Complete the table by filling in the symbols and equations. Include any notes that will help you remember and understand what these terms mean.

Size: px
Start display at page:

Download "Complete the table by filling in the symbols and equations. Include any notes that will help you remember and understand what these terms mean."

Transcription

1 AP Physics Rotational kinematics Rotational Kinematics Complete the table by filling in the symbols and equations. Include any notes that will help you remember and understand what these terms mean. Translational X ΔX V a Vf² Angular/Rotational Θ ΔΘ ω α ωf² Linear Kinematics Rotational Kinematics There are three linear kinematics equations on the AP 1 equation sheet, and two rotational kinematics equations. First, show how each of the three variables in a kinematics equation for linear motion corresponds to a variable for rotational/angular motion. Linear Translators Angular/Rotational angular= linear r Then, write the three linear kinematics equations and their rotational analogs. Linear Translators Angular/Rotational angular= linear r On the diagram draw and label angular velocity, linear velocity, radial/centripetal acceleration, tangential acceleration, and angular acceleration.

2 -1- n ok7ust4ad kshobfct7w9ahrmev ILwLKCE.q G oaplvlv brbizg0h4thsz mr5eisceer7vfe2dy.w b qmfa2dceu bwxibtshs yikndfvinnmihtwey SAalXg0ebbdrbaK s2a.c Worksheet by Kuta Software LLC The Unit Circle Degrees & Radians Conversion Practice Convert each degree measure into radians. 1) ) 345 3) 970 4) ) 510 ) 150 7) 210 8) ) ) 00 11) ) 75 13) ) ) ) 40 17) ) 0 19) ) 15 Convert each radian measure into degrees. 21) π 18 23) 35π 18 25) 3π 2 27) π 3 29) 11π 3 31) 14π 3 22) 25π 12 24) 41π 3 2) 107π 3 28) 17π 9 30) 41π 12 32) 1π 3

3 -2- i wkcu0txa4 jsvodf1tswlayrtea clfllcp.t T TAjlWlu lrdingchttjs 1rre1syeFrEvCeVd2.f z DMraFdHe1 JwriAtuhB 7Ienrfciin5i2t4e CAalGgReobBrGal g2f.m Worksheet by Kuta Software LLC 33) 21π 4 34) 13π 4 35) 7π 4 37) 13π 3) 11π 38) 7π 3 39) π 3 40) 3π 4 Convert each degree measure into radians and each radian measure into degrees. 41) π 42) 23π 43) ) ) ) π 4 47) ) π 3 49) 11π 51) ) 17π 12 52) π 2 53) ) 4π 9 55) 7π 2 57) 230 5) 31π 9 58) 13π 59) ) 0

4 Worksheet 2 Linear (translational) Kinematics 1. Use the graph to answer the following questions: (a) Give a written description of the motion of this object. (b) Calculate the average velocity from t = 0 s to t = 50 s. (c) Estimate the instantaneous velocity of the object at t = 10 s, 25 s, 38 s, 45 s. 2. Using the velocity-time graph: (a) Calculate the acceleration of the object from t = 0.5 s to t =2.5 s. (b) Calculate the displacement of the object from t = 0 s to t =2.5 s (c) Calculate the average velocity of the object from t = 0 s to t =2.5 s (d) Draw a qualitative vector diagram for the object t = 0.5 s to t = 3.0 s. Include velocity and acceleration vectors and proper labels. (e) Write a function for the velocity-time behavior of the object from t = 0.5 s to t = 2.5 s. (f) Write a function for the position-time behavior of the object from t = 0.5 s to t = 2.5 s. Include the initial position, assuming the object was at a position of x = 0 m at t = 0 s. 3

