Sequential Monte Carlo Algorithms

Size: px
Start display at page:

Download "Sequential Monte Carlo Algorithms"

Transcription

1 ayesian Phylogenetic Inference using Sequential Monte arlo lgorithms lexandre ouchard-ôté *, Sriram Sankararaman *, and Michael I. Jordan *, * omputer Science ivision, University of alifornia erkeley epartment of Statistics, University of alifornia erkeley

2 Phylogenetic tree inference Topic of this talk: integration over the space of trees using Sequential Monte arlo (SM) Motivation: ayesian approach to phylogenetic inference Put a prior on trees, use the posterior for reconstruction Heavy use of integrals over the space of trees: e.g. for handling nuisance parameters, computing minimum risk estimators, ayes factors, etc. Prelude: a parallel with the simpler problem of maximization over the space of trees

3 Maximization over phylogenies Two strategies: Local and sequential search Key difference: representation Local Sequential State t Trees over the observed species

4 Maximization: local strategy Meta-algorithm: 1.Start at arbitrary state

5 Maximization: local strategy Meta-algorithm: 1.Start at arbitrary state 2.Iterate: i. Evaluate neighbors ii. Move to a nearby tree

6 Maximization: local strategy Meta-algorithm: 1.Start at arbitrary state 2.Iterate: i. Evaluate neighbors ii. Move to a nearby tree 3.Return best state visited Example: stochastic annealing

7 Maximization over phylogenies Two strategies: Local and sequential search Key difference: representation Local Sequential State t Trees over the observed species Partial state p Forests over the observed species

8 Maximization over phylogenies Two strategies: Local and sequential search Key difference: representation Local Sequential State t Partial state p Trees over the observed species Forests over the observed species

9 Maximization: sequential strategy Meta-algorithm: 1.Start at the initial, unconstrained partial state =

10 Maximization: sequential strategy Meta-algorithm: 1.Start at the initial, unconstrained partial state 2.Iterate: i. Extend partial state ii. Estimate best successor =

11 Maximization: sequential strategy Meta-algorithm: 1.Start at the initial, unconstrained partial state 2.Iterate: i. Extend partial state ii. Estimate best successor 3.Return best final state = Example: neighbor joining

12 Parallel lassification of phylogenetic algorithms Local strategy Sequential strategy Maximization Stochastic annealing, Neighbor-joining, Integration

13 Parallel lassification of phylogenetic algorithms Local strategy Sequential strategy Maximization Stochastic annealing, Neighbor-joining, Integration MM algorithms???

14 Parallel lassification of phylogenetic algorithms Local strategy Sequential strategy Maximization Stochastic annealing, Neighbor-joining, Integration MM algorithms??? Sequential Monte arlo (SM)

15 Outline ackground: Importance sampling and Sequential Monte arlo SM for phylogenetic inference Framework for designing proposals Experiments: comparisons with MM

16 Preview: omparative advantages SM MM + Trivial to parallelize + Easier to get data likelihood estimate + No burn-in + Easier to resample hyper-parameters + Easier to design proposal distribution

17 Preview: omparative advantages SM MM + Trivial to parallelize + Easier to get data likelihood estimate + No burn-in + Easier to resample hyper-parameters + Easier to design proposal distribution Not exclusive: the two approaches can be combined

18 Phylogenetic setup: ultrametric trees root G.. G.. } Tree T Hidden sequences X E G..} G.. G.. GGT.. TTT.. GT.. GT.. Observations Y = y

19 Phylogenetic setup: ultrametric trees root G.. G.. height } Tree T Hidden sequences X E G..} G.. G.. GGT.. TTT.. GT.. GT.. Observations Y = y

20 Phylogenetic setup: ultrametric trees root G.. G.. height } Tree T Hidden sequences X E G..} G.. G.. GGT.. TTT.. GT.. GT.. Observations Y = y Target distribution: with density: T Y d = π γ(t) Z

21 Phylogenetic setup: ultrametric trees root G.. G.. height } Tree T Hidden sequences X E G..} Joint density evaluated G.. at G.. (t, y) GGT.. TTT.. GT.. GT.., summing over Observations Y = y hidden x Target distribution: with density: T Y d = π γ(t) Z

