Introduction to Capillary GC

Size: px
Start display at page:

Download "Introduction to Capillary GC"

Transcription

1 Introduction to Capillary GC LC Columns and Consumables Simon Jones Chromatography Applications Engineer February 20, 2008 Page 1

2 Introduction to Capillary GC t r K c?? Kβ k = - tr t m? t m R s Page 2

3 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 3

4 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention time Page 4

5 VAN DEEMTER CURVES 1.00 N 2 H Small 0.25 Large He H u (cm/sec) Page 5

6 SAMPLE INJECTION Goals: Introduce sample into the column Reproducible No efficiency losses Representative of sample Page 6

7 SPLIT/SPLITLESS INJECTOR Carrier gas source Septum purge (~2ml/min) Ferrule Column Split vent Flow through injector = Column flow + Split Vent Flow Page 7

8 Typical Capillary Column Polyimide Coating Fused Silica Stationary Phase Expanded view of capillary tubing Page 8

9 DETECTORS Purpose: Responds to some property of the solutes Converts the interaction into a signal Immediate Predictable Page 9

10 DATA HANDLING Converts the detector signal into a chromatogram Integrator Software Program Page 10

11 COMPOUND REQUIREMENTS FOR GC Only 10-20% of all compounds are suitable for GC analysis The compounds must have: Sufficient volatility Thermal stability Page 11

12 SEPARATION PROCESS Page 12

13 TWO PHASES Mobile Phase Stationary Phase Solute molecules distribute into the two phases Page 13

14 DISTRIBUTION CONSTANT (K C ) Mobile Phase Stationary Phase K C = conc. of solute in stationary phase conc. of solute in mobile phase K C formerly written as K D Page 14

15 SOLUTE LOCATION In stationary phase = Not moving down the column In mobile phase = Moving down the column Page 15

16 SEPARATION PROCESS Movement Down the Column Mobile phase A A Stationary phase B 1 B 2 B B A 3 A 4 Page 16

17 KC AND RETENTION Fused Silica Tubing Stationary Phase Gas Flow Stationary Phase K c => Large retention K c => Small retention Page 17

18 KC AND PEAK WIDTH Time of Elution Fused Silica Tubing Gas Flow Stationary Phase Stationary Phase K c => Large K c => Small Page 18

19 THREE PARAMETERS THAT AFFECT KC Solute: different solubilities in a stationary phase Stationary phase: different solubilities of a solute Temperature: K C decreases as temperature increases Page 19

20 RETENTION TIME tr Time for a solute to travel through the column Page 20

21 ADJUSTED RETENTION TIME tr' Actual time the solute spends in the stationary phase tr' = tr - tm t r = retention time t m = retention time of a non-retained solute Page 21

22 ADJUSTED RETENTION TIME tr t r = tr - tm t r = t r = 3.16 min = time spent in stationary phase t m t r Page 22

23 TIME IN THE MOBILE PHASE All solutes spend the same amount of time in the mobile phase. Page 23

24 RETENTION FACTOR (k) Ratio of the time the solute spends in the stationary and mobile phases k = tr - t m t m t r = retention time t m = retention time of non-retained compound Formerly called partition ratio; k' Page 24

25 RETENTION FACTOR (k) Relative retention Linear Factors out carrier gas influence Page 25

26 PHASE RATIO (β) β = r 2d f r = radius (µm) d f = film thickness (µm) Page 26

27 DISTRIBUTION CONSTANT (Kc) K c = kβ k = t r t m β = r 2d f Page 27

28 RANGE OF RETENTION Average Fastest Slowest Time Page 28

29 PEAK SYMMETRY Symmetry = A B A B 10% height Tailing : Symmetry <1 Fronting : Symmetry >1 Page 29

30 PEAK WIDTH Peak width at half height Half height Peak width at base Page 30

31 PEAK WIDTH Page 31

32 EFFICIENCY Theoretical Plates (N) Large number implies a better column Often a measure of column quality Relationship between retention time and width Page 32

33 THEORETICAL PLATES (N) N = tr W h 2 t r = retention time W h = peak width at half height (time) Page 33

34 EFFICIENCY MEASUREMENT Cautions Actually, measurement of the GC system Condition dependent Use a peak with k>5 Page 34

35 ISOTHERMAL VS. TEMPERATURE PROGRAMMING Efficiency 9.31 N = 104, C isothermal N = 433, C at 5 /min DB-1, 30 m x 0.25 mm ID, 0.25 um He at 37 cm/sec C10, C11, C12 Page 35

