arxiv: v1 [math.co] 1 Oct 2013

Size: px
Start display at page:

Download "arxiv: v1 [math.co] 1 Oct 2013"

Transcription

1 Tiling in bipartite graphs with asymmetric minimum degrees Andrzej Czygrinow and Louis DeBiasio November 9, 018 arxiv: v1 [math.co] 1 Oct 013 Abstract The problem of determining the optimal minimum degree condition for a balanced bipartite graph on ms vertices to contain m vertex disjoint copies of K s,s was solved by Zhao [10]. Later Hladký and Schacht [5], and Czygrinow and DeBiasio [1] determined the optimal minimum degree condition for a balanced bipartite graph on m(s + t) vertices to contain m vertex disjoint copies of K s,t for fixed positive integers s < t. For a balanced bipartite graph G[U, V ], let δ U = min{deg(u) : u U} and δ V = min{deg(v) : v V }. We consider the problem of determining the optimal value of δ U + δ V which guarantees that G can be tiled with K s,s. We show that the optimal value depends on D := δ V δ U. When D is small, we show that δ U + δ V n + 3s 5 is best possible. As D becomes larger, we show that δ U + δ V can be made smaller, but no smaller than n + s s. However, when D = n C for some constant C, we show that there exist graphs with δ U + δ V n + s s1/3 which cannot be tiled with K s,s. 1 Introduction If G is a graph on n = sm vertices, H is a graph on s vertices and G contains m vertex disjoint copies of H, then we say G can be tiled with H. We now state two important tiling results which motivate the current research. Theorem 1.1 (Hajnal-Szemerédi [4]). Let G be a graph on n = sm vertices. If δ(g) (s 1)m, then G can be tiled with K s. Kierstead and Kostochka generalized, and in doing so slightly improved, the result of Hajnal and Szemerédi. Theorem 1. (Kierstead-Kostochka [6]). Let G be a graph on n = sm vertices. If deg(x)+deg(y) (s 1)m 1, for all non-adjacent x, y V (G) then G can be tiled with K s. Both of these results can be shown to be best possible relative to the respective degree condition, i.e. no smaller lower bound on the degree will suffice. For the rest of the paper we will consider tiling in bipartite graphs. Given a bipartite graph G[U, V ] we say G is balanced if U = V. The following theorem is a consequence of Hall s matching theorem, and is an early result on bipartite graph tiling. School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 8587, USA. address: andrzej.czygrinow@asu.edu. Research of this author is supported in part by NSA grant H Department of Mathematics, Miami University, Oxford, OH USA. address: debiasld@miamioh.edu. 1

2 Theorem 1.3. Let G be a balanced bipartite graph on n vertices. If δ(g) n, then G can be tiled with K 1,1. Zhao determined the best possible minimum degree condition for a bipartite graph to be tiled with K s,s when s. Theorem 1.4 (Zhao [10]). For each s, there exists m 0 such that the following holds for all m m 0. If G is a balanced bipartite graph on n = ms vertices with then G can be tiled with K s,s. δ(g) { n + s 1 if m is even n+3s if m is odd, Hladký and Schacht, and the authors determined the best possible minimum degree condition for a balanced bipartite graph to be tiled with K s,t. Theorem 1.5 (Hladký, Schacht [5]; Czygrinow, DeBiasio [1]). For each t > s 1, there exists m 0 such that the following holds for all m m 0. If G is a balanced bipartite graph on n = m(s + t) vertices with n + s 1 if m is even n+t+s δ(g) 1 if m is odd and t s n+3s 1 if m is odd and t s + 1 then G can be tiled with K s,s. Now we consider a more general degree condition than δ(g). Given a bipartite graph G[U, V ], let δ U (G) := min{deg(u) : u U} and δ V (G) := min{deg(v) : v V }. We will write δ U and δ V instead of δ U (G) and δ V (G) when it is clear which graph we are referring to. The following theorem is again a consequence of Hall s matching theorem and is more general than Theorem 1.3. Theorem 1.6. Let G[U, V ] be a balanced bipartite graph on n vertices. If δ U + δ V can be tiled with K 1,1. n, then G Notice that when s =, Theorem 1.4 says that if G[U, V ] is a balanced bipartite graph on n vertices with δ(g) n + 1, then G can be tiled with K,. Wang made the following general conjecture about -factors in bipartite graphs which would in particular provide an analog of Theorem 1.6 for tiling with K,. Conjecture 1 (Wang [9]). Let G[U, V ] and H be balanced bipartite graphs on n vertices. δ U + δ V n + and (H), then H G. If The authors together with Kierstead [] proved Wang s conjecture when δ V δ U = Ω(n) and n is sufficiently large. The purpose of this paper is to explore a generalization of Theorem 1.4 in the way that Theorem 1.6 generalizes Theorem 1.3. As we will see, this generalization turns out to be less straightforward than one might anticipate. Our first result is as follows. Theorem 1.7. For all s and λ (0, 1 ), there exists m 0 such that the following holds for all m m 0. If G[U, V ] is a balanced bipartite graph on n = ms vertices with δ V δ U λn and δ U + δ V n + 3s 5, then G can be tiled with K s,s.

3 Note that a specific instance of Theorem 1.7 is that for sufficiently large n and δ V δ U = Ω(n), δ U + δ V n + 1 is sufficient for tiling with K, (compare this statement to Conjecture 1). Perhaps surprisingly, we show that a smaller degree sum will suffice when the difference between δ V and δ U is large enough. In order to precisely state our second result we need the following definition. Definition 1.8. Let c : Z + {0, 1} such that { 0 if q = 0 or p + 1 q p c(s) = 1 if 1 q p where p and q are the unique non-negative integers satisfying s = p + q and 0 q p. Theorem 1.9. For all s and λ (0, 1 ), there exists m 0 such that the following holds for all m m 0. Let G[U, V ] be a balanced bipartite graph on n = ms vertices with δ V δ U λn and let k 1 and k be the unique integers such that k 1 + k = m and δ U = k 1 s + s + r with 0 r s 1. For all 0 d s s + c(s) + 1, if k (s d)k 1 and then G can be tiled with K s,s. δ U + δ V n + s s + d + c(s), As mentioned earlier, Zhao gave examples which show that Theorem 1.4 is best possible. In particular, [10] contains an example of a bipartite graph G 0 with δ(g 0 ) = n+3s 3 which cannot be tiled with K s,s. Consequently, there are examples with δ U + δ V = δ(g) = n + 3s 6 which cannot be tiled with K s,s. So the degree condition in Theorem 1.7 cannot be improved in general. Notice that Theorem 1.4 gives a better bound on δ(g) when m is even, which may seem to suggest that δ U + δ V n + s 3 suffices when m is even (based on Theorem 1.7). However, we show that when m is even (or odd) there are graphs with δ U + δ V = n + 3s 7 that cannot be tiled with K s,s. Proposition Let s. For every j N, there exists an integer m and a balanced bipartite graph G[U, V ] on n = ms vertices such that δ U +δ V = n+3s 7 and sj s 1 δ V δ U sj 1, but G cannot be tiled with K s,s. We also give examples to show that the degree is tight when d = 0 in Theorem 1.9. Proposition For every s, there exists a balanced bipartite graph G[U, V ] with k sk 1 and δ U + δ V = n + s s + c(s) 1 such that G cannot be tiled with K s,s. Finally, when δ U is constant, we show that there exist graphs (without constructing them) with δ U + δ V much larger than n + 3s which cannot be tiled with K s,s. Proposition 1.1. There exists s 0, n 0 N such that for all s s 0, there exists a graph G[U, V ] on n n 0 vertices with δ U + δ V = n + s s1/3 such that G cannot be tiled with K s,s. The following figure summarizes the results of Theorems 1.7 and 1.9 and Propositions 1.10, 1.11, and 1.1 by plotting the degree sum needed for tiling with K s,s in terms of the difference between δ V and δ U. The first grey area in the figure represents a range of values of δ V δ U for which we cannot provide a matching lower bound on δ U + δ V. The second grey area represents a range of values of δ V δ U for which we cannot provide non-trivial upper or lower bounds on δ U + δ V. 3

4 { Theorem 1.7 }} { Theorem 1.9 Prop 1.10 {}}{ {}}{ Prop 1.11 {}}{ Prop 1.1 {}}{ δu + δv n + s s1/3 n + 3s 5 n + 3s 4 s n + s s....? C s δ U... sδ U (1 λ)n n C δ V δ U Figure 1 Extremal Examples.1 Tightness when δ V δ U is constant As mentioned in the introduction, Zhao determined the optimal minimum degree condition so that G can be tiled with K s,s. If n is an odd multiple of s, then δ(g) n + 3s is best possible; however, if n is an even multiple of s, then δ(g) n + s 1 is best possible. In Theorem 1.7 and Theorem 1.9 we show that if δ V δ U = Ω(n), then δ U + δ V n + 3s 5 suffices to give a tiling of G with K s,s. We now give an example which shows that even when n is an even multiple of s, we cannot improve the coefficient of the s term in the degree condition. We will need to use the graphs P (m, p), where m, p N, introduced by Zhao in [10]. Lemma.1. For all p N there exists m 0 such that for all m N, m > m 0, there exists a balanced bipartite graph, P (m, p), on m vertices, so that the following hold: (i) P (m, p) is p-regular (ii) P (m, p) does not contain a copy of K,. First we recall Zhao s example which shows that there exist graphs with δ U + δ V = n + 3s 6 such that G cannot be tiled with K s,s. Let G[U, V ] be a balanced bipartite graph on n vertices with n = (k + 1)s. Partition U as U 1 U with U 1 = ks + 1, U = ks + s 1 and partition V as V 1 V with V 1 = ks + s 1, V = ks + 1. Let G[U 1, V 1 ] and G[U, V ] be complete, let G[U 1, V ] P (ks + 1, s ) and let G[U, V 1 ] P (ks + s 1, s 4). We now recall the argument which shows that G cannot be tiled with K s,s. Suppose G can be tiled with K s,s and let K be such a tiling. For F K and i = 1,, let X i (F ) := V (F ) U i, Y i (F ) := V (F ) V i and v(f ) = ( X 1 (F ), X (F ), Y 1 (F ), Y (F ) ). We say F K is crossing 4

