Power Controlled FCFS Splitting Algorithm for Wireless Networks

Size: px
Start display at page:

Download "Power Controlled FCFS Splitting Algorithm for Wireless Networks"

Transcription

1 Power Controlled FCFS Splitting Algorithm for Wireless Networks Ashutosh Deepak Gore Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology - Bombay COMNET Workshop, July 2007

2 1 Introduction 2 System Model 3 PCFCFS Algorithm 4 Throughput Analysis 5 Performance Evaluation 6 Conclusion

3 Random Access in Wireless Networks Joint PHY-MAC design of wireless networks Choice of MAC depends on source traffic characteristics, wireless channel model and QoS requirements of users Random access protocols suitable for bursty traffic and higher # users Classification of random access protocols: Stabilized Aloha Carrier Sense Multiple Access Splitting/tree/stack algorithms FCFS splitting algorithm achieves a maximum stable throughput of We propose a power controlled splitting algorithm for wireless networks under the requirements of: realistic physical interference model transmission of ful packets in an FCFS manner

4 Assumptions Slotted system Poisson packet arrival process with rate λ Path loss wireless channel model Power-based capture: Packet transmission from transmitter t i to receiver r is ful if P i D β (t i,r) N 0 + M j=1 j i {0, 1, c, e} immediate feedback Gated channel access algorithm P j D β (t j,r) γ c All users are at the same distance D from the receiver

5 Motivation Generalization of high-throughput FCFS splitting algorithm to wireless networks Suppose all contending nodes transmit with equal power P: When only one node transmits, its packet reception is ful if P γ c N 0 D β When M 2 transmit, the SINR corresponding to i th transmission is SINR i = P D β N 0 + (M 1) P D β < 1 Since γ c > 1 in practice,all M transmissions are unful. In a wireless network, transmission power of a node provides an extra degree of freedom.

6 Motivation (cont d) With relatively small attempt rates, a collision is most likely between only two packets [Gallager] Collision between two nodes N 1 and N 2 can be avoided by using variable transmission powers: N 1 transmits with least possible power P 1 for a packet to be ful P 1 = γ c N 0 D β N 2 transmits with minimum power P 2 for its packet to be ful, in the presence of exactly one other node transmitting at nominal power P 1 P 2 = γ c (1 + γ c )N 0 D β Design a high-throughput random access algorithm incorporating this power control technique

7 Preliminaries Slot k := time interval [k, k + 1) For every slot k, packets that arrived in allocation interval [T (k), T (k) + φ(k)) are transmitted according to an algorithm φ 0 = maximum size of allocation interval a i = arrival time of i th packet P i (k) = transmission power of i th packet in slot k Every allocation interval is termed as a left (L) or right (R) interval PCFCFS algorithm is the set of rules by which the users compute allocation interval parameters and transmission power for slot k + 1 in terms of the feedback and allocation interval parameters for slot k

8 FCFS Interval Splitting Algorithm First Come First Serve splitting algorithm generate Poisson(λ) arrivals in [0, τ) T (1) 0; φ(1) min{φ 0, 1}; σ(1) R for k 1 to τ do transmit packets whose arrival times [T (k), T (k) + φ(k)) if feedback = e then T (k + 1) T (k); φ(k + 1) φ(k) 2 ; σ(k + 1) L elseif feedback = 1 and σ(k) = L T (k + 1) T (k) + φ(k); φ(k + 1) φ(k); σ(k + 1) R elseif feedback = 0 and σ(k) = L T (k + 1) T (k) + φ(k); φ(k + 1) φ(k) 2 ; σ(k + 1) L else T (k + 1) T (k) + φ(k); φ(k + 1) min{φ 0, k T (k)} σ(k + 1) R end if end for

9 PCFCFS Interval Splitting Algorithm Power Controlled FCFS splitting algorithm generate Poisson(λ) arrivals in [0, τ) T (1) 0; φ(1) min{φ 0, 1}; σ(1) R; feedback = 0 for k 1 to τ do if feedback c then packets whose a i [T (k), T (k) + φ(k) 2 ) assigned power P 2 packets whose a i [T (k) + φ(k) 2, T (k) + φ(k)) assigned power P 1 end if transmit packets whose a i [T (k), T (k) + φ(k)) if feedback = c then T (k + 1) T (k) + φ(k) 2 else same as FCFS end if end for φ(k) ; φ(k + 1) 2 ; σ(k + 1) R

10 Example allocation interval waiting interval k time T(k) P 1 P 1 T(k) + φ(k) current time allocation interval L R waiting interval k + 1 time T(k + 1) k + 2 T(k + 1) + φ(k + 1) current time allocation interval waiting interval RL RR time T(k + 2) P 2 P 1 T(k + 2) + φ(k + 2) current time allocation interval RLR waiting interval k + 3 time T(k + 3) P 1 T(k + 3) + φ(k + 3) current time

11 Methodology 1 Evolution of a Collision Resolution Period (CRP) can be represented by a Discrete Time Markov Chain (DTMC) 2 Every state in the DTMC is a pair (σ, i), where σ {L, L, R, R, C} and i is the number of times the original allocation interval has been split 3 Expected number of packets in an interval split i times = G i = 2 i λφ 0 4 Determine: 1 transition probabilities as functions of G 0 2 probability of entering any state (X, i) given that you start from (R, 0) 3 expected number of slots in a CRP 4 expected fraction of original interval returned to waiting interval