36 SEPARATION VS. RESOLUTION Separation: time between peaks Resolution: time between the peaks while considering peak widths Page 36

37 SEPARATION FACTOR (α) α = k2 k1 co-elution: α = 1 k 2 = retention factor of 2nd peak k 1 = retention factor of 1st peak Page 37

38 RESOLUTION (Rs) R = 1.18 s t r2 - Wh1 + t r1 W h2 t r = retention time W h = peak width at half height (time) Page 38

39 RESOLUTION Baseline Resolution: Rs = W = h R = 0.84 % = 50 W = h R = 1.50 % = 100 W = h R = 2.40 % = 100 Page 39

40 Resolution N k α 1 R = s 4 k + 1 α N k α = Theoretical plates = Retention factor = Separation factor Page 40

41 INFLUENCING RESOLUTION Variables: N: column dimensions, carrier gas a: stationary phase, temperature k: stationary phase, temperature, column dimensions Page 41

42 Conclusions The GC is comprised of an inlet, column and detector that all work together to produce good chromatography Separation (via K c ) is based on 3 things: Solute: different solubilities/interaction in a given stationary phase Stationary phase: different solubilities/interaction of a solute (correct column selection is critical!) Temperature: K C decreases as temperature increases When in doubt, contact Agilent Technical Support! Page 42

43 Agilent J&W Scientific Technical Support (phone: US & Canada) * * Select option (fax) GC-Column-Support@agilent.com Page 43

44 Wrap-up E-Seminar Questions Thank you for attending Agilent e-seminars. Our e-seminar schedule is expanding every week. Please check our website frequently at: Or register for Stay current with e-notes to receive regular updates

45 Looking for more information on Agilent s GC Systems and Software? Agilent offers a full range of GC training courses including hands-on courses with the latest 7890 GC equipment as well as 6890 and 5890 courses. Each course includes a course manual for future reference and a certificate of completion. All courses are taught by industry experts. Call , Option 5 or visit to register today!

46 Upcoming GC and LC e-seminars Selection of a Capillary GC Column March 13, :00 p.m. EST Method Development March 18, :00 p.m. EST Installation, Care and Maintenance of Capillary GC Columns April 22, :00 p.m. EST

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011 ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Introduction to Capillary GC

Introduction to Capillary GC ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Understanding Gas Chromatography

Understanding Gas Chromatography Understanding Gas Chromatography What is Really Going on Inside the Box? Simon Jones GC Applications Engineer Page 1 Group/Presentation Title Month ##, 200X ?? K? Page 2 Typical GC System Gas supply Injector

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software GC Columns and Consumables Mark Sinnott Application Engineer January 8 th, 2008 Page 1 Questions to Ask

More information

Selection of a Capillary GC Column

Selection of a Capillary GC Column Selection of a Capillary GC Column Mark Sinnott Application Engineer March 13, 2008 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector Electrometer

More information

Secrets of GC Column Dimensions

Secrets of GC Column Dimensions Secrets of GC Column Dimensions GC Columns and Consumables Simon Jones Application Engineer May 20, 2008 Slide 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution Equation Changes

More information

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note Abstract Area and retention time are the two primary measurements in gas chromatography. The precision with which

More information

Rapid Analysis of Food and Fragrances Using High-Efficiency Capillary GC Columns. Application. Authors. Abstract. Introduction

Rapid Analysis of Food and Fragrances Using High-Efficiency Capillary GC Columns. Application. Authors. Abstract. Introduction Rapid Analysis of Food and Fragrances Using High-Efficiency Capillary GC Columns Application Food, Flavors and Fragrances Authors Mark Sinnott and Simon Jones Agilent Technologies, Inc. 9 Blue Raving Road

More information

Water Injections in GC - Does Water Cause Bleed?

Water Injections in GC - Does Water Cause Bleed? Water Injections in GC - Does Water Cause Bleed? Eberhardt Kuhn Applications Chemist April 4, 2001 Practical Advice and Useful Tips for the Analysis of Semivolatile Organics by GC and GC/MS 11:00 a.m.

