Lecture Notes for Math 1000

Size: px
Start display at page:

Download "Lecture Notes for Math 1000"

Transcription

1 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Course website: Lecture Notes for Math 1000 First Previous Next Last 1

2 Rates of change The average rate of change of a function y = f(x) over an interval [x 0, x 1 ] is defined as f(x 1 ) f(x 0 ) x 1 x 0. The instantaneous rate of change of a function y = f(x) at x = x 0 is defined as f(x 1 ) f(x 0 ) f(x 0 + h) f(x 0 ) lim = lim. x 1 x 0 x 1 x 0 h 0 h The average rate of change is equal to the slope of the secant line through (x 0, f(x 0 )) and (x 1, f(x 1 )). The instantaneous rate of change is equal to the slope of the tangent line at x = x 0. Lecture Notes for Math 1000 First Previous Next Last 2

3 The definition of the derivative The derivative of a function f(x) at x = a is the limit of the difference quotient (if exists): f (a) = lim x a f(x) f(a) x a f(a + h) f(a) = lim. h 0 h If f (a) exists, then we say that f is differentiable at x = a. Theorems. 1. If f(x) = mx + b, then f (a) = m for all a. 2. If f(x) is differentiable at x = a, then f(x) is continuous at x = a. Remark. If f is continuous at x = a. It is NOT necessarily that f is differentiable at x = a. (Counter example: f(x) = x and a = 0.) We say y = f(x) is differentiable in (a, b) if f (x) exists for all x in (a, b). In this case, we view y = f (x) as a function defined on (a, b). Lecture Notes for Math 1000 First Previous Next Last 3

4 Notations Let y = f(x), then its derivative function is denoted by For example, if y = f(x) = x 1, then y = f (x) = dy = df = d (f(x)). y = f (x) = dy = df = d (x 1 ) = x 2. If y = f(x) is differentiable at x = a, then we write y (a) = f (a) = dy = df x=a. x=a For example, if y = f(x) = x 1 and a = 1, then y (1) = f (1) = dy = df x=1 = ( x 2) x=1 = 1. x=1 Lecture Notes for Math 1000 First Previous Next Last 4

5 Derivatives of algebraic functions and exponential functions Two formulas: (x a ) = ax a 1 and (e x ) = e x. The tangent line to y = f(x) at x = a has the slope f (a) and the equation in point-slope form: y f(a) = f (a)(x a). Example: The tangent line of the curve y = x 3 at x = 1 is given by y 1 = 3(x 1). Example: The tangent line of the curve y = e x at x = 0 is given by y 1 = x. Lecture Notes for Math 1000 First Previous Next Last 5

6 The properties of derivatives Let f(x) and g(x) be differentiable functions. The Sum Rule: The Constant Multiple Rule: The Product Rule: (f ± g) = f ± g. (cf) = cf. (fg) = f g + fg. The Quotient Rule: ( f g ) = f g fg g 2. Remark:. (fg) f g and ( ) f f g g Lecture Notes for Math 1000 First Previous Next Last 6

7 Two basic formulas: Derivatives of trigonometric functions (sin x) = cos x and (cos x) = sin x Express everything in terms of sin x and cos x and then apply derivative rules: ( ) d d sin x (tan x) = = 1 cos x cos 2 x = sec2 x. d d (cot x) = d d (sec x) = d d (csc x) = ( cos x ) = 1 sin x sin 2 x = csc2 x. ( ) 1 = sin x cos x cos 2 = sec x tan x. x ( ) 1 = cos x sin x sin 2 = csc x cot x. x Lecture Notes for Math 1000 First Previous Next Last 7