5 ks + 1 ks + s 1 ks + s 1 s 4 s ks + 1 Figure : m is odd and δ U + δ V = n + 3s 6 if V (F ) (U 1 V 1 ) and V (F ) (U V ). We now claim that if F is crossing then v(f ) = (s 1, 1, s, 0) or v(f ) = (0, s, 1, s 1). It is not possible for X 1 (F ) and Y (F ) since G[U 1, V ] P (ks + 1, s ) and G[V 1, U ] is K, -free. Thus if X 1 (F ), then Y 1 (F ) = s, X (F ) 1, and X 1 (F ) s 1. If Y (F ), then X (F ) = s, Y 1 (F ) 1, and Y (F ) s 1. This shows that if F is crossing then v(f ) = (s 1, 1, s, 0) or v(f ) = (0, s, 1, s 1). Finally, since we are supposing that G can be tiled, there exists some l N and some subset K K such that every F K is crossing and F K X 1(F ) = ls + 1 and F K Y 1(F ) = ls + s 1. Let i 1 be the number of F K with v(f ) = (s 1, 1, s, 0) and let i be the number of F K with v(f ) = (0, s, 1, s 1). Then we have (i) (s 1)i 1 = ls + 1 and (ii) si 1 + i = ls + s 1 Which implies i 1 + i = s. However, (ii) implies that i s 1, a contradiction. Now we prove Theorem Proof. We give two examples of graphs which cannot be tiled with K s,s ; one when m is even, one m is odd, and both with δ U + δ V = n + 3s 7. Let j be a non-negative integer and let m = k, where k is sufficiently large. Let U and V be sets of vertices such that U = V = ks. Let U be partitioned as U = U 1 U and V be partitioned as V = V 1 V with U 1 = (k j)s + 1, U = (k + j)s 1, V 1 = (k j + 1)s 1 and V = (k + j 1)s + 1. Let G[U i, V i ] be complete for i = 1,. Let G[U 1, V ] be the graph obtained from G[U 1, V ] P ((k + j)s s + 1, s ) by deleting (j 1)s vertices from U 1 while maintaining δ(v, U 1 ) s 3 (note that when s =, δ(v, U 1 ) = 0). Let G[U, V 1 ] be the graph obtained from G[U, V 1 ] P ((k + j)s 1, (j + 1)s 5) by deleting (j 1)s vertices from V 1 while maintaining δ(u, V 1 ) (j + 1)s 6. We have δ U = (k j)s + s 1 + s = (k j + )s 3, δ V = (k + j)s 1 + s 3 = (k j)s (j + 1)s 5 = (k + j + 1)s 4, and thus δ U + δ V = ks + 3s 7 = n + 3s 7. Let j be a non-negative integer and let m = k + 1, where k is sufficiently large. Let U and V be sets of vertices such that U = V = (k + 1)s. Let U be partitioned as U = U 1 U and V be partitioned as V = V 1 V with U 1 = (k j)s + 1, U = (k + j)s + s 1, V 1 = (k j)s + s 1 and V = (k + j)s + 1. Let G[U i, V i ] be complete for i = 1,. Let G[U 1, V ] be the graph obtained from G[U 1, V ] P ((k + j)s + 1, s ) by deleting js vertices from U 1 while maintaining δ(v, U 1 ) s 3 (note that when s =, δ(v, U 1 ) = 0). Let G[U, V 1 ] be the graph obtained from G[U, V 1 ] P ((k + j)s + s 1, (j + )s 5) by deleting js vertices from V 1 while maintaining 5

6 (k j)s + 1 (k + j)s 1 (k j)s + 1 (k + j)s + s 1 s (j + 1)s 6 s (j + )s 6 (j + 1)s 5 s 3 (j + )s 5 s 3 (k j)s + s 1 Case: m even (k + j)s (s 1) (k j)s + s 1 Case: m odd (k + j)s + 1 Figure 3: δ U + δ V = n + 3s 7 δ(u, V 1 ) (j + )s 6. We have δ U = (k j)s + s 1 + s = (k j + )s 3, δ V = (k + j)s + s 1 + s 3 = (k j)s (j + )s 5 = (k + j + )s 4, and thus δ U + δ V = (k + 1)s + 3s 7 = n + 3s 7. The same analysis given before the start of this proof shows that each of these graphs cannot be tiled with K s,s.. Tightness when δ V δ U is large Now we prove Theorem k 1 s + y k s y s x k 1 s + s 1 k s s + 1 Figure 4: δ U + δ V = n + s x y 1 Proof. Let G = (U 1 U, V 1 V ; E) be a bipartite graph with U 1 = k 1 s + y, U = k s y, V 1 = k 1 s + s 1, V = k s s + 1 such that G[U 1, V 1 ], G[U, V ], and G[V 1, U ] are complete. Furthermore suppose V (s x) U 1, every vertex in U 1 has s x neighbors in V, and for all u, u U 1, (N(u) N(u )) V =. Thus we have 0 δ(v, U 1 ) (V, U 1 ) 1 with δ(v, U 1 ) = (V, U 1 ) = 1 only when V = (s x) U 1 and thus δ U + δ V k 1 s + s 1 + s x + k s y = n + s (x + y) 1 (1) Every copy of K s,s which touches both U 1 and U V must have one vertex from U 1, s 1 vertices from U, at most s x vertices from V, and at least x vertices from V 1. So if xy s, then G cannot be tiled. So in order to maximize δ U +δ V we minimize x+y subject to the condition that xy s. The result is that x = y = s, unless 1 q p in which case x = s 1, y = s suffices. Thus (1) gives δ U + δ V = n + s s 1 in general and δ U + δ V = n + s s when 1 q p. 6

7 3 Non-extremal Case In order to prove Theorem 1.7 and Theorem 1.9 we will first prove the following Theorem. Theorem 3.1. For every α > 0 and every positive integer s, there exist β > 0 and positive integer m 1 such that the following holds for all n = ms with m m 1. Given a bipartite graph G[U, V ] with U = V = n, if δ U + δ V (1 β)n, δ V δ U αn and δ U = k 1 s + s + r for some 0 r s 1 with k 1 + k = m, then either G can be tiled with K s,s, or there exist U 1 U, V V, such that U 1 = k 1 s, V = k s, d(u 1, V ) α. () α. If G is a graph for which () holds, then we say G satisfies the extremal condition with parameter 3.1 Regularity and Blow-Up Lemmas In this section we review the Regularity and Blow-up Lemmas. Let Γ be a simple graph on n vertices. For two disjoint, nonempty subsets U and V of V (Γ ), define the density of the pair (U, V ) as d(u, V ) = e(u, V ) U V. Definition 3.. A pair (U, V ) is called ɛ-regular if for every U U with U ɛ U and every V V with V ɛ V, d(u, V ) d(u, V ) ɛ. The pair (U, V ) is (ɛ, δ)-super-regular if it is ɛ-regular and for all u U, deg (u, V ) δ V and for all v V, deg (v, U) δ U. First we note the following facts that we will need. Fact 3.3 (Intersection Property). If (U, V ) is an ɛ-regular pair with density d, then for any Y V with (d ɛ) k 1 Y ɛ V there are less than kɛ U k k-tuples of vertices (u 1, u,..., u k ), u i U, such that Y N(u 1, u,..., u k ) (d ɛ) k Y. Fact 3.4 (Slicing Lemma). Let (U, V ) be an ɛ-regular pair with density d, and for some λ > ɛ let U U, V V, with U λ U, V λ V. Then (U, V ) is an ɛ -regular pair of density d where ɛ = max{ ɛ λ, ɛ} and d d ɛ. Our main tool in the proof will be the Regularity Lemma of Szemerédi [8] which we state in its multipartite form. Lemma 3.5 (Regularity Lemma - Bipartite Version). For every ɛ > 0 there exists M := M(ɛ) such that if G := G[U, V ] is a balanced bipartite graph on n vertices and d [0, 1], then there is a partition of U into clusters U 0, U 1,..., U t, a partition of V into clusters V 0, V 1,..., V t, and a subgraph G := G [U, V ] with the following properties: (i) t M, (ii) U 0 ɛn, V 0 ɛn, (iii) U i = V i = l ɛn for all i [t], (iv) deg G (x) > deg G (x) (d + ɛ)n for all x V (G), 7

8 (v) All pairs (U i, V i ), i, j [t], are ɛ-regular in G each with density either 0 or exceeding d. In addition, we will use the Blow-up Lemma of Komlós, Sárközy, and Szemerédi [7]. Lemma 3.6 (Blow-up Lemma). Given δ > 0, > 0 there exists ɛ > 0 such that the following holds. Let (U, V ) be an (ɛ, δ)-super-regular pair. If T is a U, V -bigraph with maximum degree (T ) and T is embeddable into the complete bipartite graph K U, V then it is also embeddable into (U, V ). 3. Proof of Theorem 3.1 Here we prove Theorem 3.1. We show that if G is not in the extremal case, we obtain a tiling with K s,s ; otherwise G is in the extremal case which we deal with in Section 4. The proof is adopted from Zhao [10]. Proof. Let ɛ, d, and β be positive real numbers such that ɛ d β α and suppose n is large. Let G[U, V ] be a bipartite graph with U = V = n, δ U + δ V (1 β)n, and δ V δ U αn. We also have δ U = k 1 s + s + r for some 0 r s 1 and we set k := m k 1. Let γ 1, γ be positive real numbers such that δ U (γ 1 β)n, δ V (γ β)n and γ 1 + γ = 1. Note that γ γ 1 α. We apply Lemma 3.5 to G with parameters ɛ and d. We obtain a partition of U into U 0, U 1,..., U t and V into V 0, V 1,..., V t such that U i = V i = l ɛn for all i [t] and U 0 = V 0 ɛn. In the graph G from Lemma 3.5, we have (U i, V j ), is ɛ-regular with density either 0 or exceeding d for all i, j [t]. We also have deg G (u) > (γ 1 β)n (ɛ + d)n for u U and deg G (v) > (γ β)n (ɛ + d)n for v V. We now consider the reduced graph of G. Let G r be a bipartite graph with parts U := {U 1,..., U t } and V := {V 1,..., V t } such that U i is adjacent to V j, denoted U i V j, if and only if (U i, V j ) is an ɛ-regular pair with density exceeding d. A standard calculation gives the following degree condition in the reduced graph, δ U (γ 1 β)t and δ V (γ β)t. Claim 3.7. If G r contains two subsets X U and Y V such that X (γ 1 3β)t, Y (γ 3β)t and there are no edges between X and Y, then () holds in G. Proof. Without loss of generality, assume that X = (γ 1 3β)t and Y = (γ 3β)t. Let U = Ui XU i and V = Vi Y V i. We have and (γ 1 4β)n < (γ 1 3β)tl = X l = U (γ 1 3β)n (γ 4β)n < (γ 3β)tl = Y l = V (γ 3β)n. Since there is no edge between X and Y we have e G (U, V ) = 0. Consequently e G (U, V ) e G (U, V ) + d U V + ɛn U < dk 1 sk s. By adding at most 4βk 1 s vertices to U and 4βk s vertices to V, we obtain two subsets of size k 1 s and k s respectively, with at most dk 1 sk s + 4βk 1 sk s + 4βk 1 sk s < αk 1 sk s edges, and thus () holds in G. For the rest of this proof, we suppose that () does not hold in G. 8

9 Claim 3.8. G r contains a perfect matching. Proof. Let M be a maximum matching of G r. After relabeling indices if necessary, we may assume that M = {U i V i : i [k], k t}. If M is not perfect, let x U and y V be vertices which are unsaturated by M. Then the neighborhood N(x) is a subset of V (M), otherwise we can enlarge M by adding an edge xz for any z N(x) \ V (M). We have N(y) V (M) for the same reason. Now let I = {i : V i N(x)} and J = {j : U j N(y)}. If I J ; that is, there exists i such xv i and yu i are both edges, then we can obtain a larger matching by replacing U i V i in M by xv i and yu i. Otherwise, assume that I J =. Since I (γ 1 β)t and J (γ β)t and () does not hold in G, then by the contrapositive of Claim 3.7 there exists an edge between {U i : i I} and {V j : j J}. This implies that there exist i j such that xv i, U i V j, and yu j are edges. Replacing U i V i, U j V j in M by xv i, U i V j and yu j, we obtain a larger matching, contradicting the maximality of M. By Claim 3.8 we assume that U i V i for all i [t]. If each ɛ-regular pair (U i, V i ) is also super-regular and s divides l, then the Blow-up Lemma (Lemma 3.6) guarantees that G [U i, V i ] can be tiled with K s,s (since K l,l can be tiled with K s,s ). If we also know that U 0 = V 0 =, then we obtain a K s,s -tiling of G. Otherwise we do the following steps (details of these steps are given next). Step 1 : For each i 1, we move vertices from U i to U 0 and from V i to V 0 so that each remaining vertex in (U i, V i ) has at least (d ɛ)l neighbors. Step : We eliminate U 0 and V 0 by removing copies of K s,s, each of which contains at most one vertex of U 0 V 0. Step 3 : We make sure that for each i 1, U i = V i > (1 d)l and U i is divisible by s. Finally we apply the Blow-up Lemma to each (U i, V i ) (which is still super-regular) to finish the proof. Note that we always refer to the clusters as U i, V i, i 0 even though they may gain or lose vertices during the process. Step 1. For each i 1, we remove all u U i such that deg(u, V i ) < (d ɛ)l and all v V i such that deg(v, U i ) < (d ɛ)l. Fact 3.3 (with k = 1) guarantees that the number of removed vertices is at most ɛl. We then remove more vertices from either U i or V i to make sure U i and V i still have the same number of vertices. All removed vertices are added to U 0 and V 0. As a result, we have U 0 = V 0 ɛn. Step. This step implies that a vertex in U 0, V 0 can be viewed as a vertex in U i or V i for some i 1. For a vertex x V (G) and a cluster C, we say x is adjacent to C, denoted x C, if deg G (x, C) dl. We claim that at present, each vertex in U is adjacent to at least (γ 1 β)t clusters. If this is not true for some u U, then we obtain a contradiction (γ 1 β)n deg G (u) (γ 1 β)tl + dlt + ɛn < (γ 1 3β/)n. Likewise, each vertex in V is adjacent to at least (γ β)t clusters. Assign an arbitrary order to the vertices in U 0. For each u U 0, we pick some V i adjacent to u. The selection of V i is arbitrary, but no V i is selected more than dl 6s times. Such V i exists even for the last vertex of U 0 because U 0 ɛn < (γ 1 β)t dl 6s. For each u U 0 and its corresponding V i, we remove a copy of K s,s containing u, s vertices in V i, and s 1 vertices in U i. Such a copy of K s,s can always be found even if u is the last vertex in U 0 because (U i, V i ) is ɛ-regular and deg G (u, V i ) dl > ɛl + dl 6s s thus Fact 3.3 (with k = s 1) allows us to choose s 1 vertices from U i and s vertices from N(u) V i to complete the copy of K s,s. As a result, U i now has one more vertex than V i, so one may view this process as moving u to U i. We repeat this process for all v V 0 as well. By the end of this step, 9