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Theory and Instrumentation of GC. Chromatographic Parameters

Theory and Instrumentation of GC. Chromatographic Parameters Theory and Instrumentation of GC Chromatographic Parameters i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this

More information

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010 Secrets of GC Column Dimensions GC Columns and Consumables Mark Sinnott Application Engineer Folsom California March 12, 2010 Page 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution

More information

Simultaneous Compound Identification and Quantification with Parallel Polyarc /FID and MS

Simultaneous Compound Identification and Quantification with Parallel Polyarc /FID and MS Simultaneous Compound Identification and Quantification with Parallel Polyarc /FID and MS Application Note Multi-detector Splitter Authors Charlie Spanjers and Andrew Jones Activated Research Company 7561

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software High Efficiency GC Columns Page 1 Variables for Shortening Run Times Stationary Phase Shorten Column Length

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Gas Chromatography. 1. Introduction. 2. Stationary phases. 3. Retention in Gas-Liquid Chromatography. 4. Capillary gas-chromatography

Gas Chromatography. 1. Introduction. 2. Stationary phases. 3. Retention in Gas-Liquid Chromatography. 4. Capillary gas-chromatography Gas Chromatography 1. Introduction 2. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter 2 and 3 in The

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography. M. Subramanian

CH 2252 Instrumental Methods of Analysis Unit V  Gas Chromatography.  M. Subramanian CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information

Gas Chromatography (GC)

Gas Chromatography (GC) Gas Chromatography (GC) Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11541 Saudi Arabia Office: AA53

More information

Accurate Analysis of Fuel Ethers and Oxygenates in a Single Injection without Calibration Standards using GC- Polyarc/FID. Application Note.

Accurate Analysis of Fuel Ethers and Oxygenates in a Single Injection without Calibration Standards using GC- Polyarc/FID. Application Note. Accurate Analysis of Fuel Ethers and Oxygenates in a Single Injection without Calibration Standards using GC- Polyarc/FID Application Note Volatile Organic Compounds (VOCs) Author Andrew Jones Activated

More information

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System Application Note Residual Solvent Analysis of USP Method Residual Solvents on the Agilent 889 GC System Author Lukas Wieder, Jie Pan, and Rebecca Veeneman Agilent Technologies, Inc. 8 Centerville Road

More information

A Newly Approved ASTM Standard For Analysis of Thiophene in Benzene Using a Pulsed Flame Photometric Detector (PFPD)

A Newly Approved ASTM Standard For Analysis of Thiophene in Benzene Using a Pulsed Flame Photometric Detector (PFPD) Application Note 19010803 A Newly Approved ASTM Standard For Analysis of in Using a Pulsed Flame Photometric Detector (PFPD) Keywords ASTM Standard D4735-96 FPD Flame Photometric Detector Model 5380 PFPD

More information

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography)

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography) Gas Chromatography 1. Introduction. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter and 3 in The essence

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column

New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column The World's First Non-metal 5% Phenyl Phase GC Column Rated to 430 C * Specially processed for thermal stability up to 430 C A true

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

Analysis of Sulfur-Containing Flavor Compounds By GC/MS With A PFPD

Analysis of Sulfur-Containing Flavor Compounds By GC/MS With A PFPD Analysis of Sulfur-Containing Flavor Compounds By GC/MS With A Application Note 19060203 Keywords Coffee Essential Oil Flavor Fragrance Gas Chromatograph (GC) Sulfur Compounds Abstract Sulfur compounds

More information

Trajan SGE GC Columns

Trajan SGE GC Columns Trajan Scientific and Medical Trajan SGE GC Columns Trajan Scientific and Medical Our focus is on developing and commercializing technologies that enable analytical systems to be more selective, sensitive

More information

2] The plate height in chromatography is best described as 2

2] The plate height in chromatography is best described as 2 9 Chromatography. General Topics 1] Explain the three major components of the van Deemter equation. Sketch a clearly labeled diagram describing each effect. What is the salient point of the van Deemter

More information

Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor

Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor Application Note Pesticides Authors Charlie Spanjers and Paul Dauenhauer University of Minnesota, Twin Cities

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

PDG.pdf G-20 CHROMATOGRAPHY 3 4 INTRODUCTION

PDG.pdf G-20 CHROMATOGRAPHY 3 4 INTRODUCTION 1 2 3 4 5 INTRODUCTION G-20 CHROMATOGRAPHY 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Chromatographic separation techniques are multi-stage separation methods in which the components

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

Selection of a Capillary

Selection of a Capillary Selection of a Capillary GC Column - Series 3 Mark Sinnott Application Engineer March 19, 2009 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Chromatography: sample transported by mobile phase electrostatic