12 DTMC representation of a CRP idle idle L, 2 L, 3 L, 4... collision collision collision L, 1 L, 2 L, 3 L, 4... PL1,L2 PL2,L3 PL3,L4 idle/ collision PR0,R0 PR0,L1 capture R, 0 C, 1 PR0,C1 PC1,R0 PL1,R1 capture idle PL1,C2 PR1,L2 capture capture capture R, 1 C,2 R, 2 C, 3 R, 3 C, 4 R, 4... PR1,C2 PR2,C3 PR3,C4 PC2,R0 P R 2,R0 P L1,L 2 collision P L 2,R 2 PC3,R0 PR 3,R0 PL2,R2 PC4,R0 P R 4,R0 collision capture capture PR2,L3 P R 2,L3 PL2,C3 collision PL 2,L3 capture collision idle PL3,C4 collision collision PL 2,L 3 PL 3,L 4 PL 2,C3 PL PL2,L 3,L4 3 PL3,R3 capture capture capture collision PL 3,C4 PL 3,R 3 PL 4,R 4 PR 2,C3 P R 3,C4 R, 2 R, 3 R, 4... idle PR3,L4 PL3,L 4 PR 3,L4 PL4,R

13 Main Result Proposition The maximum stable throughput of the PCFCFS splitting algorithm is Also, the maximum stable throughput of the PCFCFS algorithm occurs when initial allocation interval = φ 0 = 2.54.

14 Framework We compare the performance of the following algorithms: FCFS with uniform power P 1 and φ 0 = 2.6 PCFCFS with variable power and φ 0 = 2.54 Let n suc denote the number of ful packets in [0, τ) and d i denote the departure time of the i th packet The performance metrics are: throughput = n suc τ average delay = average power = nsuc i=1 (d i a i ) nsuc i=1 n suc di k= a i P i(k) n suc

15 Throughput vs. Arrival Rate γ c = 7.0 db, N 0 = 90 dbm, β = 4.0, D = 100 m, P 1 = 0.5 mw, P 2 = 3.0 mw α 0 = 2.6 s, φ 0 = 2.54 s, τ = s 0.5 throughput (packets/sec) FCFS PCFCFS packet arrival rate λ (packets/sec) We use prototypical values of system parameters in wireless networks.

16 Delay vs. Arrival Rate average delay per ful packet (s) γ c = 7.0 db, N 0 = 90 dbm, β = 4.0, D = 100 m, P 1 = 0.5 mw, P 2 = 3.0 mw α x = 2.6 s, φ 0 = 2.54 s, τ = s FCFS PCFCFS packet arrival rate λ (packets/sec)

17 Power vs. Arrival Rate γ c = 7.0 db, N 0 = 90 dbm, β = 4.0, D = 100 m, P 1 = 0.5 mw, P 2 = 3.0 mw α 0 = 2.6 s, φ 0 = 2.54 s, τ = s 6 average power per ful packet (mw) FCFS PCFCFS packet arrival rate λ (packets/sec)

18 Observations Simulation results demonstrate that the maximum stable throughput of PCFCFS is between 0.55 and 0.56, i.e., they corroborate our main result. The PCFCFS algorithm achieves higher throughput and lower average delay than the FCFS algorithm, albeit at the cost of expending higher average power. At λ = 0.55, PCFCFS achieves 13.3% higher throughput and 96.7% lower average delay than FCFS.

19 Contributions Contributions of our work: We developed a new random access algorithm for wireless networks under the physical interference model. The proposed splitting algorithm, which varies the transmission powers of users based on quaternary channel feedback, achieves higher throughput and lower delay than the well known FCFS algorithm with constant transmission power. We show that the maximum stable throughput of PCFCFS is The proposed algorithm can be implemented in wireless networks whose users do not have stringent energy requirements, for example, fixed subscriber stations in a WiMAX network.

20 Future Work Future work: Variable user distances from the receiver Collision multiplicity in feedback Questions? Thank you.

21 Future Work Future work: Variable user distances from the receiver Collision multiplicity in feedback Questions? Thank you.

Multiaccess Communication

Multiaccess Communication Information Networks p. 1 Multiaccess Communication Satellite systems, radio networks (WLAN), Ethernet segment The received signal is the sum of attenuated transmitted signals from a set of other nodes,

More information

Random Access Protocols ALOHA

Random Access Protocols ALOHA Random Access Protocols ALOHA 1 ALOHA Invented by N. Abramson in 1970-Pure ALOHA Uncontrolled users (no coordination among users) Same packet (frame) size Instant feedback Large (~ infinite) population

More information

FCFS Tree Algorithms with Interference Cancellation and Single Signal Memory Requirements

FCFS Tree Algorithms with Interference Cancellation and Single Signal Memory Requirements FCFS Tree Algorithms with Interference Cancellation and Single Signal Memory Requirements B. Van Houdt and G.T. Peeters University of Antwerp - IBBT Middelheimlaan 1 B-00 Antwerp Belgium Abstract Tree

