Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr

Size: px
Start display at page:

Download "Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr"

Transcription

1 Time Domain Analysis of Linear Systems Ch2 University of Central Oklahoma Dr. Mohamed Bingabr

2 Outline Zero-input Response Impulse Response h(t) Convolution Zero-State Response System Stability

3 System Response System x(t) = 0 Initial Conditions are not zeros (stored energy) y(t) = zero input response x(t) System Initial Conditions are zeros (No stored energy) y(t) = zero state response Total response = Zero input response + Zero state response

4 System Response dd 2 yy dddd 2 + RR LL dddd dddd + 1 LLLL yy = 1 dddd LL dddd What is the zero-input response? dd 2 yy dddd 2 + BB MM dddd dddd + kk MM yy = 1 MM xx DD 2 + RR LL DD + 1 LLLL yy = 1 LL DDDD DD 2 + BB MM DD + kk MM yy = 1 MM xx For N order system DD NN + aa 1 DD NN 1 + aa 2 DD NN aa NN yy = bb 0 DD MM + bb 1 DD MM 1 + bb 2 DD MM bb MM xx

5 Zero-Input Response DD NN + aa 1 DD NN 1 + aa 2 DD NN aa NN yy(tt) = 0 A solution to the above differential equation is yy tt = ccee λλλλ DDDD = λλccee λλλλ DD 2 yy = λλ 2 ccee λλλλ DD NN yy = λλ NN ccee λλλλ λλ NN + aa 1 λλ NN 1 + aa 2 λλ NN aa NN ccee λλλλ = 0 Characteristic Polynomial QQ λλ Characteristic Equation QQ λλ = 0 λλ NN + aa 1 λλ NN 1 + aa 2 λλ NN aa NN = 0

6 Zero-Input Response Next step is to solve the characteristic equation λλ NN + aa 1 λλ NN 1 + aa 2 λλ NN aa NN = 0 λλ λλ 1 λλ λλ 2 λλ λλ NN = 0 If the characteristic roots λs are distinct real then a possible solutions to the differential equation are cc 1 ee λλ 1tt cc 2 ee λλ 2tt cc NN ee λλ NNtt A general solution of the zero-input response is yy tt = cc 1 ee λλ1tt + cc 2 ee λλ2tt + + cc NN ee λλ NNtt

7 Zero-Input Response The zero-input response is yy tt = cc 1 ee λλ 1tt + cc 2 ee λλ 2tt + + cc NN ee λλ NNtt Characteristic Roots: λ 1 λ N - Also called the natural frequencies or eigenvalues - For stable system all λ 0 - Can be real distinct, repeated roots, and/or complex roots Characteristic Modes: cc 1 ee λλ 1tt cc NN ee λλ NNtt, determine the system s behavior The constants c 1,, c n are arbitrary constants that will be determined by the initial conditions (initial states of the system)

8 Example For the LTI system described by the following differential equation (D 2 + 3D + 2) y(t) = D x(t) The initial conditions are y(0) = 0 and yy 0 = 5 Find a) The characteristic equation b) The characteristic roots c) The characteristic modes d) The zero-input response Answer: yy tt = 5ee tt + 5ee 2tt

9 Repeated Characteristic Roots If the characteristic equation λλ λλ 1 λλ λλ 2 λλ λλ NN = 0 has this form λλ λλ NN 1 = 0, then the N characteristic roots has the same value λ 1. The zero-input solution will be yy tt = cc 1 ee λλ 1tt + cc 2 ttee λλ 1tt + cc 2 tt 2 ee λλ 1tt + + cc NN tt NN 1 ee λλ 1tt

10 Example For the LTI system described by the following differential equation (D 2 + 6D + 9) y(t) = (3D +5) x(t) The initial conditions are y(0) = 3 and yy 0 = 7 Find a) The characteristic equation b) The characteristic roots c) The characteristic modes d) The zero-input response Answer: yy tt = 3ee 3tt + 2tttt 3tt

11 Complex Characteristic Roots If the characteristic equation λλ λλ 1 λλ λλ 2 λλ λλ NN = 0 has a complex characteristic root σ + jω then its conjugate σ - jω is also a characteristic root. This is necessary for the system to be physically realizable. The zero-input solution for a pair of conjugate roots is yy tt = cc 1 ee σσ+jjjj tt + cc 2 ee σσ jjjj tt If c 1 and c 2 are complex then c 2 is conjugate of c 1. yy tt = 0.5ccee jjθθ ee σσ+jjjj tt + 0.5ccee jjθθ ee yy tt = ccee σσtt cccccc ωωωω + θθ σσ jjjj tt

