About Exam 3. When and where

Size: px
Start display at page:

Download "About Exam 3. When and where"

Transcription

1 When and where About Exam 3 Tuesday Nov 27th 5:30-7:00 pm (same location as Midterms 1 and 2) Format Closed book One 8x11 formula sheet allowed, must be self prepared, no photo copying/download-printing of solutions, lecture slides, etc. 20 multiple choice questions Bring a calculator (but no computer). Only basic calculation functionality can be used. Bring a B2 pencil for Scantron. Special requests: Should have been settled by now. All specially arranged tests are held in our 202 labs. (for approved requests only)

2 Chapters Covered Chapter 31: Electromagnetic Induction and Faraday s Law All sections covered. Chapter 32: Inductance. All sections covered. Chapter 33: AC Circuits. Section Chapter 34: EM Waves All sections covered Displacement Current (34.1) only conceptual level. Solving differential equations (for Maxwell s eqs.) not required Chapter 16: Wave Motion. Not directly, but knowledge helps Ch. 34

3 Special Notes This review is meant as supplements to your own preparation. Exercises presented in this review do not form a problem pool for the test..

4 Exam Topics (1) Concepts: Understanding all key concepts in the covered chapters. Basic Quantities: Magnetic Field, Magnetic Field Lines, Magnetic Flux Electromotive Force (emf) Inductance (self & mutual) Time Constants (RC, L/R) Phase Angles, Phasors Resonance Frequency (1/sqrt(LC)) Impedance and reactuance Wave length (λ), amplitude (A), frequency(f,ω), period (T), phase (φ), wave speed (v) EM wave spectrum, energy, radiation pressure, Poynting Vector, speed of light.

5 Exam Topics(2) Magnetic Induction Faraday s Law emf ε=-dφ Β /dt Field emf: electric field produced due to change of Φ Β à no circuit/conductor is required. Motional emf: emf due to magnetic force. Lenz s Law. Important: identify direction of emf Self and Mutual Inductance. ε = -LdI/dt ε 2 = M di 1 /dt, ε 1 =M di 2 /dt

6 Exam Topics(3) Timing circuits: RC (τ=rc) RL (τ=l/r) LC (ω=1/sqrt(lc)) RCL series circuit (AC powered) Phasor relationship for R, L, C Voltage and current of RLC circuit. Impedance Resonance. Power Consideration Electromagnetic waves Speed of EM Wave E max, B max, f,ω,λ,φ, directional relationship of E, B, S Wave energy, Intensity Radiation pressure. Maxwell s equation at conceptual level. (no derivation)

7 Basic Techniques (1) Faraday s Law How to calculate magnetic flux from changing Φ B to emf motional emf for simple straight wire. directions, directions! B See exercises on following pages θ A Φ B =?

8 Reminder: All Those Right-Hand Rules

9 Standard Lecture Exercises: Determine Direction Of emf Indicate the direction of emf in the following cases: B B increases B decreases B B increases B decreases B decreases path outside B

10 More Standard Lecture Exercises More configurations at the end of ch. 31.

11 Exercise 1: Jumping Ring In each of the following jumping ring configurations, what is the direction that the rings tends to move when the switch S is closing. Note that the battery is reversed in case d.2 as compared in case d.1. d.1 up & d.2 down, d.1 down & d.2 up, both up, both down d.1 d.2

12 Basic Techniques (2) Inductance (self and mutual): Know the definition Relate emf to L and di/dt LR, (RC) circuit Physical meaning of time constant time constant for LR (RC) circuit LC circuit concepts of intrinsic (resonant) frequency ω 0 for LC circuit ω ß à f what is Hz?

13 LR circuit Reminder: Time Constant turning on turning off I = V 0 R (1" e" t L / R ) I = I 0 e " t L / R RC circuit: check section 28.4

14 Exercise 2 An LR circuit has a time constant of 1s. Initially, there is no current in the circuit, at t=0, the circuit is being powered by a 3V battery in series. How long does it take for the current to ramp up to 80% of maximum? 1.6s (see board) If the voltage is doubled to 6V, is the answer to previous question (time to 80%) to be doubled? halved? same? neither?