More information

Chapter 5. Elementary Performance Analysis

Chapter 5. Elementary Performance Analysis Chapter 5 Elementary Performance Analysis 1 5.0 2 5.1 Ref: Mischa Schwartz Telecommunication Networks Addison-Wesley publishing company 1988 3 4 p t T m T P(k)= 5 6 5.2 : arrived rate : service rate 7

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modeling and Simulation NETW 707 Lecture 6 ARQ Modeling: Modeling Error/Flow Control Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Data Link Layer Data Link Layer provides

More information

requests/sec. The total channel load is requests/sec. Using slot as the time unit, the total channel load is 50 ( ) = 1

requests/sec. The total channel load is requests/sec. Using slot as the time unit, the total channel load is 50 ( ) = 1 Prof. X. Shen E&CE 70 : Examples #2 Problem Consider the following Aloha systems. (a) A group of N users share a 56 kbps pure Aloha channel. Each user generates at a Passion rate of one 000-bit packet

More information

ANALYSIS OF THE RTS/CTS MULTIPLE ACCESS SCHEME WITH CAPTURE EFFECT

ANALYSIS OF THE RTS/CTS MULTIPLE ACCESS SCHEME WITH CAPTURE EFFECT ANALYSIS OF THE RTS/CTS MULTIPLE ACCESS SCHEME WITH CAPTURE EFFECT Chin Keong Ho Eindhoven University of Technology Eindhoven, The Netherlands Jean-Paul M. G. Linnartz Philips Research Laboratories Eindhoven,

More information

On the Stability and Optimal Decentralized Throughput of CSMA with Multipacket Reception Capability

On the Stability and Optimal Decentralized Throughput of CSMA with Multipacket Reception Capability On the Stability and Optimal Decentralized Throughput of CSMA with Multipacket Reception Capability Douglas S. Chan Toby Berger Lang Tong School of Electrical & Computer Engineering Cornell University,

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Maximum Sum Rate of Slotted Aloha with Capture

Maximum Sum Rate of Slotted Aloha with Capture Maximum Sum Rate of Slotted Aloha with Capture Yitong Li and Lin Dai, Senior Member, IEEE arxiv:50.03380v3 [cs.it] 7 Dec 205 Abstract The sum rate performance of random-access networks crucially depends

More information

Wireless Internet Exercises

Wireless Internet Exercises Wireless Internet Exercises Prof. Alessandro Redondi 2018-05-28 1 WLAN 1.1 Exercise 1 A Wi-Fi network has the following features: Physical layer transmission rate: 54 Mbps MAC layer header: 28 bytes MAC

More information

Power Laws in ALOHA Systems

Power Laws in ALOHA Systems Power Laws in ALOHA Systems E6083: lecture 8 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA predrag@ee.columbia.edu March 6, 2007 Jelenković (Columbia University)

More information

Information in Aloha Networks

Information in Aloha Networks Achieving Proportional Fairness using Local Information in Aloha Networks Koushik Kar, Saswati Sarkar, Leandros Tassiulas Abstract We address the problem of attaining proportionally fair rates using Aloha

More information

WiFi MAC Models David Malone

WiFi MAC Models David Malone WiFi MAC Models David Malone November 26, MACSI Hamilton Institute, NUIM, Ireland Talk outline Introducing the 82.11 CSMA/CA MAC. Finite load 82.11 model and its predictions. Issues with standard 82.11,

More information

Performance Analysis of the IEEE e Block ACK Scheme in a Noisy Channel

Performance Analysis of the IEEE e Block ACK Scheme in a Noisy Channel Performance Analysis of the IEEE 802.11e Block ACK Scheme in a Noisy Channel Tianji Li, Qiang Ni, Hamilton Institute, NUIM, Ireland. Thierry Turletti, Planete Group, INRIA, France. Yang Xiao, University

More information

P e = 0.1. P e = 0.01

P e = 0.1. P e = 0.01 23 10 0 10-2 P e = 0.1 Deadline Failure Probability 10-4 10-6 10-8 P e = 0.01 10-10 P e = 0.001 10-12 10 11 12 13 14 15 16 Number of Slots in a Frame Fig. 10. The deadline failure probability as a function

More information

Performance Analysis of a System with Bursty Traffic and Adjustable Transmission Times

Performance Analysis of a System with Bursty Traffic and Adjustable Transmission Times Performance Analysis of a System with Bursty Traffic and Adjustable Transmission Times Nikolaos Pappas Department of Science and Technology, Linköping University, Sweden E-mail: nikolaospappas@liuse arxiv:1809085v1

More information

Random Access Game. Medium Access Control Design for Wireless Networks 1. Sandip Chakraborty. Department of Computer Science and Engineering,

Random Access Game. Medium Access Control Design for Wireless Networks 1. Sandip Chakraborty. Department of Computer Science and Engineering, Random Access Game Medium Access Control Design for Wireless Networks 1 Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR October 22, 2016 1 Chen

More information

On Selfish Behavior in CSMA/CA Networks

On Selfish Behavior in CSMA/CA Networks On Selfish Behavior in CSMA/CA Networks Mario Čagalj1 Saurabh Ganeriwal 2 Imad Aad 1 Jean-Pierre Hubaux 1 1 LCA-IC-EPFL 2 NESL-EE-UCLA March 17, 2005 - IEEE Infocom 2005 - Introduction CSMA/CA is the most