10 we have U 0 = V 0 =, and each U i, V i, i 1 contains at least l ɛl dl/3 vertices (for example, U i may have lost dl(s 1) 6s vertices because of U 0 and dl/6 vertices because of V 0 ). As a result, we have δ(g[u i, V i ]) ( d 3 ɛ)l for all i 1. Note that the sizes of U i and V i may currently be different. Step 3. We want to show that for any i j, there is a path U i V i1 U i1... V ia U ia V j U j (resp. V i U i1 V i1... U ia V ia U j V j ) for some 0 a. If such a path exists, then for each i b, 1 b a + 1 (assume that i = i 0 and j = i a+1 ), we may remove a copy of K s,s containing one vertex from U ib 1, s vertices from V ib, and s 1 vertices from U ib. This removal reduces the size of U i by one, increases the size of U j by one but does not change the sizes of other clusters (all modulo s). We may therefore adjust the sizes of U i and V i (for i 1) such that U i = V i and U i is divisible by s. To do this we will need at most t paths: (i) Let r := n t mod s. (ii) Pair up the current biggest set U i and current smallest set U j and move vertices from U i to U j until one of the sets has exactly n t r elements. (iii) Repeat this process until all but one set in U has exactly n t r elements (there will be one set, say U t, with as many as (t 1) extra vertices) (iv) Do the same for the clusters in V. Now we show how to find this path from U 1 to U. First, if U 1 V, then U 1 V U is a path. Let I = {i : U 1 V i } and J = {i : U i V }. If there exists i I J, then we find a path U 1 V i U i V U. Otherwise I J =. Since both I (γ 1 β)t and J (γ β)t, Claim 3.7 guarantees that there exists i I and j J such that U i V j. We thus have a path U 1 V i U i V j U j V U. Note that in this step we require that a cluster is contained in at most dl 3s paths. This restriction has little impact on the arguments above: we have I > (γ 1 3β)t and J > (γ 3β)t instead, still satisfying the conditions of Claim 3.7. Now U 0 = V 0 =, and for all i 1, U i = V i is divisible by s. Let K be the union of all vertices in existing copies of K s,s and note that, U i \ K = V i \ K l ɛl dl/3, which implies δ(g[u i, V i ]) ( d 3 ɛ)l d 4 l for i 1. Thus Fact 3.4 implies that each pair (U i, V i ) is (ɛ, d 4 )-super-regular. Applying the Blow-up Lemma to each (U i, V i ), we find the desired K s,s -tiling. 4 Extremal Case In this section we prove Theorems 1.7 and 1.9 in the case when G satisfies the extremal condition. Given s and λ (0, 1 ), let α > 0 be sufficiently small. Let G[U, V ] be a balanced bipartite graph on n = ms vertices for sufficiently large n. Without loss of generality suppose δ V δ U and note that δ U λn. Suppose G is edge minimal with respect to the condition δ U + δ V n + c, and that G satisfies the extremal condition with parameter α. Let k 1 be defined by δ U = k 1 s + s + r, where 0 r s 1 and let k s = n k 1 s. The proof will split into cases depending on whether k 1 (1 1 s )k (we say k k 1 ) or k 1 > (1 1 s )k (we say k 1 k ). When k 1 > (1 1 s )k, we are only dealing with Theorem 1.7 in which case we have δ U + δ V n + 3s 5. Since δ U = k 1 s + s + r, we have δ V k s + s 5 r. Since G is edge minimal we have δ V = k s + s 5 r, and since δ V δ U, we have k k 1. If δ V = δ U, then we have δ(g) n + 3s 5 > { n + s if m is even n+3s 3 if m is odd, 10

11 which is solved in [10]. So we may suppose that δ V > δ U. Claim 4.1. If k = k 1, then r s 6 and consequently δ V = k s + s 5 r k s + s. If k = k 1 + 1, then r s 3 and consequently δ V = k s + s 5 r k s + s. Proof. Both statements are implied the following inequality: k s + s 5 r = δ V > δ U = k 1 s + s + r. When k 1 (1 1 s )k, we either have k < (s d)k 1, in which case we are still only dealing with Theorem 1.7 and we will assume δ U + δ V n + 3s 5, or we have k (s d)k 1, in which case we are dealing with Theorem 1.9 and we will assume δ U + δ V δ U + δ V n + s s + d + c(s). 4.1 Pre-processing Let U = U \ U 1 and V 1 = V \ V. Let U 1 = {x U : deg(x, V ) < α 1/3 k 1 s}, V = {x V : deg(x, U 1) < α 1/3 k s}, U = {x U : deg(x, V 1) < α 1/3 k 1 s deg(x, V ) > (1 α 1/3 )k s}, V 1 = {x V : deg(x, U ) < α 1/3 k s deg(x, U 1) > (1 α 1/3 )k 1 s}, U 0 = U \ (U 1 U ), and V 0 = V \ (V 1 V ). Claim 4.. (i) k 1 s α /3 k s U 1, V 1 k 1 s + α /3 k 1 s (ii) k s α /3 k 1 s U, V k s + α /3 k s (iii) U 0, V 0 α /3 n (iv) δ(u 0, V 1 ) α 1/3 k 1 s α /3 k s, δ(u 0, V ) α 1/3 k 1 s α /3 k 1 s (v) δ(v 0, U 1 ) α 1/3 k s α /3 k s, δ(v 0, U ) α 1/3 k s α /3 k 1 s (vi) δ(g[u i, V i ]) k i s α 1/3 k i s α /3 k 3 i s (1 α 1/3 )k i s (vii) (U 1, V ) α 1/3 k 1 s, (V, U 1 ) α 1/3 k s Proof. We have α 1/3 k 1 s U 1 \ U 1 e(u 1 \ U 1, V ) e(u 1, V ) αk 1 sk s which gives U 1 \ U 1 α /3 k s and thus U 1 k 1 s α /3 k s. Also α 1/3 k s V \ V e(v \ V, U 1) e(v, U 1) αk 1 sk s which gives V \ V α /3 k 1 s and thus V k s α /3 k 1 s. Since e(u 1, V ) αk 1sk s, we have e(u, V ) k sk s αk 1 sk s and e(u 1, V 1 ) k 1sk 1 s αk 1 sk s. Thus α 1/3 k s U \ U ē(u, V ) αk 1 sk s 11

12 which gives U \ U α /3 k 1 s and thus U k s α /3 k 1 s. Also α 1/3 k 1 s V 1 \ V 1 ē(u 1, V 1) αk 1 sk s which gives V 1 \ V 1 α /3 k s and thus V 1 k 1 s α /3 k s. Putting these results together we have U 0, V 0 α /3 n, U 1, V 1 k 1 s + α /3 k 1 s, and U, V k s + α /3 k s. By the definition of U 1, U, V 1, V and the lower bounds on their sizes, we have δ(u 0, V 1 ) α 1/3 k 1 s α /3 k s, δ(u 0, V ) α 1/3 k 1 s α /3 k 1 s, δ(v 0, U 1 ) α 1/3 k s α /3 k s, and δ(v 0, U ) α 1/3 k s α /3 k 1 s. By the definition of U 1, V and the upper bounds on their sizes we have (U 1, V ) α 1/3 k 1 s and (V, U 1 ) α 1/3 k s. 4. Idea of the Proof We start with the partition given in Section 4.1 and we call U 0 and V 0 the exceptional sets. Let i {1, }. We will attempt to update the partition by moving a constant number (depending only on s) of special vertices between U 1 and U, denote them by X, and special vertices between V 1 and V, denote them by Y, as well as partitioning the exceptional sets as U 0 = U0 1 U 0 and V 0 = V0 1 V 0. Let U 1, U, V 1 and V be the resulting sets after moving the special vertices. Suppose u is a special vertex in the set U1. The degree of u in V 1 may be small, but u will have a set of at least s neighbors in V1 which are disjoint from the neighbors of any other special vertex in U1. Furthermore, these neighbors of u in V 1 will have huge degree in U 1, so it will be easy to incorporate each special vertex into a unique copy of K s,s. Our goal is to obtain two graphs, G 1 := G[U1 U 0 1, V 1 V 0 1] and G := [U U 0, V V 0 ] so that G 1 satisfies U1 U0 1 = l 1 s, V1 V0 1 = l 1 s and G satisfies U U0 = l s, V V0 = l s, for some positive integers l 1, l. We tile G 1 as follows. We incorporate all of the special vertices into copies of K s,s. We now deal with the exceptional vertices: Claim 4. gives U 0, V 0 α /3 n and δ(u 0, V i ), δ(v 0, U i ) sα /3 n, so they may greedily be incorporated into unique copies of K s,s. Then we are left with two balanced almost complete graphs, which can be easily tiled. So throughout the proof, if we can make, say U1 U 0 1 and V 1 V 0 1 equal and divisible by s, we simply state that we are done. 4.3 Preliminary Lemmas In this section we give some lemmas which will be used in the proof of Theorems 1.7 and 1.9. Recall that in each of those theorems we suppose k s k 1 s λn. Lemma 4.3 (Zhao [10], Fact 5.3). Let F be an A, B-bigraph with δ := δ(a, B) and := (B, A) Then F contains f h vertex disjoint h-stars from A to B, and g h vertex disjoint h-stars from B to A (the stars from A to B and those from B to A need not be disjoint), where f h (δ h + 1) A h + δ h + 1, 1 g h δ A (h 1) B + hδ h + 1.

