Your Comments. If the dialectic capacitor has less potential energy, why do we use dielectrics in capacitors??? Isn't the point to store energy?

Size: px
Start display at page:

Download "Your Comments. If the dialectic capacitor has less potential energy, why do we use dielectrics in capacitors??? Isn't the point to store energy?"

Transcription

1 Your omments I thin this was easier than normal. I felt really good about the capacitance characteristics, although not quite as much about charge and other factors. The most confusing part was the different capacitor configurations. The concept of capacitance is difficult. Does it mean the amount of charge that can be contained in the electric field? Does that mean there is a limit? I am a little confused about the electric potential energy between a capacitor, can u explain it more? I understand the different types of connections and calculating the capacitance, charge, etc. However, I don't thin I'm fully understanding the dielectric and what exactly happens when that is placed between a capacitor. Particularly the last checpoint question is what I'm confused on. I thought I understood it until I was ased those questions. If the dialectic capacitor has less potential energy, why do we use dielectrics in capacitors??? Isn't the point to store energy? Bring on the resistors! How come a battery isn't defined as a capacitor in a circuit diagram even though the prelecture says that a battery is a capacitor? Electricity & Magnetism Lecture 8, Slide 1

2 Electricity & Magnetism Lecture 8, Slide 2

3 Exam Logistics 1) EXAM 1: WED February 19 th at 7pm Sign Up in Gradeboo for onflict Exam at 5:15pm if desired MATERIAL: Lectures 1-8 2) EXAM 1 PREPARATION Old Exams are a good way to assess what you need to now Prelecture of Fall 2010 solutions available 3) Extra Office Hours (Tuesday/ Wednesday next wee chec room#) Who is ready for that test... ;_; Electricity & Magnetism Lecture 7, Slide 3

4 Physics 212 Lecture 8 Today s oncept: apacitors (apacitors in a circuits, Dielectrics, Energy in capacitors) Electricity & Magnetism Lecture 8, Slide 4

5 Simple apacitor ircuit Q Q = Q This Q really means that the battery has moved charge Q from one plate to the other, so that one plate holds +Q and the other -Q. Electricity & Magnetism Lecture 8, Slide 5

6 Parallel apacitor ircuit Q total 1 2 Q 1 = 1 Q 2 = 2 Q total Key point: is the same for both capacitors Key Point: Q total = Q 1 + Q 2 = = ( ) total = Electricity & Magnetism Lecture 8, Slide 6

7 Series apacitor ircuit Q Q = total 1 Q Q Key point: Q is the same for both capacitors Key point: Q = total = 1 1 = 2 2 Also: = Q/ total = Q/ 1 + Q/ = + total 1 2 Electricity & Magnetism Lecture 8, Slide 7

8 hecpoint 1 Which has lowest total capacitance: A B total = 1/ total = 1/ + 1/ = 2/ total = /2 total = 2 Electricity & Magnetism Lecture 8, Slide 8

9 hecpoint 2 Which has lowest total capacitance? A) Single apacitor B) 4 apacitors ) Same : total = left = /2 right = /2 total = left + right total = Electricity & Magnetism Lecture 8, Slide 9

10 Similar to hecpoint 3 2 Q Q 1 3 Q 3 total Which of the following is NOT necessarily true: A) 0 = 1 B) total > 1 ) 2 = 3 D) Q 2 = Q 3 E) 1 = Electricity & Magnetism Lecture 8, Slide 10

11 hecpoint 3 A circuit consists of three unequal capacitors 1, 2, and 3 which are connected to a battery of voltage 0. The capacitance of 2 is twice that of 1. The capacitance of 3 is three times that of 1. The capacitors obtain charges Q 1, Q 2, and Q 3. ompare Q 1, Q 2, and Q 3. A. Q 1 > Q 3 > Q 2 B. Q 1 > Q 2 > Q 3. Q 1 > Q 2 = Q 3 D. Q 1 = Q 2 = Q 3 E. Q 1 < Q 2 = Q 3 X X 1. See immediately: Q 2 = Q 3 (capacitors in series) 2. How about Q 1 vs. Q 2 and Q 3? alculate 23 first = + = + = = Q = Q = Q = Q = =

12 Dielectrics 0 Q 0 = 0 1 = 0 Q 1 = 1 By adding a dielectric you are just maing a new capacitor with larger capacitance (factor of ) Electricity & Magnetism Lecture 8, Slide 15