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

Activity in the FID Detection Port: A Big Problem if Underestimated

Activity in the FID Detection Port: A Big Problem if Underestimated Activity in the FID Detection Port: A Big Problem if Underestimated Jaap de Zeeuw, Restek Corporation, Middelburg, The Netherlands It is commonly known in gas chromatography, that many problems can be

More information

[S016. CHROMATOGRAPHY]

[S016. CHROMATOGRAPHY] Phyto-Analysis Sheet Number : 16 Prof. Dr. Talal Aburjai Page 1 of 9 How to read the chromatogram? Comes from any automated chromatography. The chromatograms show the 0 t (t m ) which indicates the solvent

More information

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Application Note Forensic Toxicology and Drug Testing Author Jared Bushey Agilent Technologies, Inc. 285 Centerville

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

Static Headspace Blood Alcohol Analysis with the G1888 Network Headspace Sampler Application

Static Headspace Blood Alcohol Analysis with the G1888 Network Headspace Sampler Application Static Headspace Blood Alcohol Analysis with the G Network Headspace Sampler Application Forensics Author Roger L. Firor and Chin-Kai Meng Agilent Technologies, Inc. 0 Centerville Road Wilmington, DE 90-0

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column

A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column Competitive Comparison Authors Ngoc-A Dang and Allen K. Vickers Agilent

More information

Fast Determination of Impurities in Propane- Propylene Streams Using a Pulsed Flame Photometric Detector (PFPD) and a New Capillary.

Fast Determination of Impurities in Propane- Propylene Streams Using a Pulsed Flame Photometric Detector (PFPD) and a New Capillary. Application Note 36720111 Fast Determination of Impurities in Propane- Propylene Streams Using a Pulsed Flame Photometric Detector (PFPD) and a New Capillary PLOT Column Keywords Pulsed Flame Photometric

More information

Introduction and Principles of Gas Chromatography

Introduction and Principles of Gas Chromatography Introduction and Principles of Gas Chromatography Jaap de Zeeuw Restek, Middelburg, The Netherlands Jaap.dezeeuw@restek.com Definition and Uses of Gas Chromatography GC Components and Types of Columns

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

Hydrogen as a Carrier Gas in the Analysis of Polar/Non-Polar Compounds Using the Polyarc System. Application Note. Author. Introduction.

Hydrogen as a Carrier Gas in the Analysis of Polar/Non-Polar Compounds Using the Polyarc System. Application Note. Author. Introduction. Hydrogen as a Carrier Gas in the Analysis of Polar/Non-Polar Compounds Using the Polyarc System Application Note Chemicals Author Bob Moyer Sr. Research Scientist, R&D Sasol USA, Performance Chemicals

More information

Principles of Gas- Chromatography (GC)

Principles of Gas- Chromatography (GC) Principles of Gas- Chromatography (GC) Mohammed N. Sabir January 2017 10-Jan-17 1 GC is a chromatographic technique utilizes gas as the mobile phase which is usually an inert gas (Hydrogen, Helium, Nitrogen

More information

Introduction to Chromatography

Introduction to Chromatography Introduction to Chromatography Dr. Sana Mustafa Assistant Professor Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. What is Chromatography? Derived from the Greek

More information

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Page 1 of 13 CIPAC/4105/R GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Prepared for CIPAC by Dr M J Tandy*, P M Clarke and B White (UK) The rapid

More information

Separations---Chromatography and Electrophoresis

Separations---Chromatography and Electrophoresis Separations---Chromatography and Electrophoresis Chromatography--one of most diverse and important analytical methods-- Used initially primarily to purify species With advent of sensitive detectors---now

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

Analyze Hydrocarbon Impurities in 1,3-Butadiene with an Agilent J&W GS-Alumina PT Column

Analyze Hydrocarbon Impurities in 1,3-Butadiene with an Agilent J&W GS-Alumina PT Column Analyze Hydrocarbon Impurities in,3-butadiene with an Agilent J&W GS-Alua PT Column Application Note Energy and Chemicals Authors Yun Zou and Chunxiao Wang Agilent Technologies Shanghai Ltd Abstract The

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

GAS CHROMATOGRAPHY (GC)

GAS CHROMATOGRAPHY (GC) GAS CHROMATOGRAPHY (GC) Pre-Lab Questions Questions are to be answered before the beginning of the laboratory. The answers are due at the beginning of each experiment (the questions are for credit and