More information

Tuning the TCP Timeout Mechanism in Wireless Networks to Maximize Throughput via Stochastic Stopping Time Methods

Tuning the TCP Timeout Mechanism in Wireless Networks to Maximize Throughput via Stochastic Stopping Time Methods Tuning the TCP Timeout Mechanism in Wireless Networks to Maximize Throughput via Stochastic Stopping Time Methods George Papageorgiou and John S. Baras Abstract We present an optimization problem that

More information

How do Wireless Chains Behave? The Impact of MAC Interactions

How do Wireless Chains Behave? The Impact of MAC Interactions The Impact of MAC Interactions S. Razak 1 Vinay Kolar 2 N. Abu-Ghazaleh 1 K. Harras 1 1 Department of Computer Science Carnegie Mellon University, Qatar 2 Department of Wireless Networks RWTH Aachen University,

More information

Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications

Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications sensors Article Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications Jonghun Kim and Jaiyong Lee * Ubiquitous Network Laboratory, School of Electrical and Electronic

More information

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation Karim G. Seddik and Amr A. El-Sherif 2 Electronics and Communications Engineering Department, American University in Cairo, New

More information

Performance analysis of IEEE WLANs with saturated and unsaturated sources

Performance analysis of IEEE WLANs with saturated and unsaturated sources Performance analysis of IEEE 82.11 WLANs with saturated and unsaturated sources Suong H. Nguyen, Hai L. Vu, Lachlan L. H. Andrew Centre for Advanced Internet Architectures, Technical Report 11811A Swinburne

More information

Interference and SINR in Dense Terahertz Networks

Interference and SINR in Dense Terahertz Networks Interference and SINR in Dense Terahertz Networks V. Petrov, D. Moltchanov, Y. Koucheryavy Nano Communications Center Tampere University of Technology Outline 1. Introduction to THz communications 2. Problem

More information

Analysis of random-access MAC schemes

Analysis of random-access MAC schemes Analysis of random-access MA schemes M. Veeraraghavan and Tao i ast updated: Sept. 203. Slotted Aloha [4] First-order analysis: if we assume there are infinite number of nodes, the number of new arrivals

More information

Job Scheduling and Multiple Access. Emre Telatar, EPFL Sibi Raj (EPFL), David Tse (UC Berkeley)

Job Scheduling and Multiple Access. Emre Telatar, EPFL Sibi Raj (EPFL), David Tse (UC Berkeley) Job Scheduling and Multiple Access Emre Telatar, EPFL Sibi Raj (EPFL), David Tse (UC Berkeley) 1 Multiple Access Setting Characteristics of Multiple Access: Bursty Arrivals Uncoordinated Transmitters Interference

More information

Distributed Scheduling for Achieving Multi-User Diversity (Capacity of Opportunistic Scheduling in Heterogeneous Networks)

Distributed Scheduling for Achieving Multi-User Diversity (Capacity of Opportunistic Scheduling in Heterogeneous Networks) Distributed Scheduling for Achieving Multi-User Diversity (Capacity of Opportunistic Scheduling in Heterogeneous Networks) Sefi Kampeas, Ben-Gurion University Joint work with Asaf Cohen and Omer Gurewitz

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Channel Allocation Using Pricing in Satellite Networks

Channel Allocation Using Pricing in Satellite Networks Channel Allocation Using Pricing in Satellite Networks Jun Sun and Eytan Modiano Laboratory for Information and Decision Systems Massachusetts Institute of Technology {junsun, modiano}@mitedu Abstract

More information

Service differentiation without prioritization in IEEE WLANs

Service differentiation without prioritization in IEEE WLANs Service differentiation without prioritization in IEEE 8. WLANs Suong H. Nguyen, Student Member, IEEE, Hai L. Vu, Senior Member, IEEE, and Lachlan L. H. Andrew, Senior Member, IEEE Abstract Wireless LANs

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Giuseppe Bianchi, Ilenia Tinnirello

Giuseppe Bianchi, Ilenia Tinnirello Capacity of WLAN Networs Summary Per-node throughput in case of: Full connected networs each node sees all the others Generic networ topology not all nodes are visible Performance Analysis of single-hop

More information

Performance analysis of IEEE WLANs with saturated and unsaturated sources

Performance analysis of IEEE WLANs with saturated and unsaturated sources 1 Performance analysis of IEEE 8.11 WLANs with saturated and unsaturated sources Suong H. Nguyen, Student Member, IEEE, Hai L. Vu, Senior Member, IEEE, and Lachlan L. H. Andrew, Senior Member, IEEE Abstract

More information

Conference Paper. Stability and Delay of Network-Diversity Multiple Access with Backlog Retransmission Control. Ramiro Robles CISTER-TR

Conference Paper. Stability and Delay of Network-Diversity Multiple Access with Backlog Retransmission Control. Ramiro Robles CISTER-TR Conference Paper Stability and Delay of Network-Diversity Multiple Access with Backlog Retransmission Control Ramiro Robles CISTER-TR-742 27/5/2 Conference Paper CISTER-TR-742 Stability and Delay of Network-Diversity

More information

NOMA: Principles and Recent Results

NOMA: Principles and Recent Results NOMA: Principles and Recent Results Jinho Choi School of EECS GIST September 2017 (VTC-Fall 2017) 1 / 46 Abstract: Non-orthogonal multiple access (NOMA) becomes a key technology in 5G as it can improve

More information

Approximate Queueing Model for Multi-rate Multi-user MIMO systems.