5 Angular (rotational) Kinematics 3. A particle is moving in a circle of radius 2 meters according to the relation = 3t 2 + 2t, where is measured in radians and t in seconds. The speed of the particle at t = 4 seconds is (A) 13 m/s (B) 1m/s (C) 2m/s (D) 52 m/ s (E) 338 m/ s 4. Use the theta-time graph to answer the following questions: (a) Calculate the average angular velocity of the rotating object from t = 0 s to t = 5 s. (b) Calculate the instantaneous angular velocity at t = 4 s and at t = s. (c) Describe the motion of the rotating object. 4. Use the angular velocity graph to answer the questions. (a) Calculate the average angular acceleration from t = 0 s to t = 2 s. (b) Write a function for the angular velocity versus time behavior for the interval t = 0 s to t = 2 s. (b) Calculate the angular displacement from t = 0 s to t = 4 s. (c) Write a function for the angular position of the object from t = 4 s to t = 7 s. Include the initial angular position of the object. (d) Describe the motion of the rotating object. 4

6 Worksheet 3 Angular Speed and Linear Speed A circular disk is in counterclockwise motion at a constant rate. The approximate directions of two points on the disk are shown by the arrows below. Point B Point A 1. a) Which point has the highest linear speed? b) Justify your answer: 2. a) Which point has the highest angular speed? b) Justify your answer: 3. A coin is placed on the disk at either of the two points. a)at which point would the coin be most likely to fly off? b) Justify your answer: 5

7 Custom Graph Worksheet 4 1) a-plot the following data for the wheel of an automobile. t (sec) (rad) b- What is the equation for this line? c- Determine the angular displacement in 12.5 sec for this wheel. d- What change in time starting from t = 0 sec will lead to an angular displacement of 5.00 rad? e- Plot the angular velocity as a function of time and then use the graph to determine the angular displacement from t = 1.5 s to t = 4.25 s. 2) a- Plot the following data for a wheel of a truck t (sec) (rad) b- In your own words, describe the motion of this truck wheel from t = 0 sec until t = 12s. Be sure to include the total displacement in your description. 8 Per Inch Linear Watermark MC - Port Letter

8 Custom Graph Worksheet 5 1) The following data comes from a line drawn on a wheel from the center of the wheel out to the rim. a- Plot the data. t (sec) (rad) b- What type of motion is exhibited by this graph? c- Linearize this data. d- What is the equation for the line? e- What is the angular acceleration? f- Draw a vector diagram for this extended body for the first seconds. Clearly indicate: angular position, instantaneous and linear velocities, angular velocity and angular acceleration. 2) a- A 14 inch (0.35 m) automobile tire on a car traveling at 0 mph has an angular velocity of 75.4 rad/s. If the car slows uniformly to an angular velocity of 18.7 rad/s (15 mph) in 10.0 s, what is the angular acceleration of this tire? b- What is the angular displacement of a line drawn on the tire from center point to rim during this acceleration? Give your answer in radians and in revolutions. c- What is the linear displacement the automobile during the 10.0 sec of acceleration? 8 Per Inch Linear Watermark MC - Port Letter 7

9 Custom Graph 3- A centrifuge starts from rest and reaches an angular velocity of rpm in 5.0 s. acceleration in rad/s 2 of this device? What is the angular 4- An automobile engine slows from 3000 rpm to 500 rpm in 4.0 s. engine during this time period? What is the angular displacement of the 5- A flywheel rotating at 20 rpm undergoes an angular acceleration of +2.0 rad/s 2 for precisely 5.0 revolutions. What is the angular velocity of the flywheel at the end of this acceleration? - A small rubber wheel is used to drive a large pottery wheel, and they are mounted so that their circular edges touch. If the small wheel has a radius of 3.0 cm and accelerates at the rate of 7.5 rad/s 2, and it is in contact with the pottery wheel (radius 27.0 cm) without slipping, calculate the angular acceleration of the pottery wheel, and the time it takes the pottery wheel to reach its required speed of 0 rpm. 7- The second hand of a clock makes one revolution in 0.0 sec. Draw a vector diagram for this extended body, noting the location every 10.0 sec. Indicate the angular velocity as a vector. 8- A pottery wheel has an angular velocity of 150 rpm. Convert this to rad/sec. 9- If a drill bit has an angular velocity of 377 rad/ sec. Convert this to rpm. 8 8 Per Inch Linear Watermark MC - Port Letter

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017 Describing Circular and Rotational Motion Rotational motion is the motion of objects that spin about an axis. Section 7.1 Describing Circular and Rotational Motion We use the angle θ from the positive