More information

U.S. EPA Method 8270 for multicomponent analyte determination

U.S. EPA Method 8270 for multicomponent analyte determination ENVIRONMENTAL application note U.S. EPA Method 8270 for multicomponent analyte determination Elaine A. LeMoine and Herman Hoberecht Introduction Multicomponent analytes are compounds that yield several

More information

Chromatography Outline

Chromatography Outline Chem 2001 Summer 2004 Outline What is? The Chromatogram Optimization of Column Performance Why Do Bands Spread? Gas High-Performance Liquid Ion-Exchange 2 What is? In chromatography, separation is achieved

More information

CHAPTER 1. Introduction, Chromatography Theory, and Instrument Calibration

CHAPTER 1. Introduction, Chromatography Theory, and Instrument Calibration 1 1 1 1 1 1 CHAPTER 1 Introduction, Chromatography Theory, and Instrument Calibration 1.1 Introduction Analytical chemists have few tools as powerful as chromatography to measure distinct analytes in complex

More information

Determination of Volatile Substances Proof of Food Adulteration

Determination of Volatile Substances Proof of Food Adulteration ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of Volatile Substances Proof of Food Adulteration (method: gas chromatography with mass spectrometric detection) Exercise guarantor:

More information

Training Courses. Chromatography training from the Crawford Scientific experts

Training Courses. Chromatography training from the Crawford Scientific experts Training Courses Chromatography training from the Crawford Scientific experts HPLC Fundamentals This one-day course introduces the fundamentally important concepts associated with HPLC analysis including

More information

Chromatography Lab # 4

Chromatography Lab # 4 Chromatography Lab # 4 Chromatography is a method for separating mixtures based on differences in the speed at which they migrate over or through a stationary phase which means that a complex mixture will

More information

Fast Analysis of USP 467 Residual Solvents using the Agilent 7890A GC and Low Thermal Mass (LTM) System

Fast Analysis of USP 467 Residual Solvents using the Agilent 7890A GC and Low Thermal Mass (LTM) System Fast Analysis of USP 7 Residual Solvents using the Agilent 789A GC and Low Thermal Mass (LTM) System Application Note Pharmaceutical Author Roger L Firor Agilent Technologies, Inc. 8 Centerville Road Wilmington,

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis Watch this lesson online: https://edrolo.com.au/vce/subjects/chemistry/vce-chemistry/aos-1-chemical-analysis/chromatography-hplc-glc/column-chromatography/#watch CHEMISTRY Unit 3, Area of Study 1: Chemical

More information

Fast and Accurate Analysis of PBDEs in a Single Run, Including

Fast and Accurate Analysis of PBDEs in a Single Run, Including Fast and Accurate Analysis of PBDEs in a Single Run, Including Kory Kelly, Adam Endeman, and Matthew Trass Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA PO14700713_2 PO14400613_W_2 Abstract

More information

2401 Gas (liquid) Chromatography

2401 Gas (liquid) Chromatography 2401 Gas (liquid) Chromatography Chromatography Scheme Gas chromatography - specifically gas-liquid chromatography - involves a sample being vaporized and injected onto the head of the chromatographic

More information

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Anila I. Khan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 243 Key Words TraceGOLD fast GC analysis

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing)

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Chromatography Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Invention of Chromatography Mikhail Tswett invented chromatography

More information

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist GC Columns Wall Coated Open Tubulars Liquid phase coated capillaries Internal Diameter 0.05 0.53mm Length 5m 100m Porous

More information

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. Jaap de Zeeuw, Ron Stricek and Gary Stidsen Restek Corp Bellefonte, USA To analyze basic compounds at

More information

Chapter 31 Gas Chromatography. Carrier Gas System

Chapter 31 Gas Chromatography. Carrier Gas System Chapter 31 Gas Chromatography GAS-LIQUID CHROMATOGRAPHY In gas chromatography, the components of a vaporized sample are fractionated as a consequence of being partitioned between a mobile gaseous phase

More information

How To Select the Correct GC Column. Simon Jones Application Engineer

How To Select the Correct GC Column. Simon Jones Application Engineer How To Select the Correct GC Column Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid? How are we getting the Sample Injected? What

More information

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine Webcast Notes Type your questions in the Submit Question box, located below the slide window You can enlarge the slide window at any time by clicking on the Enlarge Slides button, located below the presentation

More information

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Content: Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of

More information

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26 Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. Instructor s Manual CHAPTE 26 26-1. (a) Elution is a process in which species are washed through a chromatographic column by