13 Lemma 4.4. Let G[A, B] be a bipartite graph with B = ls + b for some positive integers l and b. Let 0 x s 1 and let γ be a small constant such that α 1/3 γ 1 s. If b < 1 γ and (i) δ(b, A) s x, (A, B) α 1/3 k s, and B α 1/6 A then there are at least b vertex disjoint (s x)-stars from B to A. Suppose k s + α /3 k s A, B k 1 s α /3 k s. If (ii) δ(a, B) s 1 + b and k 1 > (1 1 s )k, then there are at least b vertex disjoint s-stars from B to A. If b < 1 γ and (iii) δ(a, B) s, k 1 > (1 1 s )k, and (B, A) α 1/3 k s or (iv) δ(a, B) d, A s 1/ d B, and (B, A) α 1/3 k s, then there are at least b vertex disjoint s-stars from B to A. Furthermore, if b 1 γ and (v) δ(a, B) b/4 and (B, A) < α 1/3 k s or (vi) δ(b, A) b/4 and (A, B) < α 1/3 k s, then there are at least b vertex disjoint s-stars from B to A. Proof. (i) Suppose b < 1 γ, δ(b, A) s x, (A, B) α1/3 k s, and B α 1/6 A. Let S B be the maximum set of vertex disjoint (s x)-stars from B to A and let f s x = S B. By Lemma 4.3, we have f s x B (s x)α 1/3 k s + 1 α1/6 3sα 1/3 1 γ b (ii) Suppose δ(a, B) s 1 + b and k 1 > (1 1 s )k. Let S A be a maximum set of vertex disjoint s-stars with centers C B and leaves L A. Suppose C b 1. Then s( A L ) (s 1 + b C )( A L ) e(b \ C, A \ L) (s 1)( B C ), which implies s(k 1 s α /3 k s) (s 1)(k s + α /3 k s) + s L (s 1) C. Thus sk 1 (s 1 )k, contradicting the fact that k 1 > (1 1 s )k. (iii) Suppose b < 1 γ, δ(a, B) s, k 1 > (1 1 s )k, and (B, A) α 1/3 k s. Let S A be the maximum set of vertex disjoint s-stars from A to B and let g s = S A. By Lemma 4.3, we have g s s A (s 1) B α 1/3 k s + s s + 1 s(k 1s α /3 k s) (s 1)(k s + α /3 k s) 3α 1/3 k s Where the third inequality holds since sk 1 s > (s 1 )k s. 1 1α 1/3 1 γ b 13

14 (iv) Suppose b < 1 s 1/ γ, δ(a, B) d, A d B, and (B, A) α 1/3 k s. Let S B be the maximum set of vertex disjoint s-stars from B to A and let g s = S B. By Lemma 4.3, we have g s d A (s 1) B α 1/3 k s + sd s + 1 B / 3α 1/3 k s λ 6α 1/3 1 γ b (v) Suppose b 1 γ, δ(a, B) b/4 and (B, A) < α1/3 k s. Let S B be the maximum set of vertex disjoint s-stars from B to A and let g s = S B. By Lemma 4.3, we have g s b 4 A (s 1) B bλ/4 (s 1) α 1/3 k s + s b 4 s + 1 3α 1/3 b (vi) Suppose b 1 γ, δ(b, A) b/4 and (A, B) < α1/3 k s. Let S B be the maximum set of vertex disjoint s-stars from B to A and let f s = S B. By Lemma 4.3, we have f s ( b 4 s + 1) B sα 1/3 k s + b 4 s + 1 ( b 4 s + 1)λ 3α 1/3 b Lemma 4.5. Let G[A, B] be a bipartite graph with A = l 1 s + a and B = l s + b such that 1 b s 1. Suppose further that k s+α /3 k s A, B k 1 s α /3 k s and (A, B), (B, A) α 1/3 k s. If (i) a 1 and δ(a, B) + δ(b, A) s 3 + a + b or (ii) a = 0 and δ(a, B) + δ(b, A) s + b, then there is a set S A of a vertex disjoint s-stars from A to B and a set S B of b vertex disjoint s-stars from B to A such that the stars in S A are disjoint from the stars in S B. Proof. Let γ be a real number such that α 1/3 γ 1 s. Case 1 a > 1 γ. Suppose first δ(b, A) 1 (s 3 + a + b). In this case we apply Lemma 4.4(vi) to get a set of b vertex disjoint s-stars with centers C B and leaves L A. Then since δ(b, A \ L) 1 (s 3 + a + b) bs > a 4 we apply Lemma 4.4(v) to get a set of a vertex disjoint s-stars from A \ L to B \ C. Now suppose δ(a, B) > 1 (s 3 + a + b). As before, we apply Lemma 4.4(v) to get a set of b vertex disjoint s-stars with centers C B and leaves L A. Then since δ(a, B \ C) > 1 (s 3 + a + b) b > a 4 we apply Lemma 4.4(vi) to get a set of a vertex disjoint s-stars from A \ L to B \ C. Case 1 a 1 γ. Suppose first that δ(b, A) s 1 + a. We apply Lemma 4.4(ii) to get a set of a vertex disjoint s-stars with centers C A and leaves L B. We still have δ(b \ N(C), A \ C) s 1 + a and B \ N(C) B α1/3 γ k s α 1/6 A, thus we can apply Lemma 4.4(i) to get a set of b vertex disjoint s-stars from B \ N(C) to A \ C. Now suppose δ(a, B) s + b. We apply Lemma 4.4(ii) to get a set of b vertex disjoint s-stars with centers C B and leaves L A. We still have δ(a \ L, B \ C) s + b b = s so we apply Lemma 4.4(i) to get a vertex disjoint s-stars from A \ L to B \ C. 14

15 Case 3 a = 0. We have δ(a, B)+δ(B, A) s +b s 1 and thus δ(a, B) s or δ(b, A) s. In either case we can apply Lemma 4.4(i) or (iii) to get a set of b vertex disjoint s-stars from B to A. In addition, we will use the following fact from [1]. Lemma 4.6. Suppose U 0 s. Let V 1 V 1 and V V such that δ(v 1, U 0)+δ(V, U 0) U 0 +s. If V 1 n 8 and V n 8, then for any 0 b s, there is a K s,s =: K with s vertices in U 0, b vertices in V 1 and s b vertices in V. 4.4 Case k k 1 In this section we prove Theorem 1.9 and prove Theorem 1.7 in the case that k 1 (1 1 s )k. Let G be a graph which satisfies the extremal condition and for which k 1 (1 1 s )k. Recall the bounds from Claim 4., specifically k 1 s α /3 k s U 1, V 1 k 1 s + α /3 k 1 s, k s α /3 k 1 s U, V k s + α /3 k s, and U 0, V 0 α /3 n. The fact that δ U + δ V n implies δ(v 1, U ) δ V U 0 U 1 (k k 1 α /3 k 1 )s ( 1 s k α /3 k 1 )s > 1 4s k s. (3) Proof. Note that s s + c(s) with equality if and only if s =, so d is defined for all s. Let α 1/3 γ 1 s. Let l 1 be maximal so that U 1 l 1 s and V 0 V 1 l 1 s. Let y := U 1 l 1 s and z := V 0 V 1 l 1 s. We note that n + 3s 5 n + s s + d + c(s) with equality if and only if s =. So for this proof we will assume δ U + δ V n + s s + d + c(s) with one exception that we point out. Claim 4.7. If there exists l such that V 0 V 1 ls and U 1 ls, then G can be tiled with K s,s. Proof. Suppose there exists such an l. By the choice of l 1, we can assume U 1 (l 1 + 1)s and V 0 V 1 (l 1 + 1)s. By (3) we have δ(v 1, U ) > 1 4s k s sα /3 n and thus we can greedily choose a set of z s vertex disjoint s-stars from V 1 to U with centers C V and leaves L U. Let V 1 := V 1 \C V and U := U \ L U, since δ(v 1, U ) 1 8s k s we may apply Lemma 4.3 to the graph induced by U and V 1 to get a set of s y vertex disjoint s-stars from U to V 1. We move the centers of the stars giving U 1 + (s y) = (l 1 + 1)s = V 0 V 1 (z s) and we are done. If z s, then by the maximality of l 1 we have y < s and thus we can apply Claim 4.7 to finish. If y = 0, then we can also apply Claim 4.7 to finish. So for the rest of the proof, suppose that 0 z s 1 and 1 y. Our goal is to show that there exists a set S U of vertex disjoint (s x)-stars from U 1 to V such that V 0 V 1 x S U U 1 S U = l 1 s and a set T V of vertex disjoint s-stars from V 1 to U so that V 0 V 1 x S U T V = l 1 s for some 0 x s 1. Since δ U + δ V n + s s + d + c(s), we have δ(u 1, V ) + δ(v, U 1 ) n + s s + d + c(s) V 0 V 1 U 0 U Case 1 U 1 V 0 V 1 > 0. s s + d + c(s) + y z (4) 15

16 Case 1.1 y 1 γ. We have δ(u 1, V ) + δ(v, U 1 ) s s + d + c(s) + y z y + s s + d + c(s) + 1 and thus there are two cases. Either δ(u 1, V ) 1 (y+s s +d+c(s)+1) and we apply Lemma 4.4(vi) to get y vertex disjoint s-stars from U 1 to V or δ(v, U 1 ) > 1 (y + s s + d + c(s) + 1) and we apply Lemma 4.4(v) to get y vertex disjoint s-stars from U 1 to V. We move the centers from U 1 to U to make U 1 = l 1 s. Then we move vertices from V 0 V 1 to V to make V 0 V 1 = l 1 s. Case 1. y < 1 γ. Case δ(u 1, V ) s. Apply Lemma 4.4(i) with x = 0 to get y vertex disjoint s-stars from U 1 to V. Case 1... δ(u 1, V ) s 1. By (4) we have δ(v, U 1 ) s s +d+c(s)+y z (s 1) = s s +d+c(s)+1+y z d+1. Since k (s d)k 1 and thus V (s 1 d) U 1 s 1 d+1 U 1, we can apply Lemma 4.4(iv) to get y vertex disjoint s-stars from U 1 to V. Case. U 1 V 0 V 1 0. In this case we have y z. Rearranging (4) gives Also since k 1 k s d, we have δ(u 1, V ) + δ(v, U 1 ) s s + d + c(s) (z y). (5) δ(v 1, U ) δ V U 0 U 1 (k k 1 α /3 k 1 )s (1 1 + α/3 s d )k s s d 1 α/3 (s d)(1 + α /3 ) U s d 1 α1/3 U s d (6) If δ U +δ V n+3s 5, then (5) gives δ(u 1, V )+δ(v, U 1 ) s 3 since z y s. Thus we have δ(v, U 1 ) s 1 or δ(u 1, V ) s 1. In either case we can get y vertex disjoint (s 1)-stars from U 1 to V by Lemma 4.4(iii) or Lemma 4.4(i) with x = 1. For each (s 1)-star we choose a vertex from V 1 and (s 1)-vertices in U, which is possible by (6) and z y. So for the rest of the proof we assume δ U + δ V n + s s + d + c(s). Case.1. z y s s + c(s) + 1. Case.1.1. δ(u 1, V ) s 1. We can get y vertex disjoint (s 1)-stars from U 1 to V by Lemma 4.4(i) with x = 1. For each (s 1)-star we choose a vertex from V 1 and (s 1)-vertices in U, which is possible by (6) and z y. Case.1.. δ(u 1, V ) s. So (5) and the condition of Case..1. gives δ(v, U 1 ) s s + d + c(s) (s s + c(s) + 1) (s ) = d + 1. We can get y vertex disjoint s-stars from U 1 to V by Lemma 4.4(iv) as in Case 1... Case.. z y s s + c(s) +. If δ(u 1, V ) s 1 or δ(v, U 1 ) d + 1, then we would be done as in the previous two cases. So suppose δ(u 1, V ) s and δ(v, U 1 ) d. By (5), we have s s x = δ(u 1, V ) s s + d + c(s) (z y) δ(v, U 1 ) (7) s s + c(s) + d