More information

AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use. Name. Date. Period. Engage

AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use. Name. Date. Period. Engage AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use Name Outcomes Date Interpret graphical evidence of angular motion (uniform speed & uniform acceleration). Apply

More information

Position: Angular position =! = s r. Displacement: Angular displacement =!" = " 2

Position: Angular position =! = s r. Displacement: Angular displacement =! =  2 Chapter 11 Rotation Perfectly Rigid Objects fixed shape throughout motion Rotation of rigid bodies about a fixed axis of rotation. In pure rotational motion: every point on the body moves in a circle who

More information

Holt Physics Chapter 7. Rotational Motion

Holt Physics Chapter 7. Rotational Motion Holt Physics Chapter 7 Rotational Motion Measuring Rotational Motion Spinning objects have rotational motion Axis of rotation is the line about which rotation occurs A point that moves around an axis undergoes

More information

PHYSICS - CLUTCH CH 10: ROTATIONAL KINEMATICS.

PHYSICS - CLUTCH CH 10: ROTATIONAL KINEMATICS. !! www.clutchprep.com ROTATIONAL POSITION & DISPLACEMENT Rotational Motion is motion around a point, that is, in a path. - The rotational equivalent of linear POSITION ( ) is Rotational/Angular position

More information

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable Rigid Object Chapter 10 Rotation of a Rigid Object about a Fixed Axis A rigid object is one that is nondeformable The relative locations of all particles making up the object remain constant All real objects

More information

Rotational Kinematics, Physics. Worksheet 1: Practice working with rotation and revolution

Rotational Kinematics, Physics. Worksheet 1: Practice working with rotation and revolution Rotational Kinematics, Physics Worksheet 1: Practice working with rotation and revolution Circular motion can involve rotation and/or revolution. Rotation occurs when the object spins about an internal

More information

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed.

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. 1. Distance around a circle? circumference 2. Distance from one side of circle to the opposite

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Chapter 10.A. Rotation of Rigid Bodies

Chapter 10.A. Rotation of Rigid Bodies Chapter 10.A Rotation of Rigid Bodies P. Lam 7_23_2018 Learning Goals for Chapter 10.1 Understand the equations govern rotational kinematics, and know how to apply them. Understand the physical meanings

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER4_LECTURE4_2 THIRD EDITION

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER4_LECTURE4_2 THIRD EDITION Chapter 4 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight CHAPTER4_LECTURE4_2 1 QUICK REVIEW What we ve done so far A quick review: So far, we ve looked

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

Rotational kinematics

Rotational kinematics Rotational kinematics Suppose you cut a circle out of a piece of paper and then several pieces of string which are just as long as the radius of the paper circle. If you then begin to lay these pieces

More information

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket.

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket. Recap Classical rocket propulsion works because of momentum conservation. Exhaust gas ejected from a rocket pushes the rocket forwards, i.e. accelerates it. The bigger the exhaust speed, ve, the higher

More information

Rotation Basics. I. Angular Position A. Background

Rotation Basics. I. Angular Position A. Background Rotation Basics I. Angular Position A. Background Consider a student who is riding on a merry-go-round. We can represent the student s location by using either Cartesian coordinates or by using cylindrical

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Chapter 5 Introduction to Trigonometric Functions

Chapter 5 Introduction to Trigonometric Functions Chapter 5 Introduction to Trigonometric Functions 5.1 Angles Section Exercises Verbal 1. Draw an angle in standard position. Label the vertex, initial side, and terminal side. 2. Explain why there are

More information

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1 Section 4: TJW Rotation: Example 1 The pinion A of the hoist motor drives gear B, which is attached to the hoisting drum. The load L is lifted from its rest position and acquires an upward velocity of

More information

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure?

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure? Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure? In relationship to a circle, if I go half way around the edge

More information

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections

More information

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement Kinematics 1. Introduction to Kinematics. Scalars & vectors 2. Position & displacement 3. Velocity 4. Acceleration 5. Uniform linear motion 6. Uniformly accelerated motion 7. Uniform circular motion 1.