8 Derivatives of hyperbolic functions Two basic formulas: (sinhx) = coshx and (coshx) = sinhx Express everything in terms of sin x and cos x and then apply derivative rules: (tanhx) = (coth x) = (sechx) = (cschx) = ( ) sinhx = (sinhx) (coshx) (sinhx)(coshx) coshx cosh 2 x ( ) coshx = (coshx) (sinhx) (coshx)(sinhx) sinhx sinh 2 x ( ) 1 = (1) (coshx) (1)(coshx) coshx cosh 2 x ( ) 1 = (1) (sinhx) (1)(sinhx) sinhx sinh 2 x = 1 cosh 2 x = sech2 x = 1 sinh 2 x = csch2 x = sinhx cosh 2 x = tanhxsechx = coshx sinh 2 x = coth xcschx Lecture Notes for Math 1000 First Previous Next Last 8

9 Higher derivatives Higher derivatives: let y = f(x), then y = f (x) = dy = df = d y = f (x) = d ( ) dy (f(x)) = d ( ) dy = d2 y 2 = d2 f 2 = d y = f (x) = y (3) = f (3) (x) = d3 y 3 = d3 f 3 = d ( d ( ) d (f(x)) )) ( d (f(x)) Given the displacement function s(t), the velocity function is given by v(t) = s (t), and the acceleration function is given by a(t) = s (t) = v (t). Lecture Notes for Math 1000 First Previous Next Last 9

10 The chain rule If u = g(x) is differentiable at x = x 0 and y = f(u) is differentiable at u = u 0 = g(x 0 ), then y = f(g(x)) is differentiable at x = x 0 and dy = dy x=x0 du u=u0 =g(x 0 ) du x=x0 We can also write dy = dy du du or d f(g(x)) = f (g(x))g (x) or d f(u) = f (u) du Lecture Notes for Math 1000 First Previous Next Last 10

11 If g(x) is differentiable, then The chain rule (special applications) d (g(x))a = a(g(x)) a 1 g (x) If f(u) is differentiable, then and d eg(x) = g (x)e g(x) Especially, if f(u) = e u, then d f(kx + b) = kf (kx + b) (e kx+b ) = ke kx+b If b > 0, then (b x ) = (ln b)b x Lecture Notes for Math 1000 First Previous Next Last 11

12 Given an implicit function Implicit differentiation y 4 + xy = x 3 x + 2 Take derivative with respect to x on both side of the equation d (y4 + xy) = d (x3 x + 2) Apply the chain rule and other derivative rules to obtain 4y 3dy + y + xdy = 3x2 1 Solve dy from the above equation dy = 3x2 1 y 4y 3 + x Lecture Notes for Math 1000 First Previous Next Last 12

13 Derivative of inverse function If y = f(x) is differentiable at x = x 0 and f (x 0 ) 0, then the inverse function x = g(y) = f 1 (y) is differentiable at y = y 0 = f(x 0 ) and Logarithmic functions g (y 0 ) = 1 f (x 0 ) = 1 f (g(y 0 )) (log x) = 1 x and (log g(x)) = g (x) g(x) Lecture Notes for Math 1000 First Previous Next Last 13

14 Derivatives of inverse trigonometric functions (sin 1 y) = (cos 1 y) = (tan 1 y) = (cot 1 y) = (sec 1 y) = (csc 1 y) = 1 (sin x) = 1 cos x = 1 1 sin 2 x = 1 1 y 2 1 (cos x) = 1 sin x = 1 1 cos 2 x = 1 1 y 2 1 (tan x) = cos2 x = cos 2 x cos 2 x + sin 2 x = tan 2 x = y 2 1 (cot x) = sin 2 x sin2 x = sin 2 x + cos 2 x = cot 2 x = y 2 1 (sec x) = cos2 x sin x = 1 (csc x) = sin2 x cos x = sin2 x 1 sin 2 x = cos 2 x 1 cos2 x = 1 y 2 1 (1/y) 2 = 1 y y y 2 1 (1/y) 2 = 1 y y 2 1 Lecture Notes for Math 1000 First Previous Next Last 14

15 L Hôpital s rule Assume f (x) and g (x) exist for all x near a, and g (x) 0 for x near but not equal to a. If f(a) = g(a) = 0, then lim x a f(x) g(x) = lim x a provided that the limit on the right exists. f (x) g (x) If lim f(x) = ± and lim g(x) = ±, then L Hôpital s rule also applies. x a x a Furthermore, the limit may be taken as one-sided limit. Assume f (x) and g (x) exist for large x, and g (x) 0 for all large x. If both lim f(x) and lim g(x) are zero (or infinity), then x x lim x f(x) g(x) = lim x f (x) g (x) provided that the limit on the right exists. Similar result holds when x. Lecture Notes for Math 1000 First Previous Next Last 15