13 Messing with apacitors If connected to a battery stays constant 1 = 1 = Q 1 = 1 1 = = Q If isolated then total Q stays constant Q 1 = Q 1 = 1 = Q 1 / 1 = Q/ = / Electricity & Magnetism Lecture 8, Slide 16

14 hecpoint 4a Two identical parallel plate capacitors are given the same charge Q, after which they are disconnected from the battery. Then, a dielectric is placed between the plates of 2 A B Both have the same charge but 2 has a bigger capacitance so it has a smaller voltage. oltage depends on charge not dielectric =Q/. Q stays the same while increases due to the dielectric, so in order to adjust for this increase, we need to decrease the. Electricity & Magnetism Lecture 8, Slide 17

15 Messing with apacitors licer Question Two identical parallel plate capacitors are connected to identical batteries. Then a dielectric is inserted between the plates of capacitor 1. ompare the energy stored in the two capacitors. 0 1 A) U 1 < U 0 B) U 0 = U 1 ) U 1 > U 0 ompare using U = 1 / 2 2 U 1 /U 0 = Potential Energy goes UP Electricity & Magnetism Lecture 8, Slide 18

16 hecpoint 4b Two identical parallel plate capacitors are given the same charge Q, after which they are disconnected from the battery. Then, a dielectric is placed between the plates of 2 A) B) ) The potential energy is directly related to the electric field. The lower the field, the lower the potential energy. The potential energy depends on the charge only =Q/ Q remains the same while reduced, so increase. since U=0.5^2, U is increased. Electricity & Magnetism Lecture 8, Slide 19

17 hecpoint 4c Two identical parallel plate capacitors are given the same charge Q, after which they are disconnected from the battery. After 2 has been charged and disconnected, it is filled with a dielectric. The two capacitors are now connected to each other by wires as shown. How will the charge redistribute itself, if at all? A. The charges will flow so that the charge on 1 will become equal to the charge on 2. B. The charges will flow so that the energy stored in 1 will become equal to the energy stored in 2.. The charges will flow so that the potential difference across 1 will become the same as the potential difference across 2. D. No charges will flow. The charge on the capacitors will remain what it was before they were connected. must be the same!! Q: U: Q 1 Q2 = Q 1 1 = Q U = U = U = 1 1 U2 2

18 alculation x 0 0 x 0 /4 An air-gap capacitor, having capacitance 0 and width x 0 is connected to a battery of voltage. A dielectric ( ) of width x 0 /4 is inserted into the gap as shown. onceptual Analysis: Q What changes when the dielectric added? What is Q f, the final charge on the capacitor? A) Only B) only Q ) only D) and Q E) and Q Adding dielectric changes the physical capacitor does not change and changes changes Q changes Electricity & Magnetism Lecture 8, Slide 21

19 alculation x 0 0 Strategic Analysis: alculate new capacitance Apply definition of capacitance to determine Q x 0 /4 An air-gap capacitor, having capacitance 0 and width x 0 is connected to a battery of voltage. A dielectric ( ) of width x 0 /4 is inserted into the gap as shown. What is Q f, the final charge on the capacitor? To calculate, let s first loo at: left right A) left < right B) left = right ) left > right The conducting plate is an equipotential! Electricity & Magnetism Lecture 8, Slide 22

20 alculation x 0 0 An air-gap capacitor, having capacitance 0 and width x 0 is connected to a battery of voltage. x 0 /4 A dielectric ( ) of width x 0 /4 is inserted into the gap as shown. What is Q f, the final charge on the capacitor? an consider capacitor to be two capacitances, 1 and 2, in parallel = 1 2 What is 1? A) 1 = 0 B) 1 = 3 / 4 0 ) 1 = 4 / 3 0 D) 1 = 1 / 4 0 In general. For parallel plate capacitor: = e 0 A/d A = 3 / 4 A 0 d = d 0 1 = 3 / 4 (e 0 A 0 /d 0 ) 1 = 3 / 4 0 Electricity & Magnetism Lecture 8, Slide 23