17 for some x s d 1. Let S U be a set of y vertex disjoint (s x)-stars from U 1 to V, which exists by Lemma 4.4(i). For each (s x)-star in S U we will choose s 1 vertices from U and x vertices from V 1 to complete a copy of K s,s. Let u 1 be the center of a star in S U and ( let v1 1, v 1,.. )., vx 1 be a set of x vertices in N(u 1 ) V 1. By (6), we have N(v1 1, v 1,..., vx 1 ) U 1 x(1+α1/3 ) s d U. Let v 1, v,..., vs x be a set of s x vertices in V. By Claim 4., we have N(v 1, v,..., vs x ) U (1 (s x)α 1/3 ) U. Thus ( ) N(v1, 1 v1,..., v1 x, v, 1 v,..., v s x ) U 1 x(1 + α1/3 ) (s x)α 1/3 U α U s d and we can choose x vertices from V 1 and s 1 vertices from U to turn each s x star into a copy of K s,s. Finally we must be sure that V 0 V 1 xy ls, i.e. z xy. There are two cases. Case q p and consequently c(s) = 1. By (7) and δ(v, U 1 ) d, we get and thus x + y z (s s + 1) (8) ( ) z (s s + 1) xy z. The first inequality is by (8) and the arithmetic mean-geometric mean inequality. To verify the ( ) second inequality, let F (z) = z and note s s + 3 z s 1. Using z (s s +1) calculus, we see that F achieves a maximum at s s + 3, F is decreasing on the interval [s s + 3, s 1] and F (s 1) = s 1 ( s 1) = p + q 1 p 0. Case... q = 0 or p + 1 q p and consequently c(s) = 0. By (7) and δ(v, U 1 ) d, we get x + y z (s s ). (9) If z = s 1, then (9) gives x + y s 1. Since s 1 is odd, we have ( ) ( ) s s xy = s ( s 1) s 1 = z where the last inequality holds by the assumption of this case. So we may assume z s. So we have ( ) z (s s ) xy z. The first inequality holds by (9) and the arithmetic mean-geometric mean inequality. To verify the ( ) second inequality, let F (z) = z and note s s + z s. Using z (s s ) calculus, we see that F achieves a maximum at s s +, F is decreasing on the interval [s s +, s ] and F (s ) = s ( s 1). When q = 0 we have p, and thus F (s ) = s ( s 1) = p (p p + 1) = p 3 1. When q p + 1, we have F (s ) = s ( s 1) = p + q p = q 0. 17

18 4.5 Case k k 1 We are left to prove Theorem 1.7 when k 1 > (1 1 s )k. The proof is split into two cases depending on whether s = or s 3. The proof of the s 3 case follows a similar structure as the s = case, however the case analysis is extremely long and detailed. We start with a graph which satisfies the extremal condition after pre-processing. For i = 1,, let Ui M = {u U i : deg(u, V 3 i ) > α 1/3 n} and Vi M = {v V i : deg(v, U 3 i ) > α 1/3 n}. We call these vertices movable. Note that U1 M = = V M by Claim Case s = Let γ be a real number such that α 1/3 γ 1 s. We assume that n = m and δ V > δ U, thus δ V n + 1. As a result v, v V, N(v) N(v ) (10) Furthermore, since δ V n + 1, and since there is some vertex u U with deg(u, V ) n, u U such that deg(u, V ) n +. (11) Case 1. U 0 U M or U is even. There are two cases: (i) V 0 V 1 > U 1 or (ii) V U 0 U. If (i) is the case there exists some l 1 N, X U 0 U M, and Y V 0 V1 M such that U 1 X = l 1 s, (V 0 V 1 )\Y l 1 s and (V 0 V 1 )\Y U 1 X is as small as possible. If (V 0 V 1 )\Y U 1 X = 0, then we are done. Otherwise there are no movable vertices left in (V 0 V 1 ) \ Y. If (ii) is the case, then there exists some l N and X U 0 U M with X 1 such that (U 0 U ) \ X = l s, V l s and V (U 0 U ) \ X is as small as possible. Notice that in either case, we are either done or there are no movable vertices left in (V 0 V 1 )\Y or V. Because of this symmetry we can suppose without loss of generality that that (i) is the case. We reset U 1 := U 1 X, U 0 := (U 0 U M) \ X, U := U \ U M, V 1 := V 1 \ Y, and V 0 := V 0 Y. Let l = m l 1. Let a := V 1 l 1 s. If a = 0, then we are done, so suppose a 1. Note that there are no movable vertices in V 1 or U. We have δ(v 1, U 0 U ) + δ(u 0 U, V 1 ) a + 1. (1) Case 1.1. a > 1 γ. We know that U 0 1, otherwise we could make a smaller by moving vertices from U 0 to U 1 while maintaining the fact that U 1 is even. Either δ(v 1, U ) δ(v 1, U 0 U ) 1 a+1 1 and we apply Lemma 4.4(vi) to get a vertex disjoint -stars from V 1 to U or else δ(u 0 U, V 1 ) > a+1 and we apply Lemma 4.4(v) to get a vertex disjoint -stars from V 1 to U. We move the centers from V 1 to V to make V 1 = l 1 s. Case 1.. a 1 γ. If δ(u 0 U, V 1 ), then we apply Lemma 4.4(iii) to get a set of a vertex disjoint -stars from V 1 to U. So suppose δ(u 0 U, V 1 ) 1 and thus δ(v 1, U 0 U ) a. (13) Case a 3. We know that U 0 1, otherwise we could make a smaller by moving vertices from U 0 to U 1 while maintaining the fact that U 1 is even. Since a 3, we have δ(v 1, U ) δ(v 1, U 0 U 1 ) 1 by (13), and thus we can apply Lemma 4.4(i) to get a set of a vertex disjoint -stars from V 1 to U. So we only need to deal with the case a. 18

19 Case 1... a =. If U 0 =, then we can use (13) and apply Lemma 4.4(i) to get a set of a vertex disjoint -stars from V 1 to U. So suppose U 0 = {u 0 }. If there is a vertex u U with deg(u, V 1 ) = 0, then by (1) we have δ(v 1, U 0 U ) 3 and we are done since δ(v 1, U ) δ(v 1, U 0 U 1 ) 1. So suppose δ(u 0 U ) 1. If there is a vertex u U with deg(u, V 1 ), then we can move u 0 and u to U 1, thus for all u U, deg(u, V 1 ) = 1. Now suppose there is a vertex v 1 V 1 with deg(v 1, U ) and let u, u N(v) U. Let v 1 N(u 0) (V 1 \ {v 1 }). Since (U, V 1 ) 1, there exists some u (U \ {u, u }) N(v 1 ). Thus we can move v 1 and v 1. So for all v V 1, deg(v, U ) = 1. This implies that l s 1 = U = V 1 = l 1 s +, a contradiction. Case a = 1. If U 0, then let u 0 U 0. Let u v 1 E(V 1, (U 0 U ) \ {u 0 }), which exists be (1). Let v N(u ) V. By (10), v 1 and v have a common neighbor u different than u. If u U 0 U, then we are done by simply moving v 1, so we have u U 1 which completes a K,. Now we move u 0 to U 1 to finish. Finally, suppose U 0 =. If there exists a vertex v V 1 such that deg(v, U ), then we can move v and be done. So suppose (V 1, U ) 1. Furthermore if there was a vertex v V 1 such that deg(v, U ) = 0, then (1) would imply δ(u, V 1 ) contradicting the fact that (V 1, U ) 1. So every vertex in V 1 has exactly one neighbor in U and (1) implies δ(u, V 1 ) 1. Since U is even and V 1 is odd, we must have V 1 U. If U > V 1, then δ(u, V 1 ) 1 would imply that there was a vertex in V 1 with two neighbors in U, so suppose V 1 > U. This implies that there exists some u 0 U such that deg(u 0, V 1 ). Let u v 1 E(V 1, U \ {u 0 }), which exists be (1). Let v N(u ) V. By (10), v 1 and v have a common neighbor u different than u. If u U, then we are done by simply moving v 1, so we have u U 1 which completes a K,. Now we move u 0 to U 1 to finish. Case. U 0 U M = and U is odd. Now there are no movable vertices in U 1 or U. So choose l 1, l such that U 1 = l 1 s + 1, U = l s 1. If it is not the case that V 0 V 1 l 1 s + or V 0 V l s, then V 0 =, V 1 = l 1 s + 1, V = l s 1, and V1 M =. Without loss of generality, suppose V 0 V 1 l 1 s + 1. Let b := V 1 V 0 U 1. Case.1. b = 0. Note that since b = 0, U 0 = V 0 = U M that if there is a vertex u i U i such that deg(u i, V 3 i ), then we would be done. Without loss of generality, suppose there exists u 1 U 1 such that deg(u 1, V ). Let v, v N(u 1 ) V. Since δ(v 1, U ) + δ(u, V 1 ) 1, there is an edge v 1 u E(V 1, U ). Let v V N(u ) \ {v, v }. By (10) we know that v 1 and v have a common neighbor u 0 which is different than u. If u 0 U 1, then we have a copy of K, with one vertex in each of U 1, U, V 1, V and we are done, so suppose u 0 U. Then we choose u (N(v) N(v )) (U \ {u 0 }). Thus we can move u and v 1 to finish. So we may suppose that (U 1, V ), (U, V 1 ) 1. (14) = V M 1 = for i = 1,. We first show By (11), there is a vertex u U such that deg(u, V ) n +. Without loss of generality, suppose u U 1. Then by (14) we have U 1 = V 1 n + 1, which in turn implies that U = V n 1. However, now we have δ(v, U 1 ), and thus there exists u U 1 such that deg(u, V ), contradicting (14). Case.. b 1. Suppose first that V 1 \ V M 1 l 1s + 3. Let b 1 := V 1 \ V M 1 (l 1s + ). We have δ(v 1 \ V M 1, U ) + δ(u, V 1 \ V M 1 ) n + 1 (l 1 s l s b 1) = b 1 +. So we apply Lemma 4.5(i) with A = V 1 \ V1 M and B = U to get a set of b 1 vertex disjoint s stars from V 1 \ V1 M to U and one s-star from U to V 1 \ V1 M. 19

20 So we may suppose V 1 \ V1 M l 1s +. Reset V 1 := V 1 \ V1 M and V 0 := V 0 V1 M, then partition V 0 = V0 1 V 0 so that V 1 V0 1 = l 1s + and V V0 = l s. We have δ(v 1 V 1 0, U ) + δ(u, V 1 V 1 0 ) n + 1 (l 1 s l s ) =. (15) We first observe that if δ(v 1 V0 1, U ), then there will be a vertex u U such that deg(u, V 1 ) in which case we would be done, so suppose not. This implies that U 1 n. First assume that V By (15), one of δ(u, V 1 V0 1) or δ(v 1 V0 1, U ) 1 must hold. Since V 1 V0 1 > U, in either case there is a vertex u U such that deg(u, V 1 V0 1 ), in which case we are done since V So suppose V0 1. Now if δ(v V0, U 1), then there will be a vertex u 1 U 1 such that deg(u 1, V ) in which case we would be done, since we can also move two vertices from V0, so suppose not. This implies that U n and since U 1 n, we have U 1 = U = n. So let v V with deg(v, U 1 ) = 1 and let v 1 N(u 1 ) V 1. By (10), v 1 and v have a common neighbor in U (since deg(v, U 1 ) = 1) which completes a K,. We finish by moving one additional vertex from V0 1 to V Case s 3 The following proof has many cases, so we provide an outline for reference. 1. V 1 k 1 s and V 0 V 1 k 1 s + r. l 1 k 1, Y V M 1 and V 0 V 0 such that (V 1 \ Y ) V 0 = l 1s..1. V 1 k 1 s.1.1. V 0 V 1 k 1 s + s.1.. V 0 V 1 < k 1 s + s.. V 1 > k 1 s..1. V 1 \ V M 1 k 1s U 0 U k s..1.. U 0 U < k s V 0 V 1 k 1 s + s U 0 U 1 k 1 s + s U 0 U 1 < k 1 s + s V 0 V 1 < k 1 s + s... V 1 \ V1 M > k 1s...1. l 1, Y V M 1 such that V 1 \ Y = l 1 s U 0 U < l s (i.e. U 1 > l 1 s) U 0 U l s... l 1, V 0 V 0 such that V 1 V 0 = l 1s...1. U 0 U < l s... U 0 U l s 3. For some l 1 k 1 we have l 1 s < V 1 \ V M 1 V 1 V 0 < l 1 s + s 3.1. U \ U M l s 3.. U \ U M < l s U 0 U 1 l 1 s + s U 1 l 1 s U 1 > l 1 s 0