More information

Analyzing Semi-Volatiles by GC-MS

Analyzing Semi-Volatiles by GC-MS Analyzing Semi-Volatiles by GC-MS Jonathan A. Karty July 31, 2008 Overview GC-MS Instrumentation Description GC-MS Method Sections In Detail Sequence Programming Data Analysis Tips and Tricks 1 Quick Description

More information

The Focus Robotic Sample Processor as a Tool for the Multiple Analysis of Samples using Complementary Techniques

The Focus Robotic Sample Processor as a Tool for the Multiple Analysis of Samples using Complementary Techniques Application Note No. 085 The Focus Robotic Sample Processor as a Tool for the Multiple Analysis of Samples using Complementary Techniques Diane Nicholas Multiple techniques using one instrument Simple

More information

Spectra Library Electron Capture Negative Ion (ECNI) Mass Spectra of Selected Polybrominated Diphenyl Ethers (PBDEs)

Spectra Library Electron Capture Negative Ion (ECNI) Mass Spectra of Selected Polybrominated Diphenyl Ethers (PBDEs) Spectra Library Electron Capture Negative Ion (ECNI) Mass Spectra of Selected Polybrominated Diphenyl Ethers (PBDEs) The following 63 mass spectra were measured by gas chromatography (GC) (6890N, Agilent

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 77A mini TD and 70A GC Application Note Environmental Authors Tingting Bu, Xiaohua Li Agilent Technologies (Shanghai) Co.,

More information

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost Gas Chromatography Like other methods of chromatography, a partitioning of molecules must occur between the stationary phase and the mobile phases in order to achieve separation. This is the same equilibrium

More information

Fast and Accurate Analysis of PBDEs in a Single Run, Including BDE-209

Fast and Accurate Analysis of PBDEs in a Single Run, Including BDE-209 Fast and Accurate Analysis of PBDEs in a Single Run, Including Kory Kelly, Xianrong (Jenny) Wei, and Matthew Trass Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA PO16570913_W_2 PO14400613_W_2

More information

Ultra-Inert chemistry for Trace Level Analysis

Ultra-Inert chemistry for Trace Level Analysis Ultra-Inert chemistry for Trace Level Analysis Cikui Liang, Ph.D. Challenges and Needs of Today s Laboratories Challenges Qualification/quantification of trace samples Keep instrument up and running Needs

More information

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Michael D. Buchanan September 11, 2014 sigma-aldrich.com/analytical 2012 Sigma-Aldrich Co. All

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

Chromatography and other Separation Methods

Chromatography and other Separation Methods Chromatography and other Separation Methods Probably the most powerful class of modern analytical methods for analyzing mixture of components---and even for detecting a single component in a complex mixture!

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

Gas Chromatography. 1. Experiment Category: 2. Experiment Name: 3. Date and Issue number: 4. Instructor Name: 5. Institution: Ain Shams University

Gas Chromatography. 1. Experiment Category: 2. Experiment Name: 3. Date and Issue number: 4. Instructor Name: 5. Institution: Ain Shams University Project Title: e-laboratories for Gas chromatography 1. Experiment Category: Chemistry >> chromatography 2. Experiment Name: Gas Chromatography 3. Date and Issue number: 4. Instructor Name: 5. Institution:

More information

Chlorinated Compounds in Hydrocarbon Streams Using a Halogen Specific Detector (XSD)

Chlorinated Compounds in Hydrocarbon Streams Using a Halogen Specific Detector (XSD) Introduction There has been an increase in concern for the detection and removal of organic chloride species from crude aromatic, naphtha, and other hydrocarbon streams. One process called catalytic reforming

More information

Paints and varnishes Determination of volatile organic compound (VOC) content. Part 2: Gas-chromatographic method

Paints and varnishes Determination of volatile organic compound (VOC) content. Part 2: Gas-chromatographic method Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 11890-2 Third edition 2013-03-15 Paints and varnishes Determination of volatile organic compound (VOC) content Part 2: Gas-chromatographic method

More information

Residual Solvents in Pharmaceuticals by USP Chapter <467> Methodology

Residual Solvents in Pharmaceuticals by USP Chapter <467> Methodology APPLICATION NOTE Gas Chromatography Author: David Scott PerkinElmer, Inc. Shelton, CT Residual Solvents in Pharmaceuticals by USP Chapter Methodology Introduction The synthesis of active pharmaceutical

More information