21 alculation x 0 0 An air-gap capacitor, having capacitance 0 and width x 0 is connected to a battery of voltage. x 0 /4 A dielectric ( ) of width x 0 /4 is inserted into the gap as shown. = = 3 / 4 0 What is Q f, the final charge on the capacitor? What is 2? A) 2 = 0 B) 2 = 3 / 4 0 ) 2 = 4 / 3 0 D) 2 = 1 / 4 0 In general. For parallel plate capacitor filled with dielectric: = e 0 A/d A = 1 / 4 A 0 d = d 0 = ¼(e 0 A 0 /d 0 ) 2 = 1 / 4 0 Electricity & Magnetism Lecture 8, Slide 24

22 alculation x 0 0 An air-gap capacitor, having capacitance 0 and width x 0 is connected to a battery of voltage. x 0 /4 A dielectric ( ) of width x 0 /4 is inserted into the gap as shown. = What is Q f, the final charge 1 2 on the capacitor? 2 = 1 1 = 3 / 4 0 / 4 0 What is? A) = B) = ) = = parallel combination of 1 and 2 : = = 0 ( 3 / / 4 ) Electricity & Magnetism Lecture 8, Slide 25

23 alculation x 0 0 An air-gap capacitor, having capacitance 0 and width x 0 is connected to a battery of voltage. x 0 /4 A dielectric ( ) of width x 0 /4 is inserted into the gap as shown. = = 3 / 4 0 What is Q f, the final charge on the capacitor? 2 = 1 / 4 0 = 0 ( 3 / / 4 ) What is Q? Q Q f Q = 3 1 = Electricity & Magnetism Lecture 8, Slide 26

Physics 212. Lecture 8. Today's Concept: Capacitors. Capacitors in a circuits, Dielectrics, Energy in capacitors. Physics 212 Lecture 8, Slide 1

Physics 212. Lecture 8. Today's Concept: Capacitors. Capacitors in a circuits, Dielectrics, Energy in capacitors. Physics 212 Lecture 8, Slide 1 Physics 212 Lecture 8 Today's oncept: apacitors apacitors in a circuits, Dielectrics, Energy in capacitors Physics 212 Lecture 8, Slide 1 Simple apacitor ircuit Q +Q -Q Q= Q Battery has moved charge Q

More information

Electricity & Magnetism Lecture 8: Capacitors

Electricity & Magnetism Lecture 8: Capacitors Electricity & Magnetism Lecture 8: apacitors Today s oncept: apacitors (apacitors in a circuits, Dielectrics, Energy in capacitors) Alternate terms: condensors, capacitators,... Electricity & Magne/sm

More information

Your Comments. THIS IS SOOOO HARD. I get the concept and mathematical expression. But I do not get links among everything.

Your Comments. THIS IS SOOOO HARD. I get the concept and mathematical expression. But I do not get links among everything. Your omments THIS IS SOOOO HAD. I get the concept and mathematical expression. But I do not get links among everything. ery confusing prelecture especially what happens when switches are closed/opened

More information

Physics 2112 Unit 11

Physics 2112 Unit 11 Physics 2112 Unit 11 Today s oncept: ircuits Unit 11, Slide 1 Stuff you asked about.. what happens when one resistor is in parallel and one is in series with the capacitor Differential equations are tough

More information

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 Physics 212 Lecture 11 ircuits hange in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 ircuit harging apacitor uncharged, switch is moved to position a Kirchoff

More information

Physics 2112 Unit 19

Physics 2112 Unit 19 Physics 11 Unit 19 Today s oncepts: A) L circuits and Oscillation Frequency B) Energy ) RL circuits and Damping Electricity & Magnetism Lecture 19, Slide 1 Your omments differential equations killing me.

More information

Your Comments. Seems interesting, but my mind is on the test right now.

Your Comments. Seems interesting, but my mind is on the test right now. Your omments Pretty straightforward! The analogy to spring motion really helped. Is there any false comparison with it that we should watch out for? I think I got a lot of this, the pre-lecture confused

More information

Your comments. Having taken ece 110 made it easy for me to grasp most of the concepts.