Differential and Integral Calculus

Differential and Integral Calculus School of science an engineering El Akhawayn University Monay, March 31 st, 2008 Outline 1 Definition of hyperbolic functions: The hyperbolic cosine an the hyperbolic sine of the real number x are enote

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: swang@mun.ca Course

More information

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review)

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review) Name Date Miterm Score Overall Grae Math A Miterm 2 Fall 205 Riversie City College (Use this as a Review) Instructions: All work is to be shown, legible, simplifie an answers are to be boxe in the space

More information

Lecture 3. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Exponential and logarithmic functions

Lecture 3. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Exponential and logarithmic functions Lecture 3 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Exponential and logarithmic functions Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 7 Lecture 3 1 Inverse functions

More information

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital. 7.5. Ineterminate Forms an L Hôpital s Rule L Hôpital s Rule was iscovere by Bernoulli but written for the first time in a text by L Hôpital. Ineterminate Forms 0/0 an / f(x) If f(x 0 ) = g(x 0 ) = 0,

More information

Differentiation Rules and Formulas

Differentiation Rules and Formulas Differentiation Rules an Formulas Professor D. Olles December 1, 01 1 Te Definition of te Derivative Consier a function y = f(x) tat is continuous on te interval a, b]. Ten, te slope of te secant line

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

CHAPTER 3 DIFFERENTIATION

CHAPTER 3 DIFFERENTIATION CHAPTER 3 DIFFERENTIATION 3.1 THE DERIVATIVE AND THE TANGENT LINE PROBLEM You will be able to: - Find the slope of the tangent line to a curve at a point - Use the limit definition to find the derivative

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142.

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142. Hyperbolics Scott Morgan Further Mathematics Support Programme - WJEC A-Level Further Mathematics 3st March 208 scott342.com @Scott342 Topics Hyperbolic Identities Calculus with Hyperbolics - Differentiation

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed.

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. Math 150 Name: FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. 135 points: 45 problems, 3 pts. each. You

More information

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions Chapter 5 Logarithmic, Exponential, an Other Transcenental Functions 5.1 The Natural Logarithmic Function: Differentiation 5.2 The Natural Logarithmic Function: Integration 5.3 Inverse Functions 5.4 Exponential

More information

ENGI 3425 Review of Calculus Page then

ENGI 3425 Review of Calculus Page then ENGI 345 Review of Calculus Page 1.01 1. Review of Calculus We begin this course with a refresher on ifferentiation an integration from MATH 1000 an MATH 1001. 1.1 Reminer of some Derivatives (review from

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule)

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) Chapter 3 Differentiation Rules 3.1 Derivatives of Polynomials and Exponential Functions Aka The Short Cuts! Yay! f(x) = c f (x) = 0 g(x) = x g (x) = 1 h(x) = x n h (x) = n x n-1 (The Power Rule) k(x)

More information

Calculus: Early Transcendental Functions Lecture Notes for Calculus 101. Feras Awad Mahmoud

Calculus: Early Transcendental Functions Lecture Notes for Calculus 101. Feras Awad Mahmoud Calculus: Early Transcendental Functions Lecture Notes for Calculus 101 Feras Awad Mahmoud Last Updated: August 2, 2012 1 2 Feras Awad Mahmoud Department of Basic Sciences Philadelphia University JORDAN

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

f(x 0 + h) f(x 0 ) h slope of secant line = m sec

f(x 0 + h) f(x 0 ) h slope of secant line = m sec Derivatives Using limits, we can define the slope of a tangent line to a function. When given a function f(x), and given a point P (x 0, f(x 0 )) on f, if we want to find the slope of the tangent line