15 AC Circuits: Basic Techniques (3) Impedances for R, L, C Simple combination of impedance for series/parallel Resonant condition. (again) ω ß à f. Simple RLC series circuit: I, ΔV and Z Simple phasor relationships Energy consumption for the whole RCL series circuit and at each component. When to apply factor ½? ( or when to use _rms and when to use _max)

16 Reminder: Summary of Phasor Relationship I R and ΔV R in phase I L 90 o behind ΔV L ΔV L 90 o ahead of I L I C 90 o ahead of ΔV C ΔV C 90 o behind I C I R = ΔV R /R I L = ΔV L /X L I C = ΔV C /X C

17 Reminder: RLC Series In AC Circuit The current at all point in a series circuit has the same amplitude and phase (set it be i=i max sinωt) Δv R = I max R sin(ωt + 0) Δv L = I max X L sin(ωt + π/2) Δv C = I max X C sin(ωt - π/2) i Voltage across RLC: Δv RLC = Δv R + Δv L + Δv R = I max Rsin(ωt) + I max X L sin(ωt + π/2) + I max X C sin(ωt - π/2) =ΔV max sin(ωt+φ) how to get them?

18 Reminder Current And Voltages in a Series RLC Circuit Δv R =(ΔV R ) max Sin(ωt) Δv L =(ΔV L ) max Sin(ωt + π/2) Δv C =(ΔV C ) max Sin(ωt - π/2) i= I max Sin(ωt) ΔV max Sin(ωt +φ) " V =! 2 2 max Imax R + ( X L X C )! X " = tan 1 ( L! R X C ) Δ V R _ Max = I max R, ΔV L _ Max = I max ( ω L), ΔVC _ Max = Imax /( ωc)

19 Quick Quiz: Series RLC Circuit: Maximum Voltage Across Component. i= I max Sin(ωt) ΔV max Sin(ωt +φ)!v R _ Max = I max R,!V L _ Max = I max (!L),!V C _ Max = I max / (!C) Quiz: can ΔV max across each components be larger than overall ΔV max? ΔV R_max can, but ΔV C_max or ΔV L_max can t; ΔV R_max can t, but ΔV C_max or ΔV L_max can; All potentially can; No, none of the individual ΔV max across a component can

20 Exercise 3: RCL Series AC Circuit A series RLC AC circuit has R=425 Ω, L=1.25 H, C= 3.50 µf, ΔV=(150V) sin377t. Find the maximum voltage across R, L, C. Solution ΔV R _ Max = I max R, ΔV L _ Max ( ω L), ΔV C _ Max R = 425, ωl = 377*1.25 = 471.3, 1/( ωc) = = I max = I max /( ωc) I max = ΔV max / Z = ΔV max / + ( ωl 1/( ωc)) = 0.29 Answer: Δv Rmax = 124V, Δv Lmax = 138V, Δv Cmax = 221V R 2 2 Note: It is possible for ΔV C (and sometimes ΔV L ) to be greater than Δv max Further potential questions: What is the frequency?, what is the phase between ΔV and I, what is the average power consumed by R, (or L, C)?... What is the resonance (angular) frequency?

21 Exercise 4: Phasor diagram for Series RCL A Phasor diagram for a certain RCL series circuit is shown below. Label all phasors Δv Δv L Δv R ΔV Δv C

22 Electromagnetic Waves Basic Techniques (4) Knowing general concepts: e.g. can EM waves travel in vacuum? Are lights EM waves? Identify wave speed and direction for a traveling wave function. Asin(kx-ωt+φ) Understand directional relationship between E, B and S. Conversion between λ and f E(B) ß à u E (u B ) ß à flux (intensity)ß à Poynting ½? (rms vs. max) from source power to field intensity (for point/plane sources.) B E z y c x

23 Exercise 5: EM Wave The electric component of an EM wave has the form (in SI units): 3 3 E x ( z, t) = sin( z t) v/m What is the speed of the wave, in which direction? 3x10 8 m/s, -z direction. (Why? See board) What are the wavelength and frequency of this wave? 1000m, 300kHz (why? see board) Write down the function form of the magnetic component of the wave 11 3 B y ( z, t) = sin( z t) T Further potential questions (practice yourself): E max? B max?, average power? intensity? pressure?..