Your comments. Having taken ece 110 made it easy for me to grasp most of the concepts. Your comments Having taken ece 110 made it easy for me to grasp most of the concepts. God I can go to bed now. Oh wait I can't cuz EXAM??!?!!111 I know that this course has to move at a fast pace and that

More information

Physics 212. Lecture 9. Electric Current

Physics 212. Lecture 9. Electric Current Physics 212 Lecture 9 Electric Current Exam Here, Tuesday, June 26, 8 9:30 AM Will begin at 7:30 for those who must leave by 9. Office hours 1-7 PM, Rm 232 Loomis Bring your ID! Physics 212 Lecture 9,

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

Concept Question: Capacitors

Concept Question: Capacitors oncept Question: apacitors Three identical capacitors are connected to a battery. The battery is then disconnected. A How do the charge on A, B & compare before and after the battery B is removed? BEFOE;

More information

Electricity and Magnetism. Capacitance

Electricity and Magnetism. Capacitance Electricity and Magnetism apacitance Sources of Electric Potential A potential difference can be created by moving charge from one conductor to another. The potential difference on a capacitor can produce

More information

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors Physics 2112 Unit 20 Outline: Driven A ircuits Phase of V and I onceputally Mathematically With phasors Electricity & Magnetism ecture 20, Slide 1 Your omments it just got real this stuff is confusing

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

Capacitors. Example 1

Capacitors. Example 1 Physics 30AP Resistors and apacitors I apacitors A capacitor is a device for storing electrical charge that consists of two conducting objects placed near one another but not touching. A A typical capacitor

More information

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time? Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

More information

Your Comments. I have three midterms this week; specifically, two tomorrow. I am studying for chemistry and calculus tonight.

Your Comments. I have three midterms this week; specifically, two tomorrow. I am studying for chemistry and calculus tonight. Your Comments I wish we had a day off for exams that would be fantastic WE SHOULD NOT HAE HAD CLASS TODAY!!!!! BOOOOOOOo!!! I have three midterms this week; specifically, two tomorrow. I am studying for

More information

Hollow Conductors. A point charge +Q is placed at the center of the conductors. The induced charges are: 1. Q(I1) = Q(I2) = -Q; Q(O1) = Q(O2)= +Q

Hollow Conductors. A point charge +Q is placed at the center of the conductors. The induced charges are: 1. Q(I1) = Q(I2) = -Q; Q(O1) = Q(O2)= +Q O2 I2 O1 I1 Hollow Conductors A point charge +Q is placed at the center of the conductors. The induced charges are: 1. Q(I1) = Q(I2) = -Q; Q(O1) = Q(O2)= +Q 2. Q(I1) = Q(I2) = +Q; Q(O1) = Q(O2)= -Q 3.

More information

Physics 2112 Unit 18

Physics 2112 Unit 18 Physics 2112 Unit 18 Today s Concepts: A) Induction B) Circuits Electricity & Magnetism ecture 18, Slide 1 Where we are.. Just finished introducing magnetism Will now apply magnetism to AC circuits Unit

More information

Chapter 2: Capacitor And Dielectrics

Chapter 2: Capacitor And Dielectrics hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor

More information

Capacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa

Capacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa Capacitors II Physics 2415 Lecture 9 Michael Fowler, UVa Today s Topics First, some review then Storing energy in a capacitor How energy is stored in the electric field Dielectrics: why they strengthen

More information

General Physics II (PHYS 104) Exam 2: March 21, 2002

General Physics II (PHYS 104) Exam 2: March 21, 2002 General Physics II (PHYS 104) Exam 2: March 21, 2002 Name: Multiple Choice (3 points each): Answer the following multiple choice questions. Clearly circle the response (or responses) that provides the

More information

Look over. examples 1, 2, 3, 5, 6. Look over. Chapter 25 section 1-8. Chapter 19 section 5 Example 10, 11

Look over. examples 1, 2, 3, 5, 6. Look over. Chapter 25 section 1-8. Chapter 19 section 5 Example 10, 11 PHYS Look over hapter 5 section -8 examples,, 3, 5, 6 PHYS Look over hapter 7 section 7-9 Examples 8, hapter 9 section 5 Example 0, Things to Know ) How to find the charge on a apacitor. ) How to find

More information

Chapter 2: Capacitors And Dielectrics

Chapter 2: Capacitors And Dielectrics hapter 2: apacitors And Dielectrics 2.1 apacitance and capacitors in series and parallel L.O 2.1.1 Define capacitance and use capacitance apacitor is a device that is capable of storing electric charges

More information

IMPORTANT Read these directions carefully:

IMPORTANT Read these directions carefully: Physics 208: Electricity and Magnetism Common Exam 2, October 17 th 2016 Print your name neatly: First name: Last name: Sign your name: Please fill in your Student ID number (UIN): _ - - Your classroom