More information

6.7 Hyperbolic Functions

6.7 Hyperbolic Functions 6.7 6.7 Hyperbolic Functions Even and Odd Parts of an Exponential Function We recall that a function f is called even if f( x) = f(x). f is called odd if f( x) = f(x). The sine function is odd while the

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all your work on the standard response

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses

Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses Instructor: Sal Barone School of Mathematics Georgia Tech May 22, 2015 (updated May 22, 2015) Covered sections: 3.3 & 3.5 Exam 1 (Ch.1 - Ch.3) Thursday,

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes The Hyperbolic Functions 6. Introduction The hyperbolic functions cosh x, sinh x, tanh x etc are certain combinations of the exponential functions e x and e x. The notation implies a close relationship

More information

Things you should have learned in Calculus II

Things you should have learned in Calculus II Things you should have learned in Calculus II 1 Vectors Given vectors v = v 1, v 2, v 3, u = u 1, u 2, u 3 1.1 Common Operations Operations Notation How is it calculated Other Notation Dot Product v u

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AB Fall Final Exam Review 200-20 Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) The position of a particle

More information

Math Dr. Melahat Almus. OFFICE HOURS (610 PGH) MWF 9-9:45 am, 11-11:45am, OR by appointment.

Math Dr. Melahat Almus.   OFFICE HOURS (610 PGH) MWF 9-9:45 am, 11-11:45am, OR by appointment. Math 43 Dr. Melahat Almus almus@math.uh.edu http://www.math.uh.edu/~almus OFFICE HOURS (60 PGH) MWF 9-9:45 am, -:45am, OR by appointment. COURSE WEBSITE: http://www.math.uh.edu/~almus/43_fall5.html Visit

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

x 2 + y 2 = 1. dx 2y and we conclude that, whichever function we chose, dx y2 = 2x + dy dx x2 + d dy dx = 2x = x y sinh(x) = ex e x 2

x 2 + y 2 = 1. dx 2y and we conclude that, whichever function we chose, dx y2 = 2x + dy dx x2 + d dy dx = 2x = x y sinh(x) = ex e x 2 Implicit differentiation Suppose we know some relation between x and y, e.g. x + y =. Here, y isn t a function of x. But if we restrict attention to y, then y is a function of x; similarly for y. These

More information

ECM Calculus and Geometry. Revision Notes

ECM Calculus and Geometry. Revision Notes ECM1702 - Calculus and Geometry Revision Notes Joshua Byrne Autumn 2011 Contents 1 The Real Numbers 1 1.1 Notation.................................................. 1 1.2 Set Notation...............................................

More information

MAT137 Calculus! Lecture 19

MAT137 Calculus! Lecture 19 MAT137 Calculus! Lecture 19 Today: L Hôpital s Rule 11.5 The Indeterminate Form (0/0) 11.6 The Indeterminate Form ( / ) + other Indeterminate Forms Test 2: Friday, Nov. 25. If you have a conflict, let

More information

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics). Math 132. Practice Questions From Calculus II I. Topics Covered in Test I 0. State the following calculus rules (these are many of the key rules from Test 1 topics). (Trapezoidal Rule) b a f(x) dx (Fundamental

More information

Copyright c 2007 Jason Underdown Some rights reserved. quadratic formula. absolute value. properties of absolute values

Copyright c 2007 Jason Underdown Some rights reserved. quadratic formula. absolute value. properties of absolute values Copyright & License Formula Copyright c 2007 Jason Underdown Some rights reserved. quadratic formula absolute value properties of absolute values equation of a line in various forms equation of a circle

More information

Math F15 Rahman

Math F15 Rahman Math - 9 F5 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = (ex e x ) cosh x = (ex + e x ) tanh x = sinh

More information

MSM120 1M1 First year mathematics for civil engineers Revision notes 4

MSM120 1M1 First year mathematics for civil engineers Revision notes 4 MSM10 1M1 First year mathematics for civil engineers Revision notes 4 Professor Robert A. Wilson Autumn 001 Series A series is just an extended sum, where we may want to add up infinitely many numbers.