22 Phylogenetic setup: ultrametric trees root G.. G.. height } Tree T Hidden sequences X E G..} Joint density evaluated G.. at G.. (t, y) GGT.. TTT.. GT.. GT.., summing over Observations Y = y x P(Y = y) T Y = d π hidden Target distribution: ata likelihood (intractable) with density: γ(t) Z

23 Sequential Monte arlo (SM) ackground: Importance Sampling (IS) t1 t2 t3 IS : pproximation for π q 1.Sample trees from a proposal q: ti ~ q

24 Sequential Monte arlo (SM) ackground: Importance Sampling (IS) IS : pproximation for π w1 w2 w3 1.Sample trees from a proposal q: ti ~ q 2. ompute weights w i = γ(t i )/q(t i ) 3. Normalize weights

25 Sequential Monte arlo (SM) ackground: Importance Sampling (IS) IS : pproximation for π w1 w2 w3 1.Sample trees from a proposal q: ti ~ q 2. ompute weights w i = γ(t i )/q(t i ) "Particle" 3. Normalize weights

26 Sequential Monte arlo (SM) ackground: Problem with importance sampling: π is high-dimensional Most particles will have tiny weights

27 Sequential Monte arlo (SM) ackground: Importance Sampling q π γ Z

28 Sequential Monte arlo (SM) ackground: Importance Sampling q π γ Z SM: a sequence of proposals q q q q π 1 π 2 π R = π γ Z

29 Sequential Monte arlo (SM) ackground: Importance Sampling q π γ Z SM: a sequence of proposals q q q q π 1 π 2 π R = π γ Z SM for phylogenies: states (forest) π r are distributions over partial

30 Sequential Monte arlo (SM) 1. Initialize [] π 1

31 Sequential Monte arlo (SM) SM : pproximation for π 1. Initialize [] π 2 2. Iterate : i. Sample partial states p i π 1 q π 1

32 Sequential Monte arlo (SM) SM : pproximation for π 1. Initialize [] π 2 2. Iterate : i. Sample partial states p i π 1 q π 1 p1 p3 p2

33 Sequential Monte arlo (SM) SM : pproximation for π 1. Initialize [] π 2 p 1 p 2 p 3 2. Iterate : i. Sample partial states p i π 1 q π 1 p1 p3 p2

34 Sequential Monte arlo (SM) SM : pproximation for π 1. Initialize [] π 2 2. Iterate : i. Sample partial states w1 w2 w3 p i π 1 q ii. ompute weights w i = γ(p i ) γ(p i ) 1 q(p i p i ) iii. Normalize weights

35 Sequential Monte arlo (SM) π SM : pproximation for π 1. Initialize [] π 2 2. Iterate : i. Sample partial states p i π 1 q π 1 ii. ompute weights w i = γ(p i ) γ(p i ) 1 q(p i p i ) iii. Normalize weights

36 Intuition: why it works asic result: SM is asymptotically consistent p w = γ(p ) γ(p ) 1 q(p p ) p p w = γ(p ) γ(p) 1 q(p p ) w = γ(p) 1 1 q( p)

37 Intuition: why it works asic result: SM is asymptotically consistent p w = γ(p ) γ(p ) 1 q(p p ) p p w = γ(p ) γ(p) 1 q(p p ) w = γ(p) 1 1 q( p) w w w = γ(p ) q( p )

38 Intuition: why it works asic result: SM is asymptotically consistent p w = γ(p ) γ(p ) 1 q(p p ) p p w = γ(p ) γ(p) 1 q(p p ) w = γ(p) 1 1 q( p) w w w = γ(p ) q( p )

39 Intuition: why it works ompare: Weights along a SM path Importance sampling w w w = γ(p ) q( p ) w = γ(t) q(t)

40 esigning a proposal q Issue: Over-counting Two ways of t1 t2 One way of building t2 building t1

41 esigning a proposal q Useful abstraction: q induce a partial order (poset) P

42 esigning a proposal q Useful abstraction: q induce a partial order (poset) P p1 p2 if q can propose a path from p1 to p2