21 l 1 > k l 1 = k l 1 s < U 0 U 1 < l 1 s + s U 1 l 1 s 3... U 1 > l 1 s For some i {1, } we have δ(v i, U 3 i ) s or δ(u 3 i, V i ) s 3... For all i {1, } we have δ(v i, U 3 i ) < s and δ(u 3 i, V i ) < s Recall the following definitions. For i = 1,, Ui M = {u U i : deg(u, V 3 i ) > α 1/3 n} and Vi M = {v V i : deg(v, U 3 i ) > α 1/3 n}. Also recall U1 M = = V M by Claim 4.. Case 1 V 1 k 1 s and V 0 V 1 k 1 s + r. Let b := V k s and note that b r. We have δ(u 1, V ) k 1 s + s + r (k 1 s b ) s + r + b s. (16) Claim 4.8. If V 0 V 1 k 1 s, then there exists V 0 V 0 such that V 1 (V 0 \ V 0 ) = k 1s. If V 0 V 1 < k 1 s, then there exists a set of vertex disjoint s-stars with centers C V and leaves in U 1 such that V 0 V 1 + C = k 1 s. Proof. If V 0 V 1 k 1 s, we just choose V 0 V 0 such that V 1 (V 0 \ V 0 ) = k 1s. Otherwise b 0 and thus by (16) and (V, U 1 ) < α 1/3 k s, we can apply Lemma 4.4(ii) to get a set of b vertex disjoint s-stars from V to U 1 with centers C. So we have V 0 V 1 C = k 1 s. Let a := U k s. We have two cases. Suppose a 0. Claim 4.1 gives δ(v 1, U ) k s + s 5 r (k 1 s a ) s + a. So by Lemma 4.4(ii) there are a vertex disjoint s-stars from U to V 1 with centers C U. So we can make U 0 U 1 C U = k 1 s and apply Claim 4.8 to finish. Suppose a < 0. Then U 0 U 1 > k 1 s. If U 1 k 1 s, then there exists U 0 U 0 such that U 1 (U 0 \ U 0 ) = k 1s and we apply Claim 4.8 to finish. Otherwise U 1 > k 1 s and let a 1 := U 1 k 1 s > 0. If b > 0, then we have δ(u 1, V ) + δ(v, U 1 ) 3s 5 + a 1 + b, and we use Lemma 4.5(i) to get a set of a 1 vertex disjoint s-stars from U 1 to V with centers C U and a set of b vertex disjoint s-stars from V to U 1 with centers C V. Thus U 1 \ C U = k 1 s and V 0 V 1 C V = k 1 s. Finally suppose b 0, i.e. V 0 V 1 k 1 s. If there exists a set of a 1 vertex disjoint s-stars from U 1 to V, then we can apply Claim 4.8 to finish. We show that such a set exists. We have δ(v, U 1 ) k s + s 5 r (k s a 1 ) = s 5 r + a 1 s 4 + a 1. (17) If a 1 3, we use (16) and Lemma 4.4(i) with x = 0 to get a set of a 1 vertex disjoint s-stars from U 1 to V with centers C U. Otherwise a 1 4 and we use (17) and Lemma 4.4(iii) or (v) to get a set of a 1 vertex disjoint s-stars from U 1 to V with centers C U. Case. There exists l 1 k 1, Y V M 1 and V 0 V 0 such that (V 1 \ Y ) V 0 = l 1s. Let l 1 k 1 be minimal. Case.1. V 1 k 1 s. By Case 1 we have V 0 V 1 > k 1 s + r. This implies that there exists V 0 V 0 such that V 1 V 0 = k 1s and (V 0 V ) \ V 0 = k s. We now try to make U 1 = k 1 s or U = k s. Reset U := U \U M and U 0 := U 0 U M. Let a 1 := U 1 k 1 s and a := U (k s s). We have δ(v, U 1 ) k s + s 5 r (k s a 1 ) = s 5 r + a 1 (18) 1

Bipartite Graph Tiling

Bipartite Graph Tiling Bipartite Graph Tiling Yi Zhao Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303 December 4, 008 Abstract For each s, there exists m 0 such that the following holds for

More information

Hamiltonian Cycles With All Small Even Chords

Hamiltonian Cycles With All Small Even Chords Hamiltonian Cycles With All Small Even Chords Guantao Chen, Katsuhiro Ota, Akira Saito, and Yi Zhao Abstract. Let G be a graph of order n 3. An even squared hamiltonian cycle (ESHC) of G is a hamiltonian

More information

Proof of the (n/2 n/2 n/2) Conjecture for large n

Proof of the (n/2 n/2 n/2) Conjecture for large n Proof of the (n/2 n/2 n/2) Conjecture for large n Yi Zhao Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303 September 9, 2009 Abstract A conjecture of Loebl, also known

More information

1. Introduction Given k 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V and an edge set E ( V

1. Introduction Given k 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V and an edge set E ( V MINIMUM VERTEX DEGREE THRESHOLD FOR C 4-TILING JIE HAN AND YI ZHAO Abstract. We prove that the vertex degree threshold for tiling C4 (the - uniform hypergraph with four vertices and two triples in a -uniform

More information

arxiv: v1 [math.co] 1 Aug 2013

arxiv: v1 [math.co] 1 Aug 2013 Semi-degree threshold for anti-directed Hamiltonian cycles Louis DeBiasio and Theodore Molla May 11, 014 arxiv:1308.069v1 [math.co] 1 Aug 013 Abstract In 1960 Ghouila-Houri extended Dirac s theorem to

More information

VERTEX DEGREE SUMS FOR PERFECT MATCHINGS IN 3-UNIFORM HYPERGRAPHS

VERTEX DEGREE SUMS FOR PERFECT MATCHINGS IN 3-UNIFORM HYPERGRAPHS VERTEX DEGREE SUMS FOR PERFECT MATCHINGS IN 3-UNIFORM HYPERGRAPHS YI ZHANG, YI ZHAO, AND MEI LU Abstract. We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in

More information

On directed versions of the Corrádi-Hajnal Corollary

On directed versions of the Corrádi-Hajnal Corollary On directed versions of the Corrádi-Hajnal Corollary Andrzej Czygrinow H. A. Kierstead heodore Molla October 4, 01 Abstract For k N, Corrádi and Hajnal proved that every graph G on k vertices with minimum

More information

On the Pósa-Seymour Conjecture

On the Pósa-Seymour Conjecture On the Pósa-Seymour Conjecture János Komlós, 1 Gábor N. Sárközy, 2 and Endre Szemerédi 3 1 DEPT. OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ 08903 2 DEPT. OF COMPUTER SCIENCE, WORCESTER POLYTECHNIC

More information

MATCHINGS IN k-partite k-uniform HYPERGRAPHS

MATCHINGS IN k-partite k-uniform HYPERGRAPHS MATCHINGS IN k-partite k-uniform HYPERGRAPHS JIE HAN, CHUANYUN ZANG, AND YI ZHAO Abstract. For k 3 and ɛ > 0, let H be a k-partite k-graph with parts V 1,..., V k each of size n, where n is sufficiently

More information

2-factors of bipartite graphs with asymmetric minimum degrees

2-factors of bipartite graphs with asymmetric minimum degrees 2-factors of bipartite graphs with asymmetric minimum degrees Andrzej Czygrinow, Louis DeBiasio, H. A. Kierstead Department of Mathematics and Statistics Arizona State University Tempe, AZ 85287 Submitted

More information

arxiv: v1 [math.co] 12 Jul 2017

arxiv: v1 [math.co] 12 Jul 2017 A SHARP DIRAC-ERDŐS TYPE BOUND FOR LARGE GRAPHS H.A. KIERSTEAD, A.V. KOSTOCHKA, AND A. McCONVEY arxiv:1707.03892v1 [math.co] 12 Jul 2017 Abstract. Let k 3 be an integer, h k (G) be the number of vertices

More information

On the Turán number of forests

On the Turán number of forests On the Turán number of forests Bernard Lidický Hong Liu Cory Palmer April 13, 01 Abstract The Turán number of a graph H, ex(n, H, is the maximum number of edges in a graph on n vertices which does not

More information

Relating minimum degree and the existence of a k-factor

Relating minimum degree and the existence of a k-factor Relating minimum degree and the existence of a k-factor Stephen G Hartke, Ryan Martin, and Tyler Seacrest October 6, 010 Abstract A k-factor in a graph G is a spanning regular subgraph in which every vertex

More information

EXACT MINIMUM CODEGREE THRESHOLD FOR K 4 -FACTORS. MSC2000: 5C35, 5C65, 5C70. Keywords: Tiling, Hypergraphs, Absorbing method.

EXACT MINIMUM CODEGREE THRESHOLD FOR K 4 -FACTORS. MSC2000: 5C35, 5C65, 5C70. Keywords: Tiling, Hypergraphs, Absorbing method. EXACT MINIMUM CODEGREE THRESHOLD FOR K 4 -FACTORS JIE HAN, ALLAN LO, ANDREW TREGLOWN AND YI ZHAO Abstract. Given hypergraphs F and H, an F -factor in H is a set of vertex-disjoint copies of F which cover

More information

Bichain graphs: geometric model and universal graphs

Bichain graphs: geometric model and universal graphs Bichain graphs: geometric model and universal graphs Robert Brignall a,1, Vadim V. Lozin b,, Juraj Stacho b, a Department of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, United

More information

The Turán number of sparse spanning graphs

The Turán number of sparse spanning graphs The Turán number of sparse spanning graphs Noga Alon Raphael Yuster Abstract For a graph H, the extremal number ex(n, H) is the maximum number of edges in a graph of order n not containing a subgraph isomorphic

More information

Tiling on multipartite graphs

Tiling on multipartite graphs Tiling on multipartite graphs Ryan Martin Mathematics Department Iowa State University rymartin@iastate.edu SIAM Minisymposium on Graph Theory Joint Mathematics Meetings San Francisco, CA Ryan Martin (Iowa

More information

The edge-density for K 2,t minors

The edge-density for K 2,t minors The edge-density for K,t minors Maria Chudnovsky 1 Columbia University, New York, NY 1007 Bruce Reed McGill University, Montreal, QC Paul Seymour Princeton University, Princeton, NJ 08544 December 5 007;

More information

Advanced Topics in Discrete Math: Graph Theory Fall 2010

Advanced Topics in Discrete Math: Graph Theory Fall 2010 21-801 Advanced Topics in Discrete Math: Graph Theory Fall 2010 Prof. Andrzej Dudek notes by Brendan Sullivan October 18, 2010 Contents 0 Introduction 1 1 Matchings 1 1.1 Matchings in Bipartite Graphs...................................