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Exam 2 April th, 208 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all

More information

Derivative of a Function

Derivative of a Function Derivative of a Function (x+δx,f(x+δx)) f ' (x) = (x,f(x)) provided the limit exists Can be interpreted as the slope of the tangent line to the curve at any point (x, f(x)) on the curve. This generalizes

More information

Limit. Chapter Introduction

Limit. Chapter Introduction Chapter 9 Limit Limit is the foundation of calculus that it is so useful to understand more complicating chapters of calculus. Besides, Mathematics has black hole scenarios (dividing by zero, going to

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Exam 2 November 4th, 208 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show

More information

AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm.

AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm. AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm. Name: Date: Period: I. Limits and Continuity Definition of Average

More information

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.)

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.) (1) (Pre-calculus Review Set Problems 80 an 14.) (a) Determine if each of the following statements is True or False. If it is true, explain why. If it is false, give a counterexample. (i) If a an b are

More information

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas Math 190 Chapter 3 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 190 Lecture Notes Section 3.1 Section 3.1 Derivatives of Polynomials an Exponential Functions Derivative of a Constant Function

More information

2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Differentiation CHAPTER 2 2.1 TANGENT LINES AND VELOCITY 2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 25 2.5 THE CHAIN RULE 2.6 DERIVATIVES OF TRIGONOMETRIC

More information

cosh 2 x sinh 2 x = 1 sin 2 x = 1 2 cos 2 x = 1 2 dx = dt r 2 = x 2 + y 2 L =

cosh 2 x sinh 2 x = 1 sin 2 x = 1 2 cos 2 x = 1 2 dx = dt r 2 = x 2 + y 2 L = Integrals Volume: Suppose A(x) is the cross-sectional area of the solid S perpendicular to the x-axis, then the volume of S is given by V = b a A(x) dx Work: Suppose f(x) is a force function. The work

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11 Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11 Due date: Name: Note: Write your answers using positive exponents. Radicals are nice, but not required. ex: Write 1 x 2 not x 2. ex: x is nicer

More information

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) thing CFAIHIHD fkthf.

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) thing CFAIHIHD fkthf. . Chapter 3 Differentiation Rules 3.1 Derivatives of Polynomials and Exponential Functions Aka The Short Cuts! Yay! f(x) c f (x) 0 g(x) x g (x) 1 h(x) x n h (x) n x n-1 (The Power Rule) k(x) c f(x) k (x)

More information

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7 Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions /19/7 Question 1 Write the following as an integer: log 4 (9)+log (5) We have: log 4 (9)+log (5) = ( log 4 (9)) ( log (5)) = 5 ( log

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.3 DIFFERENTIATION 3 (Elementary techniques of differentiation) by A.J.Hobson 10.3.1 Standard derivatives 10.3.2 Rules of differentiation 10.3.3 Exercises 10.3.4 Answers to

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

Honors Calculus II [ ] Midterm II

Honors Calculus II [ ] Midterm II Honors Calculus II [3-00] Midterm II PRINT NAME: SOLUTIONS Q]...[0 points] Evaluate the following expressions and its. Since you don t have a calculator, square roots, fractions etc. are allowed in your

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

MTH 133 Solutions to Exam 2 April 19, Without fully opening the exam, check that you have pages 1 through 12.

MTH 133 Solutions to Exam 2 April 19, Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Solutions to Exam 2 April 9, 207 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

MATH 2554 (Calculus I)

MATH 2554 (Calculus I) MATH 2554 (Calculus I) Dr. Ashley K. University of Arkansas February 21, 2015 Table of Contents Week 6 1 Week 6: 16-20 February 3.5 Derivatives as Rates of Change 3.6 The Chain Rule 3.7 Implicit Differentiation

More information

Math 121: Calculus 1 - Fall 2013/2014 Review of Precalculus Concepts

Math 121: Calculus 1 - Fall 2013/2014 Review of Precalculus Concepts Introduction Math 121: Calculus 1 - Fall 201/2014 Review of Precalculus Concepts Welcome to Math 121 - Calculus 1, Fall 201/2014! This problems in this packet are designed to help you review the topics

More information

Hyperbolic functions

Hyperbolic functions Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Derivatives of Hyperbolic functions What you need to know already: Basic rules of differentiation, including

More information

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ Math 90 Practice Midterm III Solutions Ch. 8-0 (Ebersole), 3.3-3.8 (Stewart) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam.