Approximate Queueing Model for Multi-rate Multi-user MIMO systems. An Approximate Queueing Model for Multi-rate Multi-user MIMO systems Boris Bellalta,Vanesa Daza, Miquel Oliver Abstract A queueing model for Multi-rate Multi-user MIMO systems is presented. The model is

More information

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS The 20 Military Communications Conference - Track - Waveforms and Signal Processing TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS Gam D. Nguyen, Jeffrey E. Wieselthier 2, Sastry Kompella,

More information

16:330:543 Communication Networks I Midterm Exam November 7, 2005

16:330:543 Communication Networks I Midterm Exam November 7, 2005 l l l l l l l l 1 3 np n = ρ 1 ρ = λ µ λ. n= T = E[N] = 1 λ µ λ = 1 µ 1. 16:33:543 Communication Networks I Midterm Exam November 7, 5 You have 16 minutes to complete this four problem exam. If you know

More information

On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels

On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels Jie Luo, Anthony Ephremides ECE Dept. Univ. of Maryland College Park, MD 20742

More information

AN ENHANCED ENERGY SAVING STRATEGY FOR AN ACTIVE DRX IN LTE WIRELESS NETWORKS. Received December 2012; revised April 2013

AN ENHANCED ENERGY SAVING STRATEGY FOR AN ACTIVE DRX IN LTE WIRELESS NETWORKS. Received December 2012; revised April 2013 International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 11, November 2013 pp. 4373 4387 AN ENHANCED ENERGY SAVING STRATEGY FOR AN

More information

STABILITY OF FINITE-USER SLOTTED ALOHA UNDER PARTIAL INTERFERENCE IN WIRELESS MESH NETWORKS

STABILITY OF FINITE-USER SLOTTED ALOHA UNDER PARTIAL INTERFERENCE IN WIRELESS MESH NETWORKS The 8th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 7) STABILITY OF FINITE-USER SLOTTED ALOHA UNDER PARTIAL INTERFERENCE IN WIRELESS MESH NETWORKS Ka-Hung

More information

Multimedia Communication Services Traffic Modeling and Streaming

Multimedia Communication Services Traffic Modeling and Streaming Multimedia Communication Services Medium Access Control algorithms Aloha Slotted: performance analysis with finite nodes Università degli Studi di Brescia A.A. 2014/2015 Francesco Gringoli Master of Science

More information

Delay and throughput analysis of tree algorithms for random access over noisy collision channels

Delay and throughput analysis of tree algorithms for random access over noisy collision channels Delay and throughput analysis of tree algorithms for random access over noisy collision channels Benny Van Houdt, Robbe Block To cite this version: Benny Van Houdt, Robbe Block. Delay and throughput analysis

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

ABSTRACT CROSS-LAYER ASPECTS OF COGNITIVE WIRELESS NETWORKS. Title of dissertation: Anthony A. Fanous, Doctor of Philosophy, 2013

ABSTRACT CROSS-LAYER ASPECTS OF COGNITIVE WIRELESS NETWORKS. Title of dissertation: Anthony A. Fanous, Doctor of Philosophy, 2013 ABSTRACT Title of dissertation: CROSS-LAYER ASPECTS OF COGNITIVE WIRELESS NETWORKS Anthony A. Fanous, Doctor of Philosophy, 2013 Dissertation directed by: Professor Anthony Ephremides Department of Electrical

More information

Machine-Type Communication with Random Access and Data Aggregation: A Stochastic Geometry Approach

Machine-Type Communication with Random Access and Data Aggregation: A Stochastic Geometry Approach Machine-Type Communication with Random Access and Data Aggregation: A Stochastic Geometry Approach Jing Guo, Salman Durrani, Xiangyun Zhou, and Halim Yanikomeroglu Research School of Engineering, The Australian

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks

On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks Technical Report Computer Networks Research Lab Department of Computer Science University of Toronto CNRL-08-002 August 29th, 2008 On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks

More information

Performance Evaluation of Deadline Monotonic Policy over protocol

Performance Evaluation of Deadline Monotonic Policy over protocol Performance Evaluation of Deadline Monotonic Policy over 80. protocol Ines El Korbi and Leila Azouz Saidane National School of Computer Science University of Manouba, 00 Tunisia Emails: ines.korbi@gmail.com

More information

Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks

Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks Syracuse University SURFACE Dissertations - ALL SURFACE June 2017 Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks Yi Li Syracuse University Follow this and additional works

More information

Random Access Protocols for Massive MIMO

Random Access Protocols for Massive MIMO Random Access Protocols for Massive MIMO Elisabeth de Carvalho Jesper H. Sørensen Petar Popovski Aalborg University Denmark Emil Björnson Erik G. Larsson Linköping University Sweden 2016 Tyrrhenian International

More information

Stability Analysis of Slotted Aloha with Opportunistic RF Energy Harvesting

Stability Analysis of Slotted Aloha with Opportunistic RF Energy Harvesting 1 Stability Analysis of Slotted Aloha with Opportunistic RF Energy Harvesting Abdelrahman M.Ibrahim, Ozgur Ercetin, and Tamer ElBatt arxiv:151.6954v2 [cs.ni] 27 Jul 215 Abstract Energy harvesting (EH)