More information

Example 1 Give the degree measure of the angle shown on the circle.

Example 1 Give the degree measure of the angle shown on the circle. Section 5. Angles 307 Section 5. Angles Because many applications involving circles also involve q rotation of the circle, it is natural to introduce a measure for the rotation, or angle, between two rays

More information

Recall the basic equation connecting period and frequency, developed in Chapter 5 for uniform circular motion:

Recall the basic equation connecting period and frequency, developed in Chapter 5 for uniform circular motion: Chapter 8: Rotational Kinematics Tuesday, September 17, 2013 10:00 PM Rotational Kinematics We discussed the basics of rotational kinematics in Chapter 5; we complete the story here, including the kinematics

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity,

More information

Chapter 8. Rotational Kinematics

Chapter 8. Rotational Kinematics Chapter 8 Rotational Kinematics In the simplest kind of rotation, points on a rigid object move on circular paths around an axis of rotation. Example Hans Brinker is on skates and there is no friction.

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 1 Problems 1-3 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s

More information

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s 1 Problems 1-3 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Worksheet for Exploration 10.1: Constant Angular Velocity Equation

Worksheet for Exploration 10.1: Constant Angular Velocity Equation Worksheet for Exploration 10.1: Constant Angular Velocity Equation By now you have seen the equation: θ = θ 0 + ω 0 *t. Perhaps you have even derived it for yourself. But what does it really mean for the

More information

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Physics 101: Lecture 8, Pg 1 Circular Motion Act B A

More information

Tute M4 : ROTATIONAL MOTION 1

Tute M4 : ROTATIONAL MOTION 1 Tute M4 : ROTATIONAL MOTION 1 The equations dealing with rotational motion are identical to those of linear motion in their mathematical form. To convert equations for linear motion to those for rotational

More information

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks! Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:

More information

LECTURE 20: Rotational kinematics

LECTURE 20: Rotational kinematics Lectures Page 1 LECTURE 20: Rotational kinematics Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Introduce the concept that objects possess momentum. Introduce the concept of impulse. Be

More information

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8 AP Physics Rotational Motion Introduction: Which moves with greater speed on a merry-go-round - a horse near the center or one near the outside? Your answer probably depends on whether you are considering

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Rotational Kinematics Notes 3rd.notebook. March 20, 2017

Rotational Kinematics Notes 3rd.notebook. March 20, 2017 1 2 3 4 Rotational Kinematics Objectives: Students will understand how the Big 4 apply to rotational motion Students will know the variables used to describe rotational motion Students will be able to

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

Displacement, Velocity, and Acceleration

Displacement, Velocity, and Acceleration Displacement, Velocity, and Acceleration (WHERE and WHEN?) I m not going to teach you anything today that you don t already know! (basically) Practice: 7.1, 7.5, 7.7, 7.9, 7.11, 7.13 Do you guys remember

More information

ROTATIONAL KINEMATICS

ROTATIONAL KINEMATICS CHAPTER 8 ROTATIONAL KINEMATICS CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION The figures below show two axes in the plane of the paper and located so that the points B and C move in circular paths having

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

ROTATIONAL KINEMATICS

ROTATIONAL KINEMATICS CHAPTER 8 ROTATIONAL KINEMATICS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) Using Equation 8. (θ = Arc length / Radius) to calculate the angle (in radians) that each object subtends at your eye shows that

More information

Chapter 3.5. Uniform Circular Motion

Chapter 3.5. Uniform Circular Motion Chapter 3.5 Uniform Circular Motion 3.5 Uniform Circular Motion DEFINITION OF UNIFORM CIRCULAR MOTION Uniform circular motion is the motion of an object traveling at a constant speed on a circular path.

More information

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Lesson 6.2 Before we look at the unit circle with respect to the trigonometric functions, we need to get some

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

10/13/11. How many degrees in 1 radian?