43 esigning a proposal q Useful abstraction: q induce a partial order (poset) P Poset s Hesse diagram:

44 esigning a proposal q Useful abstraction: q induce a partial order (poset) P Poset s Hesse diagram: Use proposal that have tree-shaped Hesse diagrams

45 esigning a proposal q Example: a proposal that has a tree-shaped Hesse diagram. 1. Pick a pair of trees to merge uniformly at random 2. Pick a height for the new tree such that = height( ) < height( )

46 esigning a proposal q t1 t2 = < height( ) height( )

47 Experiments: setup Synthetic-small Synthetic-med Real data Source Generated from the model Subset of HGP Likelihood model rownian motion on frequencies Number of sites ,511 Number of nodes Number of leaves

48 Synthetic experiments Goal: comparison against MM ompetitor: standard MM sampler, 4 tempering chains, shared sum-product implementation Metric: symmetric clade difference of the Minimum ayes Risk reconstructed tree to the generating tree atapoints computed by increasing the number of particles (for SM) and the number of sampling steps (for MM)

49 omparison with MM Synthetic-small Symmetric clade difference SM MM Wall clock time (ms) in logscale

50 omparison with MM Synthetic-medium Symmetric clade difference MM SM x10 6 1x10 7 Wall clock time (ms) in logscale

51 Experiments on real data Goal: show that the method scales to large number of sites Number of particle (10,000) determined using synthetic experiments, timing experiments with different numbers of cores: Wall clock time (ms) Number of cores

52 onclusion SM can be applied to a wide range of phylogenetic models; previous work limited to oalescent priors [Teh et al. 07] Order theoretic framework for designing proposals Experiments: There are regimes where SM outperforms MM Promising applications of SM in phylogenetic inference: 1. Quickly analyze large datasets 2. Initialization and large step proposal for MM chains

15-780: Graduate Artificial Intelligence. Bayesian networks: Construction and inference

15-780: Graduate Artificial Intelligence. Bayesian networks: Construction and inference 15-780: Graduate Artificial Intelligence ayesian networks: Construction and inference ayesian networks: Notations ayesian networks are directed acyclic graphs. Conditional probability tables (CPTs) P(Lo)

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Bayesian Classification and Regression Trees

Bayesian Classification and Regression Trees Bayesian Classification and Regression Trees James Cussens York Centre for Complex Systems Analysis & Dept of Computer Science University of York, UK 1 Outline Problems for Lessons from Bayesian phylogeny

More information

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Machine Learning. Torsten Möller.

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Machine Learning. Torsten Möller. Sampling Methods Machine Learning orsten Möller Möller/Mori 1 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs A particular tree structure defined

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Sampling Methods. Bishop PRML Ch. 11. Alireza Ghane. Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo

Sampling Methods. Bishop PRML Ch. 11. Alireza Ghane. Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo Sampling Methods Bishop PRML h. 11 Alireza Ghane Sampling Methods A. Ghane /. Möller / G. Mori 1 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs

More information

Tree of Life iological Sequence nalysis Chapter http://tolweb.org/tree/ Phylogenetic Prediction ll organisms on Earth have a common ancestor. ll species are related. The relationship is called a phylogeny

More information

Modern Phylogenetics. An Introduction to Phylogenetics. Phylogenetics and Systematics. Phylogenetic Tree of Whales

Modern Phylogenetics. An Introduction to Phylogenetics. Phylogenetics and Systematics. Phylogenetic Tree of Whales Modern Phylogenetics n Introduction to Phylogenetics ret Larget larget@stat.wisc.edu epartments of otany and of Statistics University of Wisconsin Madison January 27, 2010 Phylogenies are usually estimated

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Bayes Networks. CS540 Bryan R Gibson University of Wisconsin-Madison. Slides adapted from those used by Prof. Jerry Zhu, CS540-1

Bayes Networks. CS540 Bryan R Gibson University of Wisconsin-Madison. Slides adapted from those used by Prof. Jerry Zhu, CS540-1 Bayes Networks CS540 Bryan R Gibson University of Wisconsin-Madison Slides adapted from those used by Prof. Jerry Zhu, CS540-1 1 / 59 Outline Joint Probability: great for inference, terrible to obtain

More information

Bayes Net Representation. CS 188: Artificial Intelligence. Approximate Inference: Sampling. Variable Elimination. Sampling.