12 Example For the LTI system described by the following differential equation (D 2 + 4D + 40) y(t) = (D +2) x(t) The initial conditions are y(0) = 2 and yy 0 = Find a) The characteristic equation b) The characteristic roots c) The characteristic modes d) The zero-input response Answer: yy tt = 4ee 2tt cos(6tt ππ 3 )

13 Meanings of Initial Conditions If the output of a system y = 5x + 3 then dy/dx = 5. To find y from the differential equation dy/dx we integrate both side but the answer will be y = 5x + C. The constant C is the value of y when x was zero. To find C we need an initial condition to tell us what is the value of y when x was zero. For N th order differential equation we need N initial conditions (auxiliary conditions) to solve the equation.

14 The Meaning of t = 0 - and t = 0 + t = 0 x(t) System y(t) y(0 - ): At t = 0 - the input is not applied to the system yet so the output is due only to the initial conditions. y(0 + ): At t = 0 + the input is applied to the system so the output is due the input and the initial conditions.

15 Impulse Response h(t) x(t) = δ(t) System y(t) = h(t)

16 Unit Impulse Response h(t) Reveal system behavior Depends on the system internal characteristic modes Helps in finding system response to any input x(t)

17 Derivation of Impulse Response h(t) 1- Find the differential equation of the system DD NN + aa 1 DD NN aa NN yy = bb 0 DD MM + bb 1 DD MM bb MM x QQ DD yy tt = PP DD xx(tt) 2- Find the natural response y n (t) using the same steps used to find the zero-input response. yy nn tt = cc 1 ee λλ 1tt + cc 2 ee λλ 2tt + + cc NN ee λλ NNtt 3- To find the constants c, set all initial conditions to zeros except N-1 derivative, set it to equal 1. yy nn 0 = yy nn 0 = yy nn 0 = = yy NN 2 nn 0 = 0 yy NN 1 nn 0 = 1 4- h tt = PP DD yy nn tt uu(tt) If M = N then h(t) = b 0 δ(t)+ [P(D) y n (t)] u(t)

18 Example Determine the impulse response h(t) for the system (D 2 + 3D + 2) y(t) = (D +2) x(t) HW3_Ch2

19 Zero-State Response x(t) h(t) y(t) = x(t) * h(t) convolution

20 Zero-State Response Any signal can be represented as a train of pulses of different amplitudes and at different locations xx tt = lim Δττ 0 nn xx nn ττ pp tt nn ττ xx tt = lim Δττ 0 nn xx nn ττ pp tt nn ττ ττ ττ xx tt = lim Δττ 0 nn xx nn ττ δδ tt nn ττ ττ

21 Zero-State Response

22 Zero-State Response lim Δττ 0 nn x(t) xx nn ττ δδ tt nn ττ ττ lim Δττ 0 nn y(t) xx nn ττ h tt nn ττ ττ y(t) is the sum of all curves. Each curve represent the output for one value of n yy tt = lim Δττ 0 nn xx nn ττ h tt nn ττ ττ = xx ττ h tt ττ dddd

23 Zero-State Response The Convolution Integral y(t) = x(t) * h(t) x(t) h(t) yy tt = xx ττ h tt ττ dddd y(t) = h(t) * x(t) yy tt = h ττ xx tt ττ dddd

24 Example For a LTI system with impulse response h(t) = e -2t u(t), determine the response y(t) for the input x(t) = e -t u(t). Answer: yy tt = (ee tt ee 2tt )uu(tt) =

25 The Convolution Properties Commutative: x 1 * x 2 = x 2 * x 1 Associative: x 1 * [x 2 * x 3 ] = [x 1 * x 2 ] * x 3 Distributive: x 1 * [x 2 + x 3 ] = [x 1 * x 2 ] + [x 1 * x 3 ] Impulse Convolution: x(t) * δ(t) = xx ττ δδ tt ττ dddd = x(t)

26 The Convolution Properties Shift Property: if x 1 (t) * x 2 (t) = c(t) then x 1 (t -T) * x 2 (t) = x 1 (t) * x 2 (t -T) = c(t -T) also x 1 (t T 1 ) * x 2 (t T 2 ) = c(t T 1 T 2 ) Width Property: if the width of x 1 (t) is T 1 and the width of x 2 (t) is T 2 then the width of x 1 (t ) * x 2 (t) is T 1 +T 2