More information

Optimal power-delay trade-offs in fading channels: small delay asymptotics

Optimal power-delay trade-offs in fading channels: small delay asymptotics Optimal power-delay trade-offs in fading channels: small delay asymptotics Randall A. Berry Dept. of EECS, Northwestern University 45 Sheridan Rd., Evanston IL 6008 Email: rberry@ece.northwestern.edu Abstract

More information

Design and Analysis of Multichannel Slotted ALOHA for Machine-to-Machine Communication

Design and Analysis of Multichannel Slotted ALOHA for Machine-to-Machine Communication Design and Analysis of Multichannel Slotted ALOHA for Machine-to-Machine Communication Chih-Hua Chang and Ronald Y. Chang School of Electrical and Computer Engineering, Purdue University, USA Research

More information

Mathematical Analysis of IEEE Energy Efficiency

Mathematical Analysis of IEEE Energy Efficiency Information Engineering Department University of Padova Mathematical Analysis of IEEE 802.11 Energy Efficiency A. Zanella and F. De Pellegrini IEEE WPMC 2004 Padova, Sept. 12 15, 2004 A. Zanella and F.

More information

Intro to Queueing Theory

Intro to Queueing Theory 1 Intro to Queueing Theory Little s Law M/G/1 queue Conservation Law 1/31/017 M/G/1 queue (Simon S. Lam) 1 Little s Law No assumptions applicable to any system whose arrivals and departures are observable

More information

Modeling Approximations for an IEEE WLAN under Poisson MAC-Level Arrivals

Modeling Approximations for an IEEE WLAN under Poisson MAC-Level Arrivals Modeling Approximations for an IEEE 802.11 WLAN under Poisson MAC-Level Arrivals Ioannis Koukoutsidis 1 and Vasilios A. Siris 1,2 1 FORTH-ICS, P.O. Box 1385, 71110 Heraklion, Crete, Greece 2 Computer Science

More information

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals CHAPTER 4 Networks of queues. Open networks Suppose that we have a network of queues as given in Figure 4.. Arrivals Figure 4.. An open network can occur from outside of the network to any subset of nodes.

More information

On the MAC for Power-Line Communications: Modeling Assumptions and Performance Tradeoffs

On the MAC for Power-Line Communications: Modeling Assumptions and Performance Tradeoffs On the MAC for Power-Line Communications: Modeling Assumptions and Performance Tradeoffs Technical Report Christina Vlachou, Albert Banchs, Julien Herzen, Patrick Thiran EPFL, Switzerland, Institute IMDEA

More information

Flow-level performance of wireless data networks

Flow-level performance of wireless data networks Flow-level performance of wireless data networks Aleksi Penttinen Department of Communications and Networking, TKK Helsinki University of Technology CLOWN seminar 28.8.08 1/31 Outline 1. Flow-level model

More information

Markov Chain Model for ALOHA protocol

Markov Chain Model for ALOHA protocol Markov Chain Model for ALOHA protocol Laila Daniel and Krishnan Narayanan April 22, 2012 Outline of the talk A Markov chain (MC) model for Slotted ALOHA Basic properties of Discrete-time Markov Chain Stability

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Analysis and Performance Evaluation of Dynamic Frame Slotted-ALOHA in Wireless Machine-to-Machine Networks with Energy Harvesting

Analysis and Performance Evaluation of Dynamic Frame Slotted-ALOHA in Wireless Machine-to-Machine Networks with Energy Harvesting and Performance Evaluation of Dynamic Frame Slotted-ALOHA in Wireless Machine-to-Machine Networks with Energy Harvesting Shuang Wu, Yue Chen, Kok K Chai Queen Mary University of London London, U.K. Email:

More information

Sebastian Marban, Peter van de Ven, Peter Borm, Herbert Hamers. A cooperative game-theoretic approach to ALOHA RM/10/049

Sebastian Marban, Peter van de Ven, Peter Borm, Herbert Hamers. A cooperative game-theoretic approach to ALOHA RM/10/049 Sebastian Marban, Peter van de Ven, Peter Borm, Herbert Hamers A cooperative game-theoretic approach to ALOHA RM/10/049 A cooperative game-theoretic approach to ALOHA Sebastian Marban 1 Peter van de Ven

More information

Design and Analysis of a Propagation Delay Tolerant ALOHA Protocol for Underwater Networks

Design and Analysis of a Propagation Delay Tolerant ALOHA Protocol for Underwater Networks Design and Analysis of a Propagation Delay Tolerant ALOHA Protocol for Underwater Networks Joon Ahn a, Affan Syed b, Bhaskar Krishnamachari a, John Heidemann b a Ming Hsieh Department of Electrical Engineering,

More information

Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks

Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks Xin Wang, Koushik Kar Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute,

More information

Hybrid ALOHA: A Novel MAC Protocol

Hybrid ALOHA: A Novel MAC Protocol 1 Hybrid ALOHA: A Novel MAC Protocol Huahui Wang Tongtong Li Department of Electrical & Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA. Email: wanghuah,tongli@egr.msu.edu