10/13/11. How many degrees in 1 radian? Reading quiz! How many degrees in 1 radian? Physics 101 Tuesday 10/13/11 Class 15" Chapter 9.8 10.4" Rocket problems" Angular position, velocity and acc" Rotational Kinematics and Connection with linear

More information

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration:

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration: Recap I Angular position: Angular displacement: s Angular velocity: Angular Acceleration: Every point on a rotating rigid object has the same angular, but not the same linear motion! Recap II Circular

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass Lecture 13 Announcements 1. While you re waiting for class to start, please fill in the How to use the blueprint equation steps, in your own words.. Exam results: Momentum Review Equations p = mv Conservation

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

DMS, LINEAR AND ANGULAR SPEED

DMS, LINEAR AND ANGULAR SPEED DMS, LINEAR AND ANGULAR SPEED Section 4.1A Precalculus PreAP/Dual, Revised 2017 viet.dang@humbleisd.net 8/1/2018 12:13 AM 4.1B: DMS, Linear and Angular Speed 1 DEGREES MINUTES SECONDS (DMS) A. Written

More information

When the ball reaches the break in the circle, which path will it follow?

When the ball reaches the break in the circle, which path will it follow? Checking Understanding: Circular Motion Dynamics When the ball reaches the break in the circle, which path will it follow? Slide 6-21 Answer When the ball reaches the break in the circle, which path will

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Rotational Motion Test

Rotational Motion Test Rotational Motion Test Multiple Choice: Write the letter that best answers the question. Each question is worth 2pts. 1. Angular momentum is: A.) The sum of moment of inertia and angular velocity B.) The

More information

PHYSICS 220 LAB #6: CIRCULAR MOTION

PHYSICS 220 LAB #6: CIRCULAR MOTION Name: Partners: PHYSICS 220 LAB #6: CIRCULAR MOTION The picture above is a copy of Copernicus drawing of the orbits of the planets which are nearly circular. It appeared in a book published in 1543. Since

More information

Planar Rigid Body Kinematics Homework

Planar Rigid Body Kinematics Homework Chapter 2 Planar Rigid ody Kinematics Homework Freeform c 2016 2-1 2-2 Freeform c 2016 Homework 2. Given: The pulley shown below freely rotates about point C and interacts with two rubber belts (one horizontal,

More information

Physics 1A. Lecture 10B

Physics 1A. Lecture 10B Physics 1A Lecture 10B Review of Last Lecture Rotational motion is independent of translational motion A free object rotates around its center of mass Objects can rotate around different axes Natural unit

More information

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E -4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems

More information

Conservation of Angular Momentum

Conservation of Angular Momentum Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 7-9) will be at 6 PM, March 3, Lockett-6

More information

2.9 Motion in Two Dimensions

2.9 Motion in Two Dimensions 2 KINEMATICS 2.9 Motion in Two Dimensions Name: 2.9 Motion in Two Dimensions 2.9.1 Velocity An object is moving around an oval track. Sketch the trajectory of the object on a large sheet of paper. Make

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Version 001 Unit 1 Rotational Kinematics baker (BC303) 1. The linear speed is

Version 001 Unit 1 Rotational Kinematics baker (BC303) 1. The linear speed is Version 001 Unit 1 Rotational Kinematics baker (BC303) 1 This print-out should have 0 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Angular

More information

Physics I Exam 1 Fall 2014 (version A)

Physics I Exam 1 Fall 2014 (version A) 95.141 Physics I Exam 1 Fall 014 (version A) Section Number Section instructor Last/First Name (print) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

2/27/2018. Relative Motion. Reference Frames. Reference Frames

2/27/2018. Relative Motion. Reference Frames. Reference Frames Relative Motion The figure below shows Amy and Bill watching Carlos on his bicycle. According to Amy, Carlos s velocity is (v x ) CA 5 m/s. The CA subscript means C relative to A. According to Bill, Carlos

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A.

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A. Chapter 9 [ Edit ] Chapter 9 Overview Summary View Diagnostics View Print View with Answers Due: 11:59pm on Sunday, October 30, 2016 To understand how points are awarded, read the Grading Policy for this

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

Rotation. EMU Physics Department. Ali ÖVGÜN.