27 Natural Response Forced Response Example Find the total response for the system D 2 y + 3Dy + 2y = Dx for input x(t)=10e -3t u(t) with initial condition y(0) = 0 and y ( 0) = 5 Answer y( t) ( t 2t ) ( t 2t 3t 5e + 5e + 5e + 20e 15e ) = For t 0 Zero-input Response Zero-state Response y( t) = ( t 2t ) ( 3t 10e + 25e + 15e )

28 External Stability (BIBO) System Stability If the input is bounded then the output is bounded. h ( τ ) dτ < Internal Stability (Asymptotic) If and only if all the characteristic roots are in the LHP Unstable if, and only if, one or both of the following conditions exist: At least one root is in the RHP There are repeated roots on the imaginary axis Marginally stable if, and only if, there are no roots in the RHP, and there are some unrepeated roots on the imaginary axis.

29 Example Investigate the asymptotic & BIBO stability of the following systems: a) (D+1)(D 2 + 4D + 8) y(t) = (D - 3) x(t) b) (D-1)(D 2 + 4D + 8) y(t) = (D + 2) x(t) c) (D+2)(D 2 + 4) y(t) = (D 2 + D + 1) x(t) HW4_Ch2

30 Example Find the zero-state response y(t) of the system described by the impulse response h(t) for an input x(t), shown below. 4 h(t) 2 x(t) 2 0 4

31 Convolution Demonstration h(τ) x(t-τ) 4 t - 4 t 2 τ

CDS 101/110: Lecture 3.1 Linear Systems

CDS 101/110: Lecture 3.1 Linear Systems CDS /: Lecture 3. Linear Systems Goals for Today: Revist and motivate linear time-invariant system models: Summarize properties, examples, and tools Convolution equation describing solution in response

More information

EE 380. Linear Control Systems. Lecture 10

EE 380. Linear Control Systems. Lecture 10 EE 380 Linear Control Systems Lecture 10 Professor Jeffrey Schiano Department of Electrical Engineering Lecture 10. 1 Lecture 10 Topics Stability Definitions Methods for Determining Stability Lecture 10.

More information

EE120 Fall 2016 HOMEWORK 3 Solutions. Problem 1 Solution. 1.a. GSI: Phillip Sandborn

EE120 Fall 2016 HOMEWORK 3 Solutions. Problem 1 Solution. 1.a. GSI: Phillip Sandborn EE Fall 6 HOMEWORK 3 Solutions GSI: Phillip Sandborn Problem Solution For each solution, draw xx(ττ) and flip around ττ =, then slide the result across h(ττ)..a. .b Use the same x as part a. .c .d Analytical

More information

CDS 101/110: Lecture 3.1 Linear Systems

CDS 101/110: Lecture 3.1 Linear Systems CDS /: Lecture 3. Linear Systems Goals for Today: Describe and motivate linear system models: Summarize properties, examples, and tools Joel Burdick (substituting for Richard Murray) jwb@robotics.caltech.edu,

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 Name: Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can

More information

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations Last Time Minimum Variance Unbiased Estimators Sufficient Statistics Proving t = T(x) is sufficient Neyman-Fischer Factorization

More information

4.1. If the input of the system consists of the superposition of M functions, M

4.1. If the input of the system consists of the superposition of M functions, M 4. The Zero-State Response: The system state refers to all information required at a point in time in order that a unique solution for the future output can be compute from the input. In the case of LTIC

More information

Haar Basis Wavelets and Morlet Wavelets

Haar Basis Wavelets and Morlet Wavelets Haar Basis Wavelets and Morlet Wavelets September 9 th, 05 Professor Davi Geiger. The Haar transform, which is one of the earliest transform functions proposed, was proposed in 90 by a Hungarian mathematician

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers 10. Digital 10.1 Basic principle of digital control 10.2 Digital PID controllers 10.2.1 A 2DOF continuous-time PID controller 10.2.2 Discretisation of PID controllers 10.2.3 Implementation and tuning 10.3

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

EE 341 A Few Review Problems Fall 2018

EE 341 A Few Review Problems Fall 2018 EE 341 A Few Review Problems Fall 2018 1. A linear, time-invariant system with input, xx(tt), and output, yy(tt), has the unit-step response, cc(tt), shown below. a. Find, and accurately sketch, the system

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

EE 210. Signals and Systems Solutions of homework 2

EE 210. Signals and Systems Solutions of homework 2 EE 2. Signals and Systems Solutions of homework 2 Spring 2 Exercise Due Date Week of 22 nd Feb. Problems Q Compute and sketch the output y[n] of each discrete-time LTI system below with impulse response