More information

Performance Analysis and Evaluation of Digital Connection Oriented Internet Service Systems

Performance Analysis and Evaluation of Digital Connection Oriented Internet Service Systems Performance Analysis and Evaluation of Digital Connection Oriented Internet Service Systems Shunfu Jin 1 and Wuyi Yue 2 1 College of Information Science and Engineering Yanshan University, Qinhuangdao

More information

distributed approaches For Proportional and max-min fairness in random access ad-hoc networks

distributed approaches For Proportional and max-min fairness in random access ad-hoc networks distributed approaches For Proportional and max-min fairness in random access ad-hoc networks Xin Wang, Koushik Kar Rensselaer Polytechnic Institute OUTline Introduction Motivation and System model Proportional

More information

Detecting Stations Cheating on Backoff Rules in Networks Using Sequential Analysis

Detecting Stations Cheating on Backoff Rules in Networks Using Sequential Analysis Detecting Stations Cheating on Backoff Rules in 82.11 Networks Using Sequential Analysis Yanxia Rong Department of Computer Science George Washington University Washington DC Email: yxrong@gwu.edu Sang-Kyu

More information

A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers

A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers UNIVERSITY OF OKLAHOMA GENERAL EXAM REPORT A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers Prepared by HUSNU SANER NARMAN husnu@ou.edu based on the papers 1) F. S.

More information

Control of Fork-Join Networks in Heavy-Traffic

Control of Fork-Join Networks in Heavy-Traffic in Heavy-Traffic Asaf Zviran Based on MSc work under the guidance of Rami Atar (Technion) and Avishai Mandelbaum (Technion) Industrial Engineering and Management Technion June 2010 Introduction Network

More information

Queue length analysis for multicast: Limits of performance and achievable queue length with random linear coding

Queue length analysis for multicast: Limits of performance and achievable queue length with random linear coding Queue length analysis for multicast: Limits of performance and achievable queue length with random linear coding The MIT Faculty has made this article openly available Please share how this access benefits

More information

Lecture on Sensor Networks

Lecture on Sensor Networks Lecture on Sensor Networks Cyclic Historical Redundancy Development Copyright (c) 2008 Dr. Thomas Haenselmann (University of Mannheim, Germany). Permission is granted to copy, distribute and/or modify

More information

The ergodic rate density of slotted and unslotted CSMA ad-hoc networks

The ergodic rate density of slotted and unslotted CSMA ad-hoc networks he ergodic rate density of slotted and unslotted CSMA ad-hoc networks 1 Yaniv George, Itsik Bergel, Senior Member, IEEE, Abstract he performance of random Wireless Ad-hoc Networks WANEs) is primarily limited

More information

Energy Efficient Multiuser Scheduling: Statistical Guarantees on Bursty Packet Loss

Energy Efficient Multiuser Scheduling: Statistical Guarantees on Bursty Packet Loss Energy Efficient Multiuser Scheduling: Statistical Guarantees on Bursty Packet Loss M. Majid Butt, Eduard A. Jorswieck and Amr Mohamed Department of Computer Science and Engineering, Qatar University,

More information

Cooperative HARQ with Poisson Interference and Opportunistic Routing

Cooperative HARQ with Poisson Interference and Opportunistic Routing Cooperative HARQ with Poisson Interference and Opportunistic Routing Amogh Rajanna & Mostafa Kaveh Department of Electrical and Computer Engineering University of Minnesota, Minneapolis, MN USA. Outline

More information

Characterizing Interference in Wireless Mesh Networks

Characterizing Interference in Wireless Mesh Networks Characterizing Interference in Wireless Mesh Networks HUI, Ka Hung A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Philosophy in Information Engineering c The Chinese

More information

TCP over Cognitive Radio Channels

TCP over Cognitive Radio Channels 1/43 TCP over Cognitive Radio Channels Sudheer Poojary Department of ECE, Indian Institute of Science, Bangalore IEEE-IISc I-YES seminar 19 May 2016 2/43 Acknowledgments The work presented here was done

More information

Energy Harvesting Wireless Sensor Networks: Delay Analysis Considering Energy Costs of Sensing and Transmission

Energy Harvesting Wireless Sensor Networks: Delay Analysis Considering Energy Costs of Sensing and Transmission Energy Harvesting Wireless Sensor Networks: Delay Analysis Considering Energy Costs of Sensing and Transmission Wanchun Liu, Xiangyun Zhou, Salman Durrani, Hani Mehrpouyan, 1 arxiv:1509.06089v2 [cs.it]

More information

Robustness of Q-ary collision resolution algorithms in random access systems

Robustness of Q-ary collision resolution algorithms in random access systems Performance Evaluation 57 (2004) 357 377 Robustness of Q-ary collision resolution algorithms in random access systems B. Van Houdt, C. Blondia Department of Mathematics and Computer Science, University

More information

Energy minimization based Resource Scheduling for Strict Delay Constrained Wireless Communications

Energy minimization based Resource Scheduling for Strict Delay Constrained Wireless Communications Energy minimization based Resource Scheduling for Strict Delay Constrained Wireless Communications Ibrahim Fawaz 1,2, Philippe Ciblat 2, and Mireille Sarkiss 1 1 LIST, CEA, Communicating Systems Laboratory,

More information

A Comprehensive Study of the IEEE e Enhanced Distributed Control Access (EDCA) Function. Chunyu Hu and Jennifer C. Hou.

