.1 Purpose In this experiment error analysis and propagation will be explored. 2.2 Introduction Experimental physics is the foundation upon which the

More information

AS 102 Lab The Luminosity of the Sun

AS 102 Lab The Luminosity of the Sun AS 102 Lab The Luminosity of the Sun The Problem SOHO Image of the Sun The luminosity of a light source whether it is a star or the Sun or a light bulb is a measure of the actual light output of the source.

More information

Achilles: Now I know how powerful computers are going to become!

Achilles: Now I know how powerful computers are going to become! A Sigmoid Dialogue By Anders Sandberg Achilles: Now I know how powerful computers are going to become! Tortoise: How? Achilles: I did curve fitting to Moore s law. I know you are going to object that technological

More information

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 What is a linear equation? It sounds fancy, but linear equation means the same thing as a line. In other words, it s an equation

More information

Meas ure ment: Uncertainty and Error in Lab Measurements

Meas ure ment: Uncertainty and Error in Lab Measurements Meas ure ment: Uncertainty and Error in Lab Measurements Measurement is at the heart of science. In order to do science, we must be able to measure quantities such as time, distance, and mass. As famous

More information

VI. OBSERVATIONS / DATA COLLECTION:

VI. OBSERVATIONS / DATA COLLECTION: Lab Write-Up Format THIS OUTLINE WILL HELP YOU TO WRITE OUT YOUR LABS. There may be changes or modifications but all elements must be included in your lab write-up. Each section on your lab paper must

More information

Decimal Scientific Decimal Scientific

Decimal Scientific Decimal Scientific Experiment 00 - Numerical Review Name: 1. Scientific Notation Describing the universe requires some very big (and some very small) numbers. Such numbers are tough to write in long decimal notation, so

More information

Introducing Proof 1. hsn.uk.net. Contents

Introducing Proof 1. hsn.uk.net. Contents Contents 1 1 Introduction 1 What is proof? 1 Statements, Definitions and Euler Diagrams 1 Statements 1 Definitions Our first proof Euler diagrams 4 3 Logical Connectives 5 Negation 6 Conjunction 7 Disjunction

More information

Observing the Sun Physics 107 Lab

Observing the Sun Physics 107 Lab Name: Date: Observing the Sun Physics 107 Lab In this activity, you will use a solar telescope called a Sunspotter to observe the motion of the Sun. From watching its progress across the screen, you will

More information

K/U /39 T/I /50 C /102 A

K/U /39 T/I /50 C /102 A Name: Partner: K/U /39 T/I /50 C /102 A Purpose: What is the relationship between the magnitude of the force causing the acceleration and the frequency of revolution of an object in uniform circular motion?

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY9 Experiment 2: Random Error and Basic Statistics 8/5/2006 Page Experiment 2 Random Error and Basic Statistics Homework 2: Turn in at start of experiment. Readings: Taylor chapter 4: introduction, sections

More information

Counting Out πr 2. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph. Part I Middle Counting Length/Area Out πrinvestigation

Counting Out πr 2. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph. Part I Middle Counting Length/Area Out πrinvestigation 5 6 7 Middle Counting Length/rea Out πrinvestigation, page 1 of 7 Counting Out πr Teacher Lab Discussion Figure 1 Overview In this experiment we study the relationship between the radius of a circle and

More information

MA554 Assessment 1 Cosets and Lagrange s theorem

MA554 Assessment 1 Cosets and Lagrange s theorem MA554 Assessment 1 Cosets and Lagrange s theorem These are notes on cosets and Lagrange s theorem; they go over some material from the lectures again, and they have some new material it is all examinable,

More information

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same?

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same? IP 614 Rolling marble lab Name: Block: Date: A. Purpose In this lab you are going to see, first hand, what acceleration means. You will learn to describe such motion and its velocity. How does the position

More information

Errors: What they are, and how to deal with them

Errors: What they are, and how to deal with them Errors: What they are, and how to deal with them A series of three lectures plus exercises, by Alan Usher Room 111, a.usher@ex.ac.uk Synopsis 1) Introduction ) Rules for quoting errors 3) Combining errors

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.06 Linear Algebra, Spring 2005 Please use the following citation format: Gilbert Strang, 18.06 Linear Algebra, Spring 2005. (Massachusetts Institute of Technology:

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

EPGY Special and General Relativity. Lecture 4B

EPGY Special and General Relativity. Lecture 4B Lecture 4B In the previous lecture we found that the proper description of the universe is one consisting of a four-dimensional manifold (space) endowed with a Lorentzian metric, (of course we are restricting

More information

ERRORS AND THE TREATMENT OF DATA

ERRORS AND THE TREATMENT OF DATA M. Longo ERRORS AND THE TREATMENT OF DATA Essentially all experimental quantities have an uncertainty associated with them. The only exceptions are a few defined quantities like the wavelength of the orange-red

More information

LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95

LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95 LABORATORY 4: ROTATIONAL MOTION PLAYGROUND DYNAMICS: THE MERRY-GO-ROUND Written May-June 1993 by Melissa Wafer '95 In this laboratory period, you will use something that should be familiar to you to explain

More information

Solving with Absolute Value

Solving with Absolute Value Solving with Absolute Value Who knew two little lines could cause so much trouble? Ask someone to solve the equation 3x 2 = 7 and they ll say No problem! Add just two little lines, and ask them to solve

More information

Appendix C: Accuracy, Precision, and Uncertainty

Appendix C: Accuracy, Precision, and Uncertainty Appendix C: Accuracy, Precision, and Uncertainty How tall are you? How old are you? When you answered these everyday questions, you probably did it in round numbers such as "five foot, six inches" or "nineteen

More information

LAB. Balboa Heights, Panama. Boulder, Colorado. Mexico City, Mexico. Data Table. Difference Between P-wave and S-wave. S-wave Arrival Time

LAB. Balboa Heights, Panama. Boulder, Colorado. Mexico City, Mexico. Data Table. Difference Between P-wave and S-wave. S-wave Arrival Time Name: Date: Lab Period: Locating the Epicenter of an Earthquake Introduction: The epicenter is the point on Earth's surface directly above an earthquake. Seismic stations detect earthquakes by the tracings

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Acceleration Due to Gravity

Acceleration Due to Gravity Acceleration Due to Gravity You are probably familiar with the motion of a pendulum, swinging back and forth about some equilibrium position. A simple pendulum consists of a mass m suspended by a string

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Introduction to Statistics, Error and Measurement

Introduction to Statistics, Error and Measurement Introduction to Statistics, Error and Measurement Throughout the semester we will be making measurements. When you do an experiment, it is important to be able to evaluate how well you can trust your measurements.

More information

Physics 1050 Experiment 1. Introduction to Measurement and Uncertainty

Physics 1050 Experiment 1. Introduction to Measurement and Uncertainty Introduction to Measurement and Uncertainty Prelab Questions! Q These questions need to be completed before entering the lab. Show all workings. Prelab 1: A car takes time t = 2.5 +/- 0.2 s to travel a

More information

Physics 2A Lab 1 Measuring Human Reaction Time

Physics 2A Lab 1 Measuring Human Reaction Time Physics 2A Lab 1 Measuring Human Reaction Time Lana Sheridan De Anza College Sept 25, 2018 Overview Discussion of laboratory work Theory Equipment Procedure Why we do lab work To confirm or disprove hypotheses

More information

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS This laboratory allows you to continue the study of accelerated motion in more realistic situations. The cars you used in Laboratory I moved in only

More information

The Nature of Science

The Nature of Science chapter 1 The Nature of Science section 2 Standards of Measurement Before You Read If someone asked you how wide your desk is, how would you measure it? Would you measure using inches, centimeters, feet,

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

We will begin by first solving this equation on a rectangle in 2 dimensions with prescribed boundary data at each edge.

We will begin by first solving this equation on a rectangle in 2 dimensions with prescribed boundary data at each edge. Page 1 Sunday, May 31, 2015 9:24 PM From our study of the 2-d and 3-d heat equation in thermal equlibrium another PDE which we will learn to solve. Namely Laplace's Equation we arrive at In 3-d In 2-d

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

Ratios, Proportions, Unit Conversions, and the Factor-Label Method

Ratios, Proportions, Unit Conversions, and the Factor-Label Method Ratios, Proportions, Unit Conversions, and the Factor-Label Method Math 0, Littlefield I don t know why, but presentations about ratios and proportions are often confused and fragmented. The one in your

More information

Name: Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use. 2, and. v R

Name: Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use. 2, and. v R Centripetal Force Lab Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use F ma, C C Name: HONOS v a C, and v to find out in this lab. Partners: Equipment:

More information

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement SIGNIFICANT DIGITS AND SCIENTIFIC NOTATION LEARNING GOALS Students will: 6 ERROR Describe the difference between precision and accuracy Be able to compare values quantitatively Understand and describe

More information

PHYSICS! Unit 1 Study Plan and Review Packet

PHYSICS! Unit 1 Study Plan and Review Packet Name Do this! PHYSICS! Unit 1 Study Plan and Review Packet Not this! Test Review Checklist Review the unit objectives. - On the next page, read the unit objectives and check off your current standing on

More information

Cut here

Cut here LAB SAFETY MINI BOOK RUBRIC Self and Guardian Evaluation Sheet Directions: Students will make a mini book that tells a creative story which incorporates 7 important lab safety rules. Student must NOT simply

More information

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins. Lab: Vectors Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name Partners Pre-Lab You are required to finish this section before coming to the lab. It will be checked by one of the

More information

Investigating Factors that Affect Erosion

Investigating Factors that Affect Erosion Investigating Factors that Affect Erosion On your erosion walk and while you were reading the cases, you may have noticed that the type of soil or other Earth materials can make a difference in how and

More information

Hi, my name is Dr. Ann Weaver of Argosy University. This WebEx is about something in statistics called z-

Hi, my name is Dr. Ann Weaver of Argosy University. This WebEx is about something in statistics called z- Hi, my name is Dr. Ann Weaver of Argosy University. This WebEx is about something in statistics called z- Scores. I have two purposes for this WebEx, one, I just want to show you how to use z-scores in

More information

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1 Regression diagnostics As is true of all statistical methodologies, linear regression analysis can be a very effective way to model data, as along as the assumptions being made are true. For the regression

More information

Cosets and Lagrange s theorem

Cosets and Lagrange s theorem Cosets and Lagrange s theorem These are notes on cosets and Lagrange s theorem some of which may already have been lecturer. There are some questions for you included in the text. You should write the

More information

Ph211 Summer 09 HW #4, week of 07/13 07/16. Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed).

Ph211 Summer 09 HW #4, week of 07/13 07/16. Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed). Solutions 1 for HW #4: Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed). We make use of: equations of kinematics, and Newton s Laws. You also (routinely) need to handle components of a vector, in nearly

More information

CONDITIONS OF EQUILIBRIUM

CONDITIONS OF EQUILIBRIUM CONDITIONS OF EQUILIBRIUM Introduction Aim: To investigate the conditions required for an object to be in equilibrium This exercise looks at a rigid object which is in both translational and rotational

More information

PH104 Lab 2 Measuring Distances Pre-Lab

PH104 Lab 2 Measuring Distances Pre-Lab Name: Lab Time: PH04 Lab 2 Measuring Distances Pre-Lab 2. Goals This is the second lab. Like the first lab this lab does not seem to be part of a complete sequence of the study of astronomy, but it will

More information

MITOCW MIT18_01SCF10Rec_24_300k

MITOCW MIT18_01SCF10Rec_24_300k MITOCW MIT18_01SCF10Rec_24_300k JOEL LEWIS: Hi. Welcome back to recitation. In lecture, you've been doing related rates problems. I've got another example for you, here. So this one's a really tricky one.

More information

MITOCW ocw f99-lec01_300k

MITOCW ocw f99-lec01_300k MITOCW ocw-18.06-f99-lec01_300k Hi. This is the first lecture in MIT's course 18.06, linear algebra, and I'm Gilbert Strang. The text for the course is this book, Introduction to Linear Algebra. And the

More information

MI 4 Mathematical Induction Name. Mathematical Induction

MI 4 Mathematical Induction Name. Mathematical Induction Mathematical Induction It turns out that the most efficient solution to the Towers of Hanoi problem with n disks takes n 1 moves. If this isn t the formula you determined, make sure to check your data

More information

Data and Error Analysis

Data and Error Analysis Data and Error Analysis Introduction In this lab you will learn a bit about taking data and error analysis. The physics of the experiment itself is not the essential point. (Indeed, we have not completed

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

Introduction to the General Physics Laboratories

Introduction to the General Physics Laboratories Introduction to the General Physics Laboratories September 5, 2007 Course Goals The goal of the IIT General Physics laboratories is for you to learn to be experimental scientists. For this reason, you

More information

Significant Figures. CK12 Editor. Say Thanks to the Authors Click (No sign in required)

Significant Figures. CK12 Editor. Say Thanks to the Authors Click  (No sign in required) Significant Figures CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content,

More information