More information

MTH 133 Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12.

MTH 133 Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all your work on the standard response

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

CALCULUS PROBLEMS Courtesy of Prof. Julia Yeomans. Michaelmas Term

CALCULUS PROBLEMS Courtesy of Prof. Julia Yeomans. Michaelmas Term CALCULUS PROBLEMS Courtesy of Prof. Julia Yeomans Michaelmas Term The problems are in 5 sections. The first 4, A Differentiation, B Integration, C Series and limits, and D Partial differentiation follow

More information

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts Introduction Math 11: Calculus 1 - Fall 01/01 Review of Precalculus Concepts Welcome to Math 11 - Calculus 1, Fall 01/01! This problems in this packet are designed to help you review the topics from Algebra

More information

Chapter 8 Indeterminate Forms and Improper Integrals Math Class Notes

Chapter 8 Indeterminate Forms and Improper Integrals Math Class Notes Chapter 8 Indeterminate Forms and Improper Integrals Math 1220-004 Class Notes Section 8.1: Indeterminate Forms of Type 0 0 Fact: The it of quotient is equal to the quotient of the its. (book page 68)

More information

Without fully opening the exam, check that you have pages 1 through 13.

Without fully opening the exam, check that you have pages 1 through 13. MTH 33 Solutions to Exam November th, 08 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4.

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4. CHAPTER. DIFFERENTIATION 8 and similarly for x, As x +, fx), As x, fx). At last! We are now in a position to sketch the curve; see Figure.4. Figure.4: A sketch of the function y = fx) =/x ). Observe the

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

Math 1501 Calc I Fall 2013 Lesson 9 - Lesson 20

Math 1501 Calc I Fall 2013 Lesson 9 - Lesson 20 Math 1501 Calc I Fall 2013 Lesson 9 - Lesson 20 Instructor: Sal Barone School of Mathematics Georgia Tech August 19 - August 6, 2013 (updated October 4, 2013) L9: DIFFERENTIATION RULES Covered sections:

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT Course: Math For Engineering Winter 8 Lecture Notes By Dr. Mostafa Elogail Page Lecture [ Functions / Graphs of Rational Functions] Functions

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following Math 2-08 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = 2 (ex e x ) cosh x = 2 (ex + e x ) tanh x = sinh

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts Introduction Math 11: Calculus 1 - Winter 01/01 Review of Precalculus Concepts Welcome to Math 11 - Calculus 1, Winter 01/01! This problems in this packet are designed to help you review the topics from

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2.

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. You may often see (although not in FLAP) the notation sin 1 used in place of arcsin. sinh and cosh are pronounced

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

3.1 Derivatives of Polynomials and Exponential Functions. m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule)

3.1 Derivatives of Polynomials and Exponential Functions. m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) f Chapter 3 Differentiation Rules 31 Derivatives of Polynomials and Exponential Functions Aka The Short Cuts! Yay! f(x) c f (x) 0 g(x) x g (x) 1 h(x) x n h (x) n x n1 (The Power Rule) k(x) c f(x) k (x)

More information

Monday, 6 th October 2008

Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns 1/19 Class test next week... MA211 Lecture 9: 2nd order differential eqns 2/19 This morning

More information

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h 1 Sec 4.1 Limits, Informally When we calculated f (x), we first started with the difference quotient f(x + h) f(x) h and made h small. In other words, f (x) is the number f(x+h) f(x) approaches as h gets

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

MTH 133 Solutions to Exam 2 November 15, Without fully opening the exam, check that you have pages 1 through 13.

MTH 133 Solutions to Exam 2 November 15, Without fully opening the exam, check that you have pages 1 through 13. MTH 33 Solutions to Exam 2 November 5, 207 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information