More information

PHYS 1444 Section 004 Lecture #22

PHYS 1444 Section 004 Lecture #22 PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,

More information

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1 Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X -X ) f X -X Physics 1 ecture

More information

Electric Potential Practice Problems

Electric Potential Practice Problems Electric Potential Practice Problems AP Physics Name Multiple Choice 1. A negative charge is placed on a conducting sphere. Which statement is true about the charge distribution (A) Concentrated at the

More information

Physics 2135 Exam 2 October 20, 2015

Physics 2135 Exam 2 October 20, 2015 Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

More information

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Conductors and Capacitance Physics 212 Lecture 7, Slide 1 Conductors The Main Points Charges free to move E = 0 in a conductor Surface = Equipotential In fact, the entire conductor

More information

Homework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.

Homework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29. Homework Reading: Chap. 29, Chap. 31 and Chap. 32 Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.32 Problems: 29.49, 29.51, 29.52, 29.57, 29.58, 29.59, 29.63,

More information

P114 University of Rochester NAME S. Manly Spring 2010

P114 University of Rochester NAME S. Manly Spring 2010 Exam 2 (March 23, 2010) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work where indicated. Problem 1 ( 8 pts): In each

More information

Chapter 29. Electric Potential: Charged Conductor

Chapter 29. Electric Potential: Charged Conductor hapter 29 Electric Potential: harged onductor 1 Electric Potential: harged onductor onsider two points (A and B) on the surface of the charged conductor E is always perpendicular to the displacement ds

More information

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

More information

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

More information

Physics 2135 Exam 2 October 18, 2016

Physics 2135 Exam 2 October 18, 2016 Exam Total / 200 Physics 2135 Exam 2 October 18, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A light bulb having

More information

CHAPTER 18 ELECTRIC POTENTIAL

CHAPTER 18 ELECTRIC POTENTIAL CHAPTER 18 ELECTRIC POTENTIAL BASIC CONCEPTS: ELECTRIC POTENTIAL ENERGY ELECTRIC POTENTIAL ELECTRIC POTENTIAL GRADIENT POTENTIAL DIFFERENCE POTENTIAL ENERGY 1 h PE = U = mgh Or PE U KE K And U + K = total

More information

Physics 2135 Exam 2 March 22, 2016

Physics 2135 Exam 2 March 22, 2016 Exam Total Physics 2135 Exam 2 March 22, 2016 Key Printed Name: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. B 1. An air-filled

More information

Capacitance. PHY2049: Chapter 25 1

Capacitance. PHY2049: Chapter 25 1 apacitance PHY049: hapter 5 1 oulomb s law Electric fields Equilibrium Gauss law What You Know: Electric Fields Electric fields for several charge configurations Point Dipole (along axes) Line Plane (nonconducting)

More information

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106.

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106. and in and Energy Winter 2018 Press CTRL-L to view as a slide show. From last time: The field lines are related to the field as follows: What is the electric potential? How are the electric field and the

More information

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics.

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics. Slide 1 / 39 Slide 2 / 39 P Physics & M apacitance and ielectrics 20151205 www.njctl.org Slide 3 / 39 apacitors capacitor is any two conductors seperated by an insulator, such as air or another material.

More information

1. zero. Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is

1. zero. Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is Week 5 Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is 1. zero 2. between zero and 90 3. 90 4. not enough information given to

More information

PH 1120 Electricity and Magnetism Term B, 2009 STUDY GUIDE #2

PH 1120 Electricity and Magnetism Term B, 2009 STUDY GUIDE #2 PH 1120 Electricity and Magnetism Term B, 2009 STUDY GUIDE #2 In this part of the course we will study the following topics: Electric potential difference and electric potential for a uniform field Electric

More information

Exam 1--PHYS 102--Spring 2013

Exam 1--PHYS 102--Spring 2013 ame: Class: Date: Exam 1--PHYS 102--Spring 2013 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A metallic object holds a charge of 3.8 10 6 C. What total

More information

Physics 102: Lecture 04 Capacitors (& batteries)

Physics 102: Lecture 04 Capacitors (& batteries) Physics 102: Lecture 04 Capacitors (& batteries) Physics 102: Lecture 4, Slide 1 I wish the checkpoints were given to us on material that we learned from the previous lecture, rather than on material from

More information

NAME: PHYSICS 3 FALL 2009 FINAL EXAM (VERSION A ) A) Wood B) Glass C) Equal D) No reflection occurs from either material