Bayes Net Representation. CS 188: Artificial Intelligence. Approximate Inference: Sampling. Variable Elimination. Sampling. 188: Artificial Intelligence Bayes Nets: ampling Bayes Net epresentation A directed, acyclic graph, one node per random variable A conditional probability table (PT) for each node A collection of distributions

More information

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree)

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree) I9 Introduction to Bioinformatics, 0 Phylogenetic ree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & omputing, IUB Evolution theory Speciation Evolution of new organisms is driven by

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Phylogenetics. Applications of phylogenetics. Unrooted networks vs. rooted trees. Outline

Phylogenetics. Applications of phylogenetics. Unrooted networks vs. rooted trees. Outline Phylogenetics Todd Vision iology 522 March 26, 2007 pplications of phylogenetics Studying organismal or biogeographic history Systematics ating events in the fossil record onservation biology Studying

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Bayesian Inference and Traffic Analysis

Bayesian Inference and Traffic Analysis ayesian Inference and Traffic nalysis armela Troncoso George Danezis September-November 008 Microsoft Research ambridge/ KU Leuven(OSI nonymous ommunications Tell me who your friends are... => nonymous

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

Theory of Evolution Charles Darwin

Theory of Evolution Charles Darwin Theory of Evolution Charles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (83-36) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

More information

Monte Carlo Methods. Geoff Gordon February 9, 2006

Monte Carlo Methods. Geoff Gordon February 9, 2006 Monte Carlo Methods Geoff Gordon ggordon@cs.cmu.edu February 9, 2006 Numerical integration problem 5 4 3 f(x,y) 2 1 1 0 0.5 0 X 0.5 1 1 0.8 0.6 0.4 Y 0.2 0 0.2 0.4 0.6 0.8 1 x X f(x)dx Used for: function

More information

Bayesian Phylogenetics

Bayesian Phylogenetics Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 Bayesian Phylogenetics 1 / 27 Who was Bayes? The Reverand Thomas Bayes was born

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Conditional probabilities and graphical models

Conditional probabilities and graphical models Conditional probabilities and graphical models Thomas Mailund Bioinformatics Research Centre (BiRC), Aarhus University Probability theory allows us to describe uncertainty in the processes we model within

More information

A008 THE PROBABILITY PERTURBATION METHOD AN ALTERNATIVE TO A TRADITIONAL BAYESIAN APPROACH FOR SOLVING INVERSE PROBLEMS

A008 THE PROBABILITY PERTURBATION METHOD AN ALTERNATIVE TO A TRADITIONAL BAYESIAN APPROACH FOR SOLVING INVERSE PROBLEMS A008 THE PROAILITY PERTURATION METHOD AN ALTERNATIVE TO A TRADITIONAL AYESIAN APPROAH FOR SOLVING INVERSE PROLEMS Jef AERS Stanford University, Petroleum Engineering, Stanford A 94305-2220 USA Abstract

More information

Molecular Evolution & Phylogenetics

Molecular Evolution & Phylogenetics Molecular Evolution & Phylogenetics Heuristics based on tree alterations, maximum likelihood, Bayesian methods, statistical confidence measures Jean-Baka Domelevo Entfellner Learning Objectives know basic

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem?

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem? Who was Bayes? Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 The Reverand Thomas Bayes was born in London in 1702. He was the

More information

Week 7: Bayesian inference, Testing trees, Bootstraps

Week 7: Bayesian inference, Testing trees, Bootstraps Week 7: ayesian inference, Testing trees, ootstraps Genome 570 May, 2008 Week 7: ayesian inference, Testing trees, ootstraps p.1/54 ayes Theorem onditional probability of hypothesis given data is: Prob

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation Idea: probabilities samples Get probabilities from samples: X count x 1 n 1. x k total. n k m X probability x 1. n 1 /m. x k n k /m If we could sample from a variable s (posterior)

More information

Big model configuration with Bayesian quadrature. David Duvenaud, Roman Garnett, Tom Gunter, Philipp Hennig, Michael A Osborne and Stephen Roberts.