Rotation. EMU Physics Department. Ali ÖVGÜN. Rotation Ali ÖVGÜN EMU Physics Department www.aovgun.com Rotational Motion Angular Position and Radians Angular Velocity Angular Acceleration Rigid Object under Constant Angular Acceleration Angular and

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular Motion 04-2 1 Exam 1: Next Tuesday (9/23/14) In Stolkin (here!) at the usual lecture time Material covered: Textbook chapters 1 4.3 s up through 9/16

More information

5.1 Angles and Their Measurements

5.1 Angles and Their Measurements Graduate T.A. Department of Mathematics Dnamical Sstems and Chaos San Diego State Universit November 8, 2011 A ra is the set of points which are part of a line which is finite in one direction, but infinite

More information

Quick review of Ch. 6 & 7. Quiz to follow

Quick review of Ch. 6 & 7. Quiz to follow Quick review of Ch. 6 & 7 Quiz to follow Energy and energy conservation Work:W = Fscosθ Work changes kinetic energy: Kinetic Energy: KE = 1 2 mv2 W = KE f KE 0 = 1 mv 2 1 mv 2 2 f 2 0 Conservative forces

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Newton s Laws & Equations of 09/27/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 In uniform circular motion (constant speed), what is the direction

More information

Rotational Motion. Rotational Motion. Rotational Motion

Rotational Motion. Rotational Motion. Rotational Motion I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

AP C - Webreview ch 7 (part I) Rotation and circular motion

AP C - Webreview ch 7 (part I) Rotation and circular motion Name: Class: _ Date: _ AP C - Webreview ch 7 (part I) Rotation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. 2 600 rev/min is equivalent

More information

Kinematics of Rotational

Kinematics of Rotational Kinematics of Rotational Motion Bởi: OpenStaxCollege Just by using our intuition, we can begin to see how rotational quantities like θ, ω, and α are related to one another. For example, if a motorcycle

More information

Circular Motion Test Review

Circular Motion Test Review Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,

More information

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

Chapter 8. Rotational Kinematics

Chapter 8. Rotational Kinematics Chapter 8 Rotational Kinematics 8.1 Rotational Motion and Angular Displacement In the simplest kind of rotation, points on a rigid object move on circular paths around an axis of rotation. 8.1 Rotational

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

150 Lecture Notes - Section 6.1 Angle Measure

150 Lecture Notes - Section 6.1 Angle Measure c Marcia Drost, February, 008 Definition of Terms 50 Lecture Notes - Section 6. Angle Measure ray a line angle vertex two rays with a common endpoint the common endpoint initial side terminal side Standard

More information

7 Rotational Motion Pearson Education, Inc. Slide 7-2

7 Rotational Motion Pearson Education, Inc. Slide 7-2 7 Rotational Motion Slide 7-2 Slide 7-3 Recall from Chapter 6 Angular displacement = θ θ= ω t Angular Velocity = ω (Greek: Omega) ω = 2 π f and ω = θ/ t All points on a rotating object rotate through the

More information

An angle on the coordinate plane is in standard form when the vertex is on the origin and one ray lies on the positive x-axis.

An angle on the coordinate plane is in standard form when the vertex is on the origin and one ray lies on the positive x-axis. Name: Topic: Main Ideas/Questions Notes/Eamples Date: Class: Angles in Standard Form y θ An angle on the coordinate plane is in standard form when the verte is on the origin and one ray lies on the positive

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

If x = 180 then the arc subtended by x is a semicircle which we know has length πr. Now we argue that:

If x = 180 then the arc subtended by x is a semicircle which we know has length πr. Now we argue that: Arclength Consider a circle of radius r and an angle of x degrees as shown in the figure below. The segment of the circle opposite the angle x is called the arc subtended by x. We need a formula for its

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics 1 Linear Motion Rotational Motion all variables considered positive if motion in counterclockwise direction displacement velocity acceleration angular displacement (Δθ) angular velocity

More information

Physics General Physics. Lecture 14 Rotational Motion. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 14 Rotational Motion. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 14 Rotational Motion Fall 2016 Semester Prof. Matthew Jones 1 2 Static Equilibrium In the last lecture, we learned about the torque that a force can exert on a rigid

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information