A Comprehensive Study of the IEEE e Enhanced Distributed Control Access (EDCA) Function. Chunyu Hu and Jennifer C. Hou. Report No. UIUCDCS-R-26-27 UILU-ENG-26-743 A Comprehensive Study of the IEEE 82.e Enhanced Distributed Control Access EDCA) Function by Chunyu Hu and Jennifer C. Hou April 26 A Comprehensive Study of the

More information

Structure of optimal decentralized control policies An axiomatic approach

Structure of optimal decentralized control policies An axiomatic approach Structure of optimal decentralized control policies An axiomatic approach Aditya Mahajan Yale Joint work with: Demos Teneketzis (UofM), Sekhar Tatikonda (Yale), Ashutosh Nayyar (UofM), Serdar Yüksel (Queens)

More information

Wireless Transmission with Energy Harvesting and Storage. Fatemeh Amirnavaei

Wireless Transmission with Energy Harvesting and Storage. Fatemeh Amirnavaei Wireless Transmission with Energy Harvesting and Storage by Fatemeh Amirnavaei A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in The Faculty of Engineering

More information

Amr Rizk TU Darmstadt

Amr Rizk TU Darmstadt Saving Resources on Wireless Uplinks: Models of Queue-aware Scheduling 1 Amr Rizk TU Darmstadt - joint work with Markus Fidler 6. April 2016 KOM TUD Amr Rizk 1 Cellular Uplink Scheduling freq. time 6.

More information

Optimizing Age of Information in Wireless Networks with Throughput Constraints

Optimizing Age of Information in Wireless Networks with Throughput Constraints Optimizing Age of Information in Wireless Networks with Throughput Constraints Igor adota, Abhishek Sinha and Eytan Modiano Laboratory for Information & Decision Systems, MIT Abstract Age of Information

More information

Distributed Multiple Access with Multiple Transmission Options at The Link Layer

Distributed Multiple Access with Multiple Transmission Options at The Link Layer 1 Distributed Multiple Access with Multiple Transmission Options at The Link Layer Faeze Heydaryan, Yanru Tang, and Jie Luo arxiv:1805.03116v1 [cs.it] 8 May 2018 Abstract This paper investigates the problem

More information

ESTIMATION OF THE BURST LENGTH IN OBS NETWORKS

ESTIMATION OF THE BURST LENGTH IN OBS NETWORKS ESTIMATION OF THE BURST LENGTH IN OBS NETWORKS Pallavi S. Department of CSE, Sathyabama University Chennai, Tamilnadu, India pallavi.das12@gmail.com M. Lakshmi Department of CSE, Sathyabama University

More information

Analyzing Queuing Systems with Coupled Processors. through Semidefinite Programming

Analyzing Queuing Systems with Coupled Processors. through Semidefinite Programming Analyzing Queuing Systems with Coupled Processors through Semidefinite Programming Balaji Rengarajan, Constantine Caramanis, and Gustavo de Veciana Dept. of Electrical and Computer Engineering The University

More information

ENERGY harvesting (EH), a technology to collect energy. Optimal Relaying in Energy Harvesting Wireless Networks with Wireless-Powered Relays

ENERGY harvesting (EH), a technology to collect energy. Optimal Relaying in Energy Harvesting Wireless Networks with Wireless-Powered Relays Optimal elaying in Energy Harvesting Wireless Networks with Wireless-Powered elays Masoumeh Moradian, tudent Member, IEEE, Farid Ashtiani, Member, IEEE, and Ying Jun (Angela) Zhang, enior Member, IEEE

More information

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines.

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. Chapter 10 Queuing Systems D. 10. 1. (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. D. 10.. (Queuing System) A ueuing system consists of 1. a user source.

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

Ressource Allocation Schemes for D2D Communications

Ressource Allocation Schemes for D2D Communications 1 / 24 Ressource Allocation Schemes for D2D Communications Mohamad Assaad Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, Gif sur Yvette, France. Indo-french Workshop on D2D Communications

More information

CPU Scheduling Exercises

CPU Scheduling Exercises CPU Scheduling Exercises NOTE: All time in these exercises are in msec. Processes P 1, P 2, P 3 arrive at the same time, but enter the job queue in the order presented in the table. Time quantum = 3 msec

More information

Cognitive Spectrum Access Control Based on Intrinsic Primary ARQ Information

Cognitive Spectrum Access Control Based on Intrinsic Primary ARQ Information Cognitive Spectrum Access Control Based on Intrinsic Primary ARQ Information Fabio E. Lapiccirella, Zhi Ding and Xin Liu Electrical and Computer Engineering University of California, Davis, California

More information

ABSTRACT WIRELESS COMMUNICATIONS. criterion. Therefore, it is imperative to design advanced transmission schemes to

ABSTRACT WIRELESS COMMUNICATIONS. criterion. Therefore, it is imperative to design advanced transmission schemes to ABSTRACT Title of dissertation: DELAY MINIMIZATION IN ENERGY CONSTRAINED WIRELESS COMMUNICATIONS Jing Yang, Doctor of Philosophy, 2010 Dissertation directed by: Professor Şennur Ulukuş Department of Electrical

More information