Big model configuration with Bayesian quadrature. David Duvenaud, Roman Garnett, Tom Gunter, Philipp Hennig, Michael A Osborne and Stephen Roberts. Big model configuration with Bayesian quadrature David Duvenaud, Roman Garnett, Tom Gunter, Philipp Hennig, Michael A Osborne and Stephen Roberts. This talk will develop Bayesian quadrature approaches

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Announcements. CS 188: Artificial Intelligence Spring Bayes Net Semantics. Probabilities in BNs. All Conditional Independences

Announcements. CS 188: Artificial Intelligence Spring Bayes Net Semantics. Probabilities in BNs. All Conditional Independences CS 188: Artificial Intelligence Spring 2011 Announcements Assignments W4 out today --- this is your last written!! Any assignments you have not picked up yet In bin in 283 Soda [same room as for submission

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies 1 What is phylogeny? Essay written for the course in Markov Chains 2004 Torbjörn Karfunkel Phylogeny is the evolutionary development

More information

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch.

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch. Sampling Methods Oliver Schulte - CMP 419/726 Bishop PRML Ch. 11 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs A particular tree structure

More information

Inference in Bayesian networks

Inference in Bayesian networks Inference in ayesian networks Devika uramanian omp 440 Lecture 7 xact inference in ayesian networks Inference y enumeration The variale elimination algorithm c Devika uramanian 2006 2 1 roailistic inference

More information

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University Phylogenetics: Bayesian Phylogenetic Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Bayes Rule P(X = x Y = y) = P(X = x, Y = y) P(Y = y) = P(X = x)p(y = y X = x) P x P(X = x 0 )P(Y = y X

More information

Adaptive Crowdsourcing via EM with Prior

Adaptive Crowdsourcing via EM with Prior Adaptive Crowdsourcing via EM with Prior Peter Maginnis and Tanmay Gupta May, 205 In this work, we make two primary contributions: derivation of the EM update for the shifted and rescaled beta prior and

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Evaluation Methods for Topic Models

Evaluation Methods for Topic Models University of Massachusetts Amherst wallach@cs.umass.edu April 13, 2009 Joint work with Iain Murray, Ruslan Salakhutdinov and David Mimno Statistical Topic Models Useful for analyzing large, unstructured

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Bayes factors, marginal likelihoods, and how to choose a population model

Bayes factors, marginal likelihoods, and how to choose a population model ayes factors, marginal likelihoods, and how to choose a population model Peter eerli Department of Scientific omputing Florida State University, Tallahassee Overview 1. Location versus Population 2. ayes

More information

Theory of Evolution. Charles Darwin

Theory of Evolution. Charles Darwin Theory of Evolution harles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (8-6) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

Structure Learning in Sequential Data

Structure Learning in Sequential Data Structure Learning in Sequential Data Liam Stewart liam@cs.toronto.edu Richard Zemel zemel@cs.toronto.edu 2005.09.19 Motivation. Cau, R. Kuiper, and W.-P. de Roever. Formalising Dijkstra's development

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Markov chain Monte-Carlo to estimate speciation and extinction rates: making use of the forest hidden behind the (phylogenetic) tree

Markov chain Monte-Carlo to estimate speciation and extinction rates: making use of the forest hidden behind the (phylogenetic) tree Markov chain Monte-Carlo to estimate speciation and extinction rates: making use of the forest hidden behind the (phylogenetic) tree Nicolas Salamin Department of Ecology and Evolution University of Lausanne

More information

Strong Lens Modeling (II): Statistical Methods

Strong Lens Modeling (II): Statistical Methods Strong Lens Modeling (II): Statistical Methods Chuck Keeton Rutgers, the State University of New Jersey Probability theory multiple random variables, a and b joint distribution p(a, b) conditional distribution

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods Sargur Srihari srihari@cedar.buffalo.edu 1 Topics Limitations of Likelihood Weighting Gibbs Sampling Algorithm Markov Chains Gibbs Sampling Revisited A broader class of