More information

Math 171 Spring 2017 Final Exam. Problem Worth

Math 171 Spring 2017 Final Exam. Problem Worth Math 171 Spring 2017 Final Exam Problem 1 2 3 4 5 6 7 8 9 10 11 Worth 9 6 6 5 9 8 5 8 8 8 10 12 13 14 15 16 17 18 19 20 21 22 Total 8 5 5 6 6 8 6 6 6 6 6 150 Last Name: First Name: Student ID: Section:

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering Stochastic Processes and Linear Algebra Recap Slides Stochastic processes and variables XX tt 0 = XX xx nn (tt) xx 2 (tt) XX tt XX

More information

EE Control Systems LECTURE 9

EE Control Systems LECTURE 9 Updated: Sunday, February, 999 EE - Control Systems LECTURE 9 Copyright FL Lewis 998 All rights reserved STABILITY OF LINEAR SYSTEMS We discuss the stability of input/output systems and of state-space

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

(2) Orbital angular momentum

(2) Orbital angular momentum (2) Orbital angular momentum Consider SS = 0 and LL = rr pp, where pp is the canonical momentum Note: SS and LL are generators for different parts of the wave function. Note: from AA BB ii = εε iiiiii

More information

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I SECTION 5: CAPACITANCE & INDUCTANCE ENGR 201 Electrical Fundamentals I 2 Fluid Capacitor Fluid Capacitor 3 Consider the following device: Two rigid hemispherical shells Separated by an impermeable elastic

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]

More information

CDS 101/110: Lecture 6.2 Transfer Functions

CDS 101/110: Lecture 6.2 Transfer Functions CDS 11/11: Lecture 6.2 Transfer Functions November 2, 216 Goals: Continued study of Transfer functions Review Laplace Transform Block Diagram Algebra Bode Plot Intro Reading: Åström and Murray, Feedback

More information

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable ECE4510/5510: Feedback Control Systems. 5 1 STABILITY ANALYSIS 5.1: Bounded-input bounded-output (BIBO) stability Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated

More information

4 The Continuous Time Fourier Transform

4 The Continuous Time Fourier Transform 96 4 The Continuous Time ourier Transform ourier (or frequency domain) analysis turns out to be a tool of even greater usefulness Extension of ourier series representation to aperiodic signals oundation

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 12: I/O Stability Readings: DDV, Chapters 15, 16 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology March 14, 2011 E. Frazzoli

More information

Chapter 3 Convolution Representation

Chapter 3 Convolution Representation Chapter 3 Convolution Representation DT Unit-Impulse Response Consider the DT SISO system: xn [ ] System yn [ ] xn [ ] = δ[ n] If the input signal is and the system has no energy at n = 0, the output yn

More information

PHY103A: Lecture # 4

PHY103A: Lecture # 4 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018 Notes The Solutions to HW # 1 have been

More information

Chap 4. State-Space Solutions and

Chap 4. State-Space Solutions and Chap 4. State-Space Solutions and Realizations Outlines 1. Introduction 2. Solution of LTI State Equation 3. Equivalent State Equations 4. Realizations 5. Solution of Linear Time-Varying (LTV) Equations

More information

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 4: Introduction to Probability and Random Data

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 4: Introduction to Probability and Random Data BIOE 98MI Biomedical Data Analysis. Spring Semester 209. Lab 4: Introduction to Probability and Random Data A. Random Variables Randomness is a component of all measurement data, either from acquisition

More information

MAE143 A - Signals and Systems - Winter 11 Midterm, February 2nd

MAE143 A - Signals and Systems - Winter 11 Midterm, February 2nd MAE43 A - Signals and Systems - Winter Midterm, February 2nd Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

5HC99 Embedded Vision Control. Feedback Control Systems. dr. Dip Goswami Flux Department of Electrical Engineering

5HC99 Embedded Vision Control. Feedback Control Systems. dr. Dip Goswami Flux Department of Electrical Engineering 5HC99 Embedded Vision Control Feedback Control Systems dr. Dip Goswami d.goswami@tue.nl Flux 04.135 Department of Electrical Engineering 1 Example Feedback control system: regulates the behavior of dynamical

More information

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition Wave Motion Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Waves: propagation of energy, not particles 2 Longitudinal Waves: disturbance is along the direction of wave propagation