NAME: PHYSICS 3 FALL 2009 FINAL EXAM (VERSION A ) A) Wood B) Glass C) Equal D) No reflection occurs from either material NAME: PHYSICS 3 FALL 2009 FINAL EXAM (VERSION A ) 1. A sound wave in air ( v sound = 344 m/sec ) hits a wall made of wood ( v sound = 1000 m/sec ) which contains a window made of glass ( v sound = 700

More information

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2 = Chapter 21 Chapter 25 Capacitance K = C / C o V = V o / K 1 / Ceq = 1 / C 1 + 1 / C 2 Ceq = C 1 + C 2 Copyright 25-2 Capacitance 25.01 Sketch a schematic diagram of a circuit with a parallel-plate capacitor,

More information

Circuits Gustav Robert Kirchhoff 12 March October 1887

Circuits Gustav Robert Kirchhoff 12 March October 1887 Welcome Back to Physics 1308 Circuits Gustav Robert Kirchhoff 12 March 1824 17 October 1887 Announcements Assignments for Thursday, October 18th: - Reading: Chapter 28.1-28.2, 28.4 - Watch Video: https://youtu.be/39vkt4cc5nu

More information

Physics 2401 Summer 2, 2008 Exam II

Physics 2401 Summer 2, 2008 Exam II Physics 2401 Summer 2, 2008 Exam II e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m

More information

Capacitors and more. Lecture 9. Chapter 29. Physics II. Course website:

Capacitors and more. Lecture 9. Chapter 29. Physics II. Course website: Lecture 9 Chapter 29 Physics II Capacitors and more Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html The

More information

Capacitors and more. Lecture 9. Chapter 29. Physics II. Course website:

Capacitors and more. Lecture 9. Chapter 29. Physics II. Course website: Lecture 9 Chapter 29 Physics II Capacitors and more Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html The

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics + Capacitors (Chapters 21-24) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential.

More information

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes General Physics - E&M (PHY 1308) Lecture Notes Lecture 009: Using Capacitors SteveSekula, 15 February 2011 (created 14 February 2011) Discuss the energy stored in a capacitor Discuss how to use capacitors

More information

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a

More information

BROCK UNIVERSITY. Physics 1P22/1P92. Mid-term Test 2: 19 March Solutions

BROCK UNIVERSITY. Physics 1P22/1P92. Mid-term Test 2: 19 March Solutions BROCK UNIVERSITY Physics 1P22/1P92 Mid-term Test 2: 19 March 2010 Solutions 1. [6 marks] (See Page 746, CP # 24, and pages 15 16 of the posted Ch. 22 lecture notes from 4 March.) A 3.0 V potential difference

More information

Example 1 Physical Sizes of Capacitors

Example 1 Physical Sizes of Capacitors apacitance (R. Bolton - 0) apacitance Physics, 7th Edition, utnell & Johnson hapter 9.5, 0. Pages 586-59, 68-630 (R. Bolton - 0) apacitance Example Physical Sizes of apacitors The value of capacitance

More information

Which one of the pipes emits sound with the lowest frequency? Which one of the pipes emits sound with the next lowest frequency?

Which one of the pipes emits sound with the lowest frequency? Which one of the pipes emits sound with the next lowest frequency? The figures show standing waves of sound in six organ pipes of the same length. Each pipe has one end open and the other end closed. Warning: some of the figures show situations that are not possible.

More information

Physics 24 Exam 2 March 18, 2014

Physics 24 Exam 2 March 18, 2014 Exam Total / 200 Physics 24 Exam 2 March 18, 2014 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. You need to store electrical

More information

Exam 1--PHYS 102--S16

Exam 1--PHYS 102--S16 Name: Exam 1--PHYS 102--S16 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The up-quark, u, has an elementary charge of +(2/3)e and the down-quark, d,

More information

Physics 102: Lecture 05 Circuits and Ohm s Law

Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 5, Slide 1 Summary of Last Time Capacitors Physical C = ke 0 A/d C=Q/V Series 1/C eq = 1/C 1 + 1/C 2 Parallel C eq = C 1 + C 2 Energy