More information

Phylogenetic Inference via Sequential Monte Carlo

Phylogenetic Inference via Sequential Monte Carlo Syst. Biol. 6(4):579 593, 202 c The Author(s) 202. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. This is an Open Access article distributed

More information

Chapter 3: Phylogenetics

Chapter 3: Phylogenetics Chapter 3: Phylogenetics 3. Computing Phylogeny Prof. Yechiam Yemini (YY) Computer Science epartment Columbia niversity Overview Computing trees istance-based techniques Maximal Parsimony (MP) techniques

More information

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan Link Prediction Eman Badr Mohammed Saquib Akmal Khan 11-06-2013 Link Prediction Which pair of nodes should be connected? Applications Facebook friend suggestion Recommendation systems Monitoring and controlling

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Time-Sensitive Dirichlet Process Mixture Models

Time-Sensitive Dirichlet Process Mixture Models Time-Sensitive Dirichlet Process Mixture Models Xiaojin Zhu Zoubin Ghahramani John Lafferty May 25 CMU-CALD-5-4 School of Computer Science Carnegie Mellon University Pittsburgh, PA 523 Abstract We introduce

More information

Annealing Between Distributions by Averaging Moments

Annealing Between Distributions by Averaging Moments Annealing Between Distributions by Averaging Moments Chris J. Maddison Dept. of Comp. Sci. University of Toronto Roger Grosse CSAIL MIT Ruslan Salakhutdinov University of Toronto Partition Functions We

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic CS 188: Artificial Intelligence Fall 2008 Lecture 16: Bayes Nets III 10/23/2008 Announcements Midterms graded, up on glookup, back Tuesday W4 also graded, back in sections / box Past homeworks in return

More information

The Expectation Maximization Algorithm

The Expectation Maximization Algorithm The Expectation Maximization Algorithm Frank Dellaert College of Computing, Georgia Institute of Technology Technical Report number GIT-GVU-- February Abstract This note represents my attempt at explaining

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Bayesian networks: approximate inference

Bayesian networks: approximate inference Bayesian networks: approximate inference Machine Intelligence Thomas D. Nielsen September 2008 Approximative inference September 2008 1 / 25 Motivation Because of the (worst-case) intractability of exact

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

Example: multivariate Gaussian Distribution

Example: multivariate Gaussian Distribution School of omputer Science Probabilistic Graphical Models Representation of undirected GM (continued) Eric Xing Lecture 3, September 16, 2009 Reading: KF-chap4 Eric Xing @ MU, 2005-2009 1 Example: multivariate

More information

Decentralized decision making with spatially distributed data

Decentralized decision making with spatially distributed data Decentralized decision making with spatially distributed data XuanLong Nguyen Department of Statistics University of Michigan Acknowledgement: Michael Jordan, Martin Wainwright, Ram Rajagopal, Pravin Varaiya

More information

Hidden Markov Models for precipitation

Hidden Markov Models for precipitation Hidden Markov Models for precipitation Pierre Ailliot Université de Brest Joint work with Peter Thomson Statistics Research Associates (NZ) Page 1 Context Part of the project Climate-related risks for

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Replicated Softmax: an Undirected Topic Model. Stephen Turner

Replicated Softmax: an Undirected Topic Model. Stephen Turner Replicated Softmax: an Undirected Topic Model Stephen Turner 1. Introduction 2. Replicated Softmax: A Generative Model of Word Counts 3. Evaluating Replicated Softmax as a Generative Model 4. Experimental

More information

Simulated Annealing for Constrained Global Optimization

Simulated Annealing for Constrained Global Optimization Monte Carlo Methods for Computation and Optimization Final Presentation Simulated Annealing for Constrained Global Optimization H. Edwin Romeijn & Robert L.Smith (1994) Presented by Ariel Schwartz Objective

More information

CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models. Stephen Scott. Introduction. Outline. Bayes Theorem. Formulas

CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models. Stephen Scott. Introduction. Outline. Bayes Theorem. Formulas ian ian ian Might have reasons (domain information) to favor some hypotheses/predictions over others a priori ian methods work with probabilities, and have two main roles: Naïve Nets (Adapted from Ethem