More information

(1) Introduction: a new basis set

(1) Introduction: a new basis set () Introduction: a new basis set In scattering, we are solving the S eq. for arbitrary VV in integral form We look for solutions to unbound states: certain boundary conditions (EE > 0, plane and spherical

More information

Discussion Section #2, 31 Jan 2014

Discussion Section #2, 31 Jan 2014 Discussion Section #2, 31 Jan 2014 Lillian Ratliff 1 Unit Impulse The unit impulse (Dirac delta) has the following properties: { 0, t 0 δ(t) =, t = 0 ε ε δ(t) = 1 Remark 1. Important!: An ordinary function

More information

M.5 Modeling the Effect of Functional Responses

M.5 Modeling the Effect of Functional Responses M.5 Modeling the Effect of Functional Responses The functional response is referred to the predation rate as a function of the number of prey per predator. It is recognized that as the number of prey increases,

More information

Unit WorkBook 4 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 4 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample 2018 UniCourse Ltd. A Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 8: Mechanical Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Translational

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

Properties of LTI Systems

Properties of LTI Systems Properties of LTI Systems Properties of Continuous Time LTI Systems Systems with or without memory: A system is memory less if its output at any time depends only on the value of the input at that same

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

Ch 2: Linear Time-Invariant System

Ch 2: Linear Time-Invariant System Ch 2: Linear Time-Invariant System A system is said to be Linear Time-Invariant (LTI) if it possesses the basic system properties of linearity and time-invariance. Consider a system with an output signal

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

State Space Design. MEM 355 Performance Enhancement of Dynamical Systems

State Space Design. MEM 355 Performance Enhancement of Dynamical Systems State Space Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline State space techniques emerged around

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

EECE 3620: Linear Time-Invariant Systems: Chapter 2

EECE 3620: Linear Time-Invariant Systems: Chapter 2 EECE 3620: Linear Time-Invariant Systems: Chapter 2 Prof. K. Chandra ECE, UMASS Lowell September 7, 2016 1 Continuous Time Systems In the context of this course, a system can represent a simple or complex

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 7 Nuclear Decay Behaviors Spiritual Thought Sooner or later, I believe that all of us experience times when the very fabric of our world

More information

Frequency Response (III) Lecture 26:

Frequency Response (III) Lecture 26: EECS 20 N March 21, 2001 Lecture 26: Frequency Response (III) Laurent El Ghaoui 1 outline reading assignment: Chapter 8 of Lee and Varaiya we ll concentrate on continuous-time systems: convolution integral

More information

The Bose Einstein quantum statistics

The Bose Einstein quantum statistics Page 1 The Bose Einstein quantum statistics 1. Introduction Quantized lattice vibrations Thermal lattice vibrations in a solid are sorted in classical mechanics in normal modes, special oscillation patterns

More information

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Quantum Mechanics An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 3 Experimental Basis of

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Norms for Signals and Systems

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Norms for Signals and Systems . AERO 632: Design of Advance Flight Control System Norms for Signals and. Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Norms for Signals ...

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

Lecture 9 Time-domain properties of convolution systems

Lecture 9 Time-domain properties of convolution systems EE 12 spring 21-22 Handout #18 Lecture 9 Time-domain properties of convolution systems impulse response step response fading memory DC gain peak gain stability 9 1 Impulse response if u = δ we have y(t)

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /

More information

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter Murat Akcakaya Department of Electrical and Computer Engineering University of Pittsburgh Email: akcakaya@pitt.edu Satyabrata

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation Convolution In this section we consider the problem of determining the response of a linear, time-invariant circuit to an arbitrary input, x(t). This situation is illustrated in Figure 1 where x(t) is

More information

10.4 The Cross Product

10.4 The Cross Product Math 172 Chapter 10B notes Page 1 of 9 10.4 The Cross Product The cross product, or vector product, is defined in 3 dimensions only. Let aa = aa 1, aa 2, aa 3 bb = bb 1, bb 2, bb 3 then aa bb = aa 2 bb

More information

7.3 The Jacobi and Gauss-Seidel Iterative Methods

7.3 The Jacobi and Gauss-Seidel Iterative Methods 7.3 The Jacobi and Gauss-Seidel Iterative Methods 1 The Jacobi Method Two assumptions made on Jacobi Method: 1.The system given by aa 11 xx 1 + aa 12 xx 2 + aa 1nn xx nn = bb 1 aa 21 xx 1 + aa 22 xx 2

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin A Posteriori DG using Non-Polynomial Basis 1 A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin Department of Mathematics, UC Berkeley;