More information

Exam 2: Tuesday, March 21, 5:00-6:00 PM

Exam 2: Tuesday, March 21, 5:00-6:00 PM Exam 2: Tuesday, March 21, 5:-6: PM Test rooms: Instructor Sections Room Dr. Hale F, H 14 Physics Dr. Kurter B, N 125 BCH Dr. Madison K, M 199 Toomey Dr. Parris J, L B-1 Bertelsmeyer* Mr. Upshaw A, C,

More information

Phys102 Second Major-133 Zero Version Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1

Phys102 Second Major-133 Zero Version Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1 Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1 Q1. igure 1 shows four situations in which a central proton (P) is surrounded by protons or electrons fixed in place along a half-circle. The angles

More information

PRACTICE EXAM 1 for Midterm 2

PRACTICE EXAM 1 for Midterm 2 PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness

More information

Exam 1--PHYS 202--S12

Exam 1--PHYS 202--S12 ame: Exam 1--PHYS 202--S12 Multiple Choice Identify the choice that best completes the statement or answers the question 1 Which of these statements is true about charging by induction? a it can only occur

More information

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown: ircuits onsider the R and series circuits shown: ++++ ---- R ++++ ---- Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development

More information

PHYS 2135 Exam II March 20, 2018

PHYS 2135 Exam II March 20, 2018 Exam Total /200 PHYS 2135 Exam II March 20, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. For questions 6-9, solutions must

More information

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

More information

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V.

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Capacitors: parallel plate, cylindrical, spherical. You must be able to calculate the capacitance of capacitors

More information

Experiment FT1: Measurement of Dielectric Constant

Experiment FT1: Measurement of Dielectric Constant Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.

More information

Physics (

Physics ( Exercises Question 2: Two charges 5 0 8 C and 3 0 8 C are located 6 cm apart At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero

More information

How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery?

How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery? Heimadæmi 3 Due: 11:00pm on Thursday, February 4, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Exercise 24.5 A parallel plate capacitor with circular

More information

Student ID Number. Part I. Lecture Multiple Choice (43 points total)

Student ID Number. Part I. Lecture Multiple Choice (43 points total) Name Student ID Number Part I. Lecture Multiple Choice (43 points total). (5 pts.) The voltage between the cathode and the screen of a television set is 22 kv. If we assume a speed of zero for an electron

More information

Chapter 17 Electric Potential

Chapter 17 Electric Potential Chapter 17 Electric Potential Units of Chapter 17 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Equipotential Lines The Electron Volt, a Unit

More information

Electric Charge and Electric field

Electric Charge and Electric field Electric Charge and Electric field ConcepTest 16.1a Electric Charge I Two charged balls are repelling each other as they hang from the ceiling. What can you say about their charges? 1) one is positive,

More information

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?

More information

Capacitors. HPP Activity 68v1. Charge Inside the Body A Close Look at Cell Membranes

Capacitors. HPP Activity 68v1. Charge Inside the Body A Close Look at Cell Membranes HPP Activity 68v1 Capacitors Charge Inside the Body A Close Look at Cell Membranes Our bodies store and use charge to transmit signals across nerves and to tell certain cells what to do and when to do

More information

Chapter 19: Electric Potential & Potential Energy

Chapter 19: Electric Potential & Potential Energy Chapter 9: Electric Potential & Potential Energy Brent Royuk Phys-2 Concordia University Terminology Two Different uantities: Electric Potential and Electric Potential Energy Electric Potential = Voltage

More information

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism PH1120 Electricity and Magnetism L. Colonna-Romano/T. Keil Term B98 Study Guide #2 With this Study Guide, we will discuss work and energy in situations involving an electric field and related concepts.

More information

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is apacitors and Dielectrics The ideas of energy storage in E-fields can be carried a step further by understanding the concept of "apacitance" onsider a sphere with a total charge, Q, and a radius, R From

More information

Capacitance and capacitors. Dr. Loai Afana

Capacitance and capacitors. Dr. Loai Afana apacitance and capacitors apacitors apacitors are devices that store energy in an electric field. apacitors are used in many every-day applications Heart defibrillators amera flash units apacitors are

More information

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)

More information

Physics 102: Lecture 7 RC Circuits

Physics 102: Lecture 7 RC Circuits Physics 102: Lecture 7 C Circuits Physics 102: Lecture 7, Slide 1 C Circuits Circuits that have both resistors and capacitors: K Na Cl C ε K ε Na ε Cl S With resistance in the circuits, capacitors do not

More information

NAME: BATTERY IS TURNED ON TO +1.5 V. BATTERY IS TURNED ON TO -1.5 V.