More information

Decision Tree Fields

Decision Tree Fields Sebastian Nowozin, arsten Rother, Shai agon, Toby Sharp, angpeng Yao, Pushmeet Kohli arcelona, 8th November 2011 Introduction Random Fields in omputer Vision Markov Random Fields (MRF) (Kindermann and

More information

Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference

Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference By Philip J. Bergmann 0. Laboratory Objectives 1. Learn what Bayes Theorem and Bayesian Inference are 2. Reinforce the properties of Bayesian

More information

Artificial Intelligence

Artificial Intelligence ICS461 Fall 2010 Nancy E. Reed nreed@hawaii.edu 1 Lecture #14B Outline Inference in Bayesian Networks Exact inference by enumeration Exact inference by variable elimination Approximate inference by stochastic

More information

Basic Sampling Methods

Basic Sampling Methods Basic Sampling Methods Sargur Srihari srihari@cedar.buffalo.edu 1 1. Motivation Topics Intractability in ML How sampling can help 2. Ancestral Sampling Using BNs 3. Transforming a Uniform Distribution

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Distance Methods Character Methods

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes Erik Sudderth & Michael Jordan University of California, Berkeley Parsing Visual Scenes sky skyscraper sky dome buildings trees

More information

Multimodal Nested Sampling

Multimodal Nested Sampling Multimodal Nested Sampling Farhan Feroz Astrophysics Group, Cavendish Lab, Cambridge Inverse Problems & Cosmology Most obvious example: standard CMB data analysis pipeline But many others: object detection,

More information

PROBABILISTIC REASONING SYSTEMS

PROBABILISTIC REASONING SYSTEMS PROBABILISTIC REASONING SYSTEMS In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory. Outline Knowledge in uncertain

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

CSE 150. Assignment 6 Summer Maximum likelihood estimation. Out: Thu Jul 14 Due: Tue Jul 19

CSE 150. Assignment 6 Summer Maximum likelihood estimation. Out: Thu Jul 14 Due: Tue Jul 19 SE 150. Assignment 6 Summer 2016 Out: Thu Jul 14 ue: Tue Jul 19 6.1 Maximum likelihood estimation A (a) omplete data onsider a complete data set of i.i.d. examples {a t, b t, c t, d t } T t=1 drawn from

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Sum-Product Networks: A New Deep Architecture

Sum-Product Networks: A New Deep Architecture Sum-Product Networks: A New Deep Architecture Pedro Domingos Dept. Computer Science & Eng. University of Washington Joint work with Hoifung Poon 1 Graphical Models: Challenges Bayesian Network Markov Network

More information

Discrete & continuous characters: The threshold model

Discrete & continuous characters: The threshold model Discrete & continuous characters: The threshold model Discrete & continuous characters: the threshold model So far we have discussed continuous & discrete character models separately for estimating ancestral

More information

A new iterated filtering algorithm

A new iterated filtering algorithm A new iterated filtering algorithm Edward Ionides University of Michigan, Ann Arbor ionides@umich.edu Statistics and Nonlinear Dynamics in Biology and Medicine Thursday July 31, 2014 Overview 1 Introduction

More information

Vers un apprentissage subquadratique pour les mélanges d arbres

Vers un apprentissage subquadratique pour les mélanges d arbres Vers un apprentissage subquadratique pour les mélanges d arbres F. Schnitzler 1 P. Leray 2 L. Wehenkel 1 fschnitzler@ulg.ac.be 1 Université deliège 2 Université de Nantes 10 mai 2010 F. Schnitzler (ULG)

More information

Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley

Integrative Biology 200 PRINCIPLES OF PHYLOGENETICS Spring 2018 University of California, Berkeley Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler Feb. 14, 2018. Phylogenetic trees VI: Dating in the 21st century: clocks, & calibrations;

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004,

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004, Tracing the Evolution of Numerical Phylogenetics: History, Philosophy, and Significance Adam W. Ferguson Phylogenetic Systematics 26 January 2009 Inferring Phylogenies Historical endeavor Darwin- 1837

More information

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 009 Mark Craven craven@biostat.wisc.edu Sequence Motifs what is a sequence

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information