More information

Partitioning 2-edge-colored Ore-type graphs by monochromatic cycles

Partitioning 2-edge-colored Ore-type graphs by monochromatic cycles Partitioning 2-edge-colored Ore-type graphs by monochromatic cycles János Barát MTA-ELTE Geometric and Algebraic Combinatorics Research Group barat@cs.elte.hu and Gábor N. Sárközy Alfréd Rényi Institute

More information

arxiv: v2 [math.co] 25 Jul 2016

arxiv: v2 [math.co] 25 Jul 2016 Partitioning a graph into a cycle and a sparse graph Alexey Pokrovskiy arxiv:1607.03348v [math.co] 5 Jul 016 ETH Zürich, Zürich, Switzerland Keywords: Partitioning graphs, Ramsey theory, cycles. July 6,

More information

HAMBURGER BEITRÄGE ZUR MATHEMATIK

HAMBURGER BEITRÄGE ZUR MATHEMATIK HAMBURGER BEITRÄGE ZUR MATHEMATIK Heft 563 Clique factors in locally dense graphs Appendix to Triangle factors of graphs without large independent sets and of weighted graphs by J. Balogh, Th. Molla, and

More information

Decomposing oriented graphs into transitive tournaments

Decomposing oriented graphs into transitive tournaments Decomposing oriented graphs into transitive tournaments Raphael Yuster Department of Mathematics University of Haifa Haifa 39105, Israel Abstract For an oriented graph G with n vertices, let f(g) denote

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz

Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov Abstract For a graph G, let χ(g) denote its chromatic number and σ(g) denote

More information

arxiv: v2 [math.co] 19 Aug 2015

arxiv: v2 [math.co] 19 Aug 2015 THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES H.A. KIERSTEAD, A.V. KOSTOCHKA, AND E.C. YEAGER arxiv:1406.7453v2 [math.co] 19 Aug 2015 Abstract. In 1963, Corrádi and Hajnal proved that

More information

Strongly chordal and chordal bipartite graphs are sandwich monotone

Strongly chordal and chordal bipartite graphs are sandwich monotone Strongly chordal and chordal bipartite graphs are sandwich monotone Pinar Heggernes Federico Mancini Charis Papadopoulos R. Sritharan Abstract A graph class is sandwich monotone if, for every pair of its

More information

Maximum Alliance-Free and Minimum Alliance-Cover Sets

Maximum Alliance-Free and Minimum Alliance-Cover Sets Maximum Alliance-Free and Minimum Alliance-Cover Sets Khurram H. Shafique and Ronald D. Dutton School of Computer Science University of Central Florida Orlando, FL USA 3816 hurram@cs.ucf.edu, dutton@cs.ucf.edu

More information

An asymptotic multipartite Kühn-Osthus theorem

An asymptotic multipartite Kühn-Osthus theorem An asymptotic multipartite Kühn-Osthus theorem Ryan R. Martin 1 Richard Mycroft 2 Jozef Skokan 3 1 Iowa State University 2 University of Birmingham 3 London School of Economics 08 August 2017 Algebraic

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES

THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES COMBINATORICA Bolyai Society Springer-Verlag Combinatorica 10pp. DOI: 10.1007/s00493-015-3291-8 THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES HENRY A. KIERSTEAD*, ALEXANDR V. KOSTOCHKA,

More information

Ore s Conjecture on color-critical graphs is almost true

Ore s Conjecture on color-critical graphs is almost true Ore s Conjecture on color-critical graphs is almost true Alexandr Kostochka Matthew Yancey November 1, 018 arxiv:109.1050v1 [math.co] 5 Sep 01 Abstract A graph G is k-critical if it has chromatic number

More information

AALBORG UNIVERSITY. Total domination in partitioned graphs. Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo

AALBORG UNIVERSITY. Total domination in partitioned graphs. Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo AALBORG UNIVERSITY Total domination in partitioned graphs by Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo R-2007-08 February 2007 Department of Mathematical Sciences Aalborg University Fredrik

More information

ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2. Bert L. Hartnell

ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2. Bert L. Hartnell Discussiones Mathematicae Graph Theory 24 (2004 ) 389 402 ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2 Bert L. Hartnell Saint Mary s University Halifax, Nova Scotia, Canada B3H 3C3 e-mail: bert.hartnell@smu.ca

More information

arxiv: v2 [math.co] 7 Jan 2016

arxiv: v2 [math.co] 7 Jan 2016 Global Cycle Properties in Locally Isometric Graphs arxiv:1506.03310v2 [math.co] 7 Jan 2016 Adam Borchert, Skylar Nicol, Ortrud R. Oellermann Department of Mathematics and Statistics University of Winnipeg,

More information

Minimum degree thresholds for bipartite graph tiling

Minimum degree thresholds for bipartite graph tiling Minimum degree tresolds for bipartite grap tiling Albert Bus Yi Zao Department of Matematics and Statistics Georgia State University January 17, 011 Abstract Given a bipartite grap H and a positive integer

More information

SEMI-STRONG SPLIT DOMINATION IN GRAPHS. Communicated by Mehdi Alaeiyan. 1. Introduction

SEMI-STRONG SPLIT DOMINATION IN GRAPHS. Communicated by Mehdi Alaeiyan. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 3 No. 2 (2014), pp. 51-63. c 2014 University of Isfahan www.combinatorics.ir www.ui.ac.ir SEMI-STRONG SPLIT DOMINATION

More information

THE EXTREMAL FUNCTIONS FOR TRIANGLE-FREE GRAPHS WITH EXCLUDED MINORS 1

THE EXTREMAL FUNCTIONS FOR TRIANGLE-FREE GRAPHS WITH EXCLUDED MINORS 1 THE EXTREMAL FUNCTIONS FOR TRIANGLE-FREE GRAPHS WITH EXCLUDED MINORS 1 Robin Thomas and Youngho Yoo School of Mathematics Georgia Institute of Technology Atlanta, Georgia 0-0160, USA We prove two results:

More information

Proof of a Tiling Conjecture of Komlós

Proof of a Tiling Conjecture of Komlós Proof of a Tiling Conjecture of Komlós Ali Shooufandeh, 1 Yi Zhao 2 1 Department of Computer Science, Drexel University, Philadelphia, Pennsylvania 19104 2 Department of Mathematics, Statistics, and Computer

More information

Independent Transversals in r-partite Graphs

Independent Transversals in r-partite Graphs Independent Transversals in r-partite Graphs Raphael Yuster Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract Let G(r, n) denote

More information

Maximal and Maximum Independent Sets In Graphs With At Most r Cycles

Maximal and Maximum Independent Sets In Graphs With At Most r Cycles Maximal and Maximum Independent Sets In Graphs With At Most r Cycles Bruce E. Sagan Department of Mathematics Michigan State University East Lansing, MI sagan@math.msu.edu Vincent R. Vatter Department

More information

EQUITABLE COLORING OF SPARSE PLANAR GRAPHS

EQUITABLE COLORING OF SPARSE PLANAR GRAPHS EQUITABLE COLORING OF SPARSE PLANAR GRAPHS RONG LUO, D. CHRISTOPHER STEPHENS, AND GEXIN YU Abstract. A proper vertex coloring of a graph G is equitable if the sizes of color classes differ by at most one.

More information

Some Nordhaus-Gaddum-type Results

Some Nordhaus-Gaddum-type Results Some Nordhaus-Gaddum-type Results Wayne Goddard Department of Mathematics Massachusetts Institute of Technology Cambridge, USA Michael A. Henning Department of Mathematics University of Natal Pietermaritzburg,

More information

Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph

Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph M. Lemańska a, J. A. Rodríguez-Velázquez b, Rolando Trujillo-Rasua c, a Department of Technical

More information

SHORT PATHS IN 3-UNIFORM QUASI-RANDOM HYPERGRAPHS. Joanna Polcyn. Department of Discrete Mathematics Adam Mickiewicz University

SHORT PATHS IN 3-UNIFORM QUASI-RANDOM HYPERGRAPHS. Joanna Polcyn. Department of Discrete Mathematics Adam Mickiewicz University Discussiones Mathematicae Graph Theory 24 (2004 ) 469 484 SHORT PATHS IN 3-UNIFORM QUASI-RANDOM HYPERGRAPHS Joanna Polcyn Department of Discrete Mathematics Adam Mickiewicz University Poznań e-mail: joaska@amu.edu.pl

More information

arxiv: v1 [math.co] 23 Nov 2015

arxiv: v1 [math.co] 23 Nov 2015 arxiv:1511.07306v1 [math.co] 23 Nov 2015 RAMSEY NUMBERS OF TREES AND UNICYCLIC GRAPHS VERSUS FANS MATTHEW BRENNAN Abstract. The generalized Ramsey number R(H, K) is the smallest positive integer n such

More information

arxiv: v1 [math.co] 13 May 2016

arxiv: v1 [math.co] 13 May 2016 GENERALISED RAMSEY NUMBERS FOR TWO SETS OF CYCLES MIKAEL HANSSON arxiv:1605.04301v1 [math.co] 13 May 2016 Abstract. We determine several generalised Ramsey numbers for two sets Γ 1 and Γ 2 of cycles, in

More information

arxiv: v1 [math.co] 2 Dec 2013

arxiv: v1 [math.co] 2 Dec 2013 What is Ramsey-equivalent to a clique? Jacob Fox Andrey Grinshpun Anita Liebenau Yury Person Tibor Szabó arxiv:1312.0299v1 [math.co] 2 Dec 2013 November 4, 2018 Abstract A graph G is Ramsey for H if every

More information

On the number of edge-disjoint triangles in K 4 -free graphs

On the number of edge-disjoint triangles in K 4 -free graphs On the number of edge-disjoint triangles in K 4 -free graphs arxiv:1506.03306v1 [math.co] 10 Jun 2015 Ervin Győri Rényi Institute Hungarian Academy of Sciences Budapest, Hungary gyori.ervin@renyi.mta.hu

More information

Perfect matchings in highly cyclically connected regular graphs

Perfect matchings in highly cyclically connected regular graphs Perfect matchings in highly cyclically connected regular graphs arxiv:1709.08891v1 [math.co] 6 Sep 017 Robert Lukot ka Comenius University, Bratislava lukotka@dcs.fmph.uniba.sk Edita Rollová University

More information

Roman domination perfect graphs

Roman domination perfect graphs An. Şt. Univ. Ovidius Constanţa Vol. 19(3), 2011, 167 174 Roman domination perfect graphs Nader Jafari Rad, Lutz Volkmann Abstract A Roman dominating function on a graph G is a function f : V (G) {0, 1,

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H 1, H 2 ) so that H 1 H 2 = G E(H 1 ) E(H 2 ) = V (H 1 ) V (H 2 ) = k Such a separation is proper if V (H

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H, K) with H K = G and E(H K) = and V (H) V (K) = k. Such a separation is proper if V (H) \ V (K) and V (K)

More information

1 Perfect Matching and Matching Polytopes

1 Perfect Matching and Matching Polytopes CS 598CSC: Combinatorial Optimization Lecture date: /16/009 Instructor: Chandra Chekuri Scribe: Vivek Srikumar 1 Perfect Matching and Matching Polytopes Let G = (V, E be a graph. For a set E E, let χ E

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Scribes: Po-Hsuan Wei, William Kuzmaul Editor: Kevin Wu Date: October 18, 2016

Scribes: Po-Hsuan Wei, William Kuzmaul Editor: Kevin Wu Date: October 18, 2016 CS 267 Lecture 7 Graph Spanners Scribes: Po-Hsuan Wei, William Kuzmaul Editor: Kevin Wu Date: October 18, 2016 1 Graph Spanners Our goal is to compress information about distances in a graph by looking

More information

Stability for vertex cycle covers

Stability for vertex cycle covers József Balogh, Frank Mousset, Jozef Skokan Stability for vertex cycle covers Article (Published version) (Refereed) Original citation: Balogh, József and Mousset, Frank and Skokan, Jozef (2017) Stability

More information

Domination and Total Domination Contraction Numbers of Graphs

Domination and Total Domination Contraction Numbers of Graphs Domination and Total Domination Contraction Numbers of Graphs Jia Huang Jun-Ming Xu Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, China Abstract In this

More information

Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set

Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set P.N. Balister E. Győri R.H. Schelp April 28, 28 Abstract A graph G is strongly set colorable if V (G) E(G) can be assigned distinct nonempty

More information

On the Regularity Method

On the Regularity Method On the Regularity Method Gábor N. Sárközy 1 Worcester Polytechnic Institute USA 2 Computer and Automation Research Institute of the Hungarian Academy of Sciences Budapest, Hungary Co-authors: P. Dorbec,

More information

Subdivisions of a large clique in C 6 -free graphs

Subdivisions of a large clique in C 6 -free graphs Subdivisions of a large clique in C 6 -free graphs József Balogh Hong Liu Maryam Sharifzadeh October 8, 2014 Abstract Mader conjectured that every C 4 -free graph has a subdivision of a clique of order