NAME: BATTERY IS TURNED ON TO +1.5 V. BATTERY IS TURNED ON TO -1.5 V. AP PHYSICS 2 LAB: CAPACITANCE NAME: Google: Phet capacitor lab PART I CAPACITOR Go to the tab Dielectric Increase the plate area to 4. mm 2. Make sure the offset of the dielectric is. mm. Make sure the

More information

Conceptually, a capacitor consists of two conducting plates. Capacitors: Concept

Conceptually, a capacitor consists of two conducting plates. Capacitors: Concept apacitors and Inductors Overview Defining equations Key concepts and important properties Series and parallel equivalents Integrator Differentiator Portland State University EE 221 apacitors and Inductors

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. WELCOME TO PERIOD 14 Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. PHYSICS 1103 PERIOD 14 What is an electric circuit? How

More information

Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.

Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance. Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Circuits. 1. The Schematic

Circuits. 1. The Schematic + ircuits 1. The Schematic 2. Power in circuits 3. The Battery 1. eal Battery vs. Ideal Battery 4. Basic ircuit nalysis 1. oltage Drop 2. Kirchoff s Junction Law 3. Series & Parallel 5. Measurement Tools

More information

Exam 3--PHYS 102--S14

Exam 3--PHYS 102--S14 Name: Exam 3--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these statements is always true? a. resistors in parallel have the

More information

PH213 Chapter 24 Solutions

PH213 Chapter 24 Solutions PH213 Chapter 24 Solutions 24.12. IDENTIFY and S ET UP: Use the expression for derived in Example 24.4. Then use Eq. (24.1) to calculate Q. E XECUTE: (a) From Example 24.4, The conductor at higher potential

More information

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator Lecture 5 Phys. 07: Waves and Light Physics Department Yarmouk University 63 Irbid Jordan &KDSWHUElectromagnetic Oscillations and Alternating urrent L ircuit In this chapter you will see how the electric

More information

Application of Physics II for. Final Exam

Application of Physics II for. Final Exam Application of Physics II for Final Exam Question 1 Four resistors are connected as shown in Figure. (A)Find the equivalent resistance between points a and c. (B)What is the current in each resistor if

More information

University Physics 227N/232N Old Dominion University

University Physics 227N/232N Old Dominion University University Physics 227N/232N Old Dominion University (More) Chapter 23, Capacitors Lab deferred to Fri Feb 28 Exam Solutions will be posted Tuesday PM QUIZ this Fri (Feb 21), Fred lectures Mon (Feb 24)

More information

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism PH1120 Electricity and Magnetism L. Colonna-Romano/T. Keil Term B99 Study Guide #2 With this Study Guide, we will discuss work and energy in situations involving an electric field and related concepts.

More information

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

More information

26 Capacitance and Dielectrics

26 Capacitance and Dielectrics Green Items that must be covered for the national test Blue Items from educator.com Red Items from the 8 th edition of Serway 26 Capacitance and Dielectrics 26.1 Definition of Capacitance 26.2 Calculating

More information

Physics 2 for students of Mechanical Engineering

Physics 2 for students of Mechanical Engineering Homework #5 203-1-1721 Physics 2 for students of Mechanical Engineering Part A *Note that in all questions the symbol p (such as in pc or pf) represents pico=10-12, the symbol n represents nano=10-9, and

More information

Physics 2135 Exam 2 Oct. 17, 2017

Physics 2135 Exam 2 Oct. 17, 2017 Exam Total /200 Physics 2135 Exam 2 Oct. 17, 2017 Name: Rec. Sect: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. For questions 6-9, solutions must begin

More information

Capacitance. Welcome Back to Physics Micheal Faraday by Thomas Phillips oil on canvas

Capacitance. Welcome Back to Physics Micheal Faraday by Thomas Phillips oil on canvas Welcome Back to Physics 1308 Capacitance Micheal Faraday 1868-1953 by Thomas Phillips oil on canvas Announcements Assignments for Thursday, September 27th: - Reading: Chapter 26.1-26.5 - Watch Video: https://youtu.be/tvwyfhgdvgq

More information

Question 20.1a Electric Potential Energy I

Question 20.1a Electric Potential Energy I Question 20.1a Electric Potential Energy I A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron

More information