More information

3.2 A2 - Just Like Derivatives but Backwards

3.2 A2 - Just Like Derivatives but Backwards 3. A - Just Like Derivatives but Backwards The Definite Integral In the previous lesson, you saw that as the number of rectangles got larger and larger, the values of Ln, Mn, and Rn all grew closer and

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.4: Dynamic Systems Spring Homework Solutions Exercise 3. a) We are given the single input LTI system: [

More information

2. Time-Domain Analysis of Continuous- Time Signals and Systems

2. Time-Domain Analysis of Continuous- Time Signals and Systems 2. Time-Domain Analysis of Continuous- Time Signals and Systems 2.1. Continuous-Time Impulse Function (1.4.2) 2.2. Convolution Integral (2.2) 2.3. Continuous-Time Impulse Response (2.2) 2.4. Classification

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Routh-Hurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 1 Review for Exam3 12. 11. 2013 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 2 Chapter

More information

Module 06 Stability of Dynamical Systems

Module 06 Stability of Dynamical Systems Module 06 Stability of Dynamical Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October 10, 2017 Ahmad F. Taha Module 06

More information

2.4 Error Analysis for Iterative Methods

2.4 Error Analysis for Iterative Methods 2.4 Error Analysis for Iterative Methods 1 Definition 2.7. Order of Convergence Suppose {pp nn } nn=0 is a sequence that converges to pp with pp nn pp for all nn. If positive constants λλ and αα exist

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

ENGIN 211, Engineering Math. Fourier Series and Transform

ENGIN 211, Engineering Math. Fourier Series and Transform ENGIN 11, Engineering Math Fourier Series and ransform 1 Periodic Functions and Harmonics f(t) Period: a a+ t Frequency: f = 1 Angular velocity (or angular frequency): ω = ππ = π Such a periodic function

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Page Outline Continuous random variables and density Common continuous random variables Moment generating function Seeking a Density Page A continuous random variable has an

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse

STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential

More information

ECEEN 5448 Fall 2011 Homework #5 Solutions

ECEEN 5448 Fall 2011 Homework #5 Solutions ECEEN 5448 Fall 211 Homework #5 Solutions Professor David G. Meyer December 8, 211 1. Consider the 1-dimensional time-varying linear system ẋ t (u x) (a) Find the state-transition matrix, Φ(t, τ). Here

More information

Discrete and continuous dynamic systems

Discrete and continuous dynamic systems Discrete and continuous dynamic systems Bounded input bounded output (BIBO) and asymptotic stability Continuous and discrete time linear time-invariant systems Katalin Hangos University of Pannonia Faculty

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

CDS 101/110: Lecture 10.3 Final Exam Review

CDS 101/110: Lecture 10.3 Final Exam Review CDS 11/11: Lecture 1.3 Final Exam Review December 2, 216 Schedule: (1) Posted on the web Monday, Dec. 5 by noon. (2) Due Friday, Dec. 9, at 5: pm. (3) Determines 3% of your grade Instructions on Front

More information

L2 gains and system approximation quality 1

L2 gains and system approximation quality 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION L2 gains and system approximation quality 1 This lecture discusses the utility

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Using MATLAB with the Convolution Method

Using MATLAB with the Convolution Method ECE 350 Linear Systems I MATLAB Tutorial #5 Using MATLAB with the Convolution Method A linear system with input, x(t), and output, y(t), can be described in terms of its impulse response, h(t). x(t) h(t)

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2017 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points / 25

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet Secondary H Unit Lesson Worksheet Simplify: mm + 2 mm 2 4 mm+6 mm + 2 mm 2 mm 20 mm+4 5 2 9+20 2 0+25 4 +2 2 + 2 8 2 6 5. 2 yy 2 + yy 6. +2 + 5 2 2 2 0 Lesson 6 Worksheet List all asymptotes, holes and

More information

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems SECTION 7: FAULT ANALYSIS ESE 470 Energy Distribution Systems 2 Introduction Power System Faults 3 Faults in three-phase power systems are short circuits Line-to-ground Line-to-line Result in the flow

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

2 Classification of Continuous-Time Systems

2 Classification of Continuous-Time Systems Continuous-Time Signals and Systems 1 Preliminaries Notation for a continuous-time signal: x(t) Notation: If x is the input to a system T and y the corresponding output, then we use one of the following

More information

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

ECE 388 Automatic Control

ECE 388 Automatic Control Controllability and State Feedback Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage:

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information