More information

Disjoint Hamiltonian Cycles in Bipartite Graphs

Disjoint Hamiltonian Cycles in Bipartite Graphs Disjoint Hamiltonian Cycles in Bipartite Graphs Michael Ferrara 1, Ronald Gould 1, Gerard Tansey 1 Thor Whalen Abstract Let G = (X, Y ) be a bipartite graph and define σ (G) = min{d(x) + d(y) : xy / E(G),

More information

arxiv: v2 [math.co] 20 Jun 2018

arxiv: v2 [math.co] 20 Jun 2018 ON ORDERED RAMSEY NUMBERS OF BOUNDED-DEGREE GRAPHS MARTIN BALKO, VÍT JELÍNEK, AND PAVEL VALTR arxiv:1606.0568v [math.co] 0 Jun 018 Abstract. An ordered graph is a pair G = G, ) where G is a graph and is

More information

Packing and Covering Dense Graphs

Packing and Covering Dense Graphs Packing and Covering Dense Graphs Noga Alon Yair Caro Raphael Yuster Abstract Let d be a positive integer. A graph G is called d-divisible if d divides the degree of each vertex of G. G is called nowhere

More information

HAMILTONIAN PROPERTIES OF TRIANGULAR GRID GRAPHS. 1. Introduction

HAMILTONIAN PROPERTIES OF TRIANGULAR GRID GRAPHS. 1. Introduction HAMILTONIAN PROPERTIES OF TRIANGULAR GRID GRAPHS VALERY S. GORDON, YURY L. ORLOVICH, FRANK WERNER Abstract. A triangular grid graph is a finite induced subgraph of the infinite graph associated with the

More information

arxiv: v2 [math.co] 29 Oct 2017

arxiv: v2 [math.co] 29 Oct 2017 arxiv:1404.3385v2 [math.co] 29 Oct 2017 A proof for a conjecture of Gyárfás, Lehel, Sárközy and Schelp on Berge-cycles G.R. Omidi Department of Mathematical Sciences, Isfahan University of Technology,

More information

Maximising the number of induced cycles in a graph

Maximising the number of induced cycles in a graph Maximising the number of induced cycles in a graph Natasha Morrison Alex Scott April 12, 2017 Abstract We determine the maximum number of induced cycles that can be contained in a graph on n n 0 vertices,

More information

CYCLES OF GIVEN SIZE IN A DENSE GRAPH

CYCLES OF GIVEN SIZE IN A DENSE GRAPH CYCLES OF GIVEN SIZE IN A DENSE GRAPH DANIEL J. HARVEY DAVID R. WOOD Abstract. We generalise a result of Corrádi and Hajnal and show that every graph with average degree at least 4 kr contains k vertex

More information

Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture

Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture Florent Foucaud Michael A. Henning Department of Pure and Applied Mathematics University of Johannesburg Auckland Park, 2006, South Africa

More information

Upper Bounds of Dynamic Chromatic Number

Upper Bounds of Dynamic Chromatic Number Upper Bounds of Dynamic Chromatic Number Hong-Jian Lai, Bruce Montgomery and Hoifung Poon Department of Mathematics West Virginia University, Morgantown, WV 26506-6310 June 22, 2000 Abstract A proper vertex

More information

Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set

Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set Coloring Vertices and Edges of a Path by Nonempty Subsets of a Set P.N. Balister E. Győri R.H. Schelp November 8, 28 Abstract A graph G is strongly set colorable if V (G) E(G) can be assigned distinct

More information

Ramsey-type problem for an almost monochromatic K 4

Ramsey-type problem for an almost monochromatic K 4 Ramsey-type problem for an almost monochromatic K 4 Jacob Fox Benny Sudakov Abstract In this short note we prove that there is a constant c such that every k-edge-coloring of the complete graph K n with

More information

Induced subgraphs of prescribed size

Induced subgraphs of prescribed size Induced subgraphs of prescribed size Noga Alon Michael Krivelevich Benny Sudakov Abstract A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let q(g denote the maximum

More information

Cographs; chordal graphs and tree decompositions

Cographs; chordal graphs and tree decompositions Cographs; chordal graphs and tree decompositions Zdeněk Dvořák September 14, 2015 Let us now proceed with some more interesting graph classes closed on induced subgraphs. 1 Cographs The class of cographs

More information

Partial cubes: structures, characterizations, and constructions

Partial cubes: structures, characterizations, and constructions Partial cubes: structures, characterizations, and constructions Sergei Ovchinnikov San Francisco State University, Mathematics Department, 1600 Holloway Ave., San Francisco, CA 94132 Abstract Partial cubes

More information

Recall: Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching

Recall: Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching Recall: Matchings A matching is a set of (non-loop) edges with no shared endpoints. The vertices incident to an edge of a matching M are saturated by M, the others are unsaturated. A perfect matching of

More information

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees Yoshimi Egawa Department of Mathematical Information Science, Tokyo University of

More information

Claw-Free Graphs With Strongly Perfect Complements. Fractional and Integral Version.

Claw-Free Graphs With Strongly Perfect Complements. Fractional and Integral Version. Claw-Free Graphs With Strongly Perfect Complements. Fractional and Integral Version. Part II. Nontrivial strip-structures Maria Chudnovsky Department of Industrial Engineering and Operations Research Columbia

More information

Notes on Graph Theory

Notes on Graph Theory Notes on Graph Theory Maris Ozols June 8, 2010 Contents 0.1 Berge s Lemma............................................ 2 0.2 König s Theorem........................................... 3 0.3 Hall s Theorem............................................

More information

4 Packing T-joins and T-cuts

4 Packing T-joins and T-cuts 4 Packing T-joins and T-cuts Introduction Graft: A graft consists of a connected graph G = (V, E) with a distinguished subset T V where T is even. T-cut: A T -cut of G is an edge-cut C which separates

More information

Packing k-partite k-uniform hypergraphs

Packing k-partite k-uniform hypergraphs Available online at www.sciencedirect.com Electronic Notes in Discrete Mathematics 38 (2011) 663 668 www.elsevier.com/locate/endm Packing k-partite k-uniform hypergraphs Richard Mycroft 1 School of Mathematical

More information

Generating all subsets of a finite set with disjoint unions

Generating all subsets of a finite set with disjoint unions Generating all subsets of a finite set with disjoint unions David Ellis, Benny Sudakov May 011 Abstract If X is an n-element set, we call a family G PX a k-generator for X if every x X can be expressed

More information

The Algorithmic Aspects of the Regularity Lemma

The Algorithmic Aspects of the Regularity Lemma The Algorithmic Aspects of the Regularity Lemma N. Alon R. A. Duke H. Lefmann V. Rödl R. Yuster Abstract The Regularity Lemma of Szemerédi is a result that asserts that every graph can be partitioned in

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Graph Packing - Conjectures and Results

Graph Packing - Conjectures and Results Graph Packing p.1/23 Graph Packing - Conjectures and Results Hemanshu Kaul kaul@math.iit.edu www.math.iit.edu/ kaul. Illinois Institute of Technology Graph Packing p.2/23 Introduction Let G 1 = (V 1,E

More information

Finding Hamilton cycles in robustly expanding digraphs

Finding Hamilton cycles in robustly expanding digraphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 16, no. 2, pp. 335 358 (2012) Finding Hamilton cycles in robustly expanding digraphs Demetres Christofides 1 Peter Keevash 1 Daniela

More information

Discrete Mathematics. The average degree of a multigraph critical with respect to edge or total choosability

Discrete Mathematics. The average degree of a multigraph critical with respect to edge or total choosability Discrete Mathematics 310 (010 1167 1171 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc The average degree of a multigraph critical with respect

More information

ON THE STRUCTURE OF ORIENTED GRAPHS AND DIGRAPHS WITH FORBIDDEN TOURNAMENTS OR CYCLES

ON THE STRUCTURE OF ORIENTED GRAPHS AND DIGRAPHS WITH FORBIDDEN TOURNAMENTS OR CYCLES ON THE STRUCTURE OF ORIENTED GRAPHS AND DIGRAPHS WITH FORBIDDEN TOURNAMENTS OR CYCLES DANIELA KÜHN, DERYK OSTHUS, TIMOTHY TOWNSEND, YI ZHAO Abstract. Motivated by his work on the classification of countable

More information

On K s,t -minors in Graphs with Given Average Degree

On K s,t -minors in Graphs with Given Average Degree Illinois Math and Science Academy DigitalCommons@IMSA Faculty Publications & Research Mathematics 2008 On K s,t -minors in Graphs with Given Average Degree A. V. Kostochka N. Prince Illinois Mathematics

More information

Odd independent transversals are odd

Odd independent transversals are odd Odd independent transversals are odd Penny Haxell Tibor Szabó Dedicated to Béla Bollobás on the occasion of his 60th birthday Abstract We put the final piece into a puzzle first introduced by Bollobás,

More information

Improved degree conditions for 2-factors with k cycles in hamiltonian graphs

Improved degree conditions for 2-factors with k cycles in hamiltonian graphs Improved degree conditions for -factors with k cycles in hamiltonian graphs Louis DeBiasio 1,4, Michael Ferrara,, Timothy Morris, December 4, 01 Abstract In this paper, we consider conditions that ensure

More information

On colorability of graphs with forbidden minors along paths and circuits

On colorability of graphs with forbidden minors along paths and circuits On colorability of graphs with forbidden minors along paths and circuits Elad Horev horevel@cs.bgu.ac.il Department of Computer Science Ben-Gurion University of the Negev Beer-Sheva 84105, Israel Abstract.

More information

Graph Theory. Thomas Bloom. February 6, 2015

Graph Theory. Thomas Bloom. February 6, 2015 Graph Theory Thomas Bloom February 6, 2015 1 Lecture 1 Introduction A graph (for the purposes of these lectures) is a finite set of vertices, some of which are connected by a single edge. Most importantly,

More information

Packing and decomposition of graphs with trees

Packing and decomposition of graphs with trees Packing and decomposition of graphs with trees Raphael Yuster Department of Mathematics University of Haifa-ORANIM Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il Abstract Let H be a tree on h 2 vertices.

More information

Monochromatic subgraphs of 2-edge-colored graphs

Monochromatic subgraphs of 2-edge-colored graphs Monochromatic subgraphs of 2-edge-colored graphs Luke Nelsen, Miami University June 10, 2014 Abstract Lehel conjectured that for all n, any 2-edge-coloring of K n admits a partition of the vertex set into

More information

The Computational Complexity of Graph Contractions I: Polynomially Solvable and NP-Complete Cases*

The Computational Complexity of Graph Contractions I: Polynomially Solvable and NP-Complete Cases* The Computational Complexity of Graph Contractions I: Polynomially Solvable and NP-Complete Cases* Asaf Levin Department of Statistics, The Hebrew University, Jerusalem 91905, Israel Daniel Paulusma Department

More information

The number of edge colorings with no monochromatic cliques

The number of edge colorings with no monochromatic cliques The number of edge colorings with no monochromatic cliques Noga Alon József Balogh Peter Keevash Benny Sudaov Abstract Let F n, r, ) denote the maximum possible number of distinct edge-colorings of a simple

More information

On (δ, χ)-bounded families of graphs

On (δ, χ)-bounded families of graphs On (δ, χ)-bounded families of graphs András Gyárfás Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest, Hungary, H-1518 gyarfas@sztaki.hu Manouchehr

More information

arxiv: v1 [cs.dm] 12 Jun 2016

arxiv: v1 [cs.dm] 12 Jun 2016 A Simple Extension of Dirac s Theorem on Hamiltonicity Yasemin Büyükçolak a,, Didem Gözüpek b, Sibel Özkana, Mordechai Shalom c,d,1 a Department of Mathematics, Gebze Technical University, Kocaeli, Turkey

More information