24 Exercise 6: EM Power And Intensity A radio station is broadcasting at an average power of 25 kw, uniformly in all direction. What is the average signal intensity at 5 km and 10km? A receiver is capable of being sensitive to an electric field of E rms =0.020V/m, how far can the receiver be away from the station and still have signal? (ε 0 =8.85x10-12 C 2 /Nm 2 ) Intensity = Power/Area = P/ (4πR 2 5km, I 5km = 25000/(4*3.14*5000^2) =8x10-5 W/m I 10km = I 5km /4 =2x10-5 W/m 2 I=ε 0 E rms 2 c = (0.02) 2 (8.85x10-12 c) = 1.06x10-6 W/m 2 à I = P/(4πR2 ) à R= 43.3 km

Chapter 31: Electromagnetic Induction and Faraday s Law All sections covered.

Chapter 31: Electromagnetic Induction and Faraday s Law All sections covered. About Exam 3 When and where (same as before) Monday Nov. 22 rd 5:30-7:00 pm Bascom 272: Sections 301, 302, 303, 304, 305, 311,322, 327, 329 Ingraham B10: Sections 306, 307, 312, 321, 323, 324, 325, 328,

More information

About Exam 3. When and where Monday Nov. 24 th 5:30-7:00 pm

About Exam 3. When and where Monday Nov. 24 th 5:30-7:00 pm About Exam 3 When and where Monday Nov. 24 th 5:30-7:00 pm 2650, 3650 Humanities (same as exam 1 and 2) Format Closed book One 8x11 formula sheet allowed, must be self prepared, no photo copy of solutions,

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

More information

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 5: Exam #3 Solutions Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

REVIEW SESSION. Midterm 2

REVIEW SESSION. Midterm 2 REVIEW SESSION Midterm 2 Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 10 6/12/2007 Electricity and Magnetism Induced voltages and induction Self-Inductance RL Circuits Energy in magnetic fields AC circuits and EM waves Resistors, capacitors

More information

Physics 227 Final Exam Wednesday, May 9, Code: 000

Physics 227 Final Exam Wednesday, May 9, Code: 000 Physics 227 Final Exam Wednesday, May 9, 2018 Physics 227, Section RUID: Code: 000 Your name with exam code Your signature Turn off and put away LL electronic devices NOW. NO cell phones, NO smart watches,

More information

Physics 202, Lecture 8

Physics 202, Lecture 8 Physics 202, Lecture 8 Today s Topics Middle Term 1 Review When and where About Exam 1 Wednesday Feb. 22 nd 5:30-7:00 pm (Rooms will be announced this Friday by email) Format Closed book One 8x11 formula

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Physics 115. AC circuits Reactances Phase relationships Evaluation. General Physics II. Session 35. R. J. Wilkes

Physics 115. AC circuits Reactances Phase relationships Evaluation. General Physics II. Session 35. R. J. Wilkes Session 35 Physics 115 General Physics II AC circuits Reactances Phase relationships Evaluation R. J. Wilkes Email: phy115a@u.washington.edu 06/05/14 1 Lecture Schedule Today 2 Announcements Please pick

More information

2) As two electric charges are moved farther apart, the magnitude of the force between them.

2) As two electric charges are moved farther apart, the magnitude of the force between them. ) Field lines point away from charge and toward charge. a) positive, negative b) negative, positive c) smaller, larger ) As two electric charges are moved farther apart, the magnitude of the force between

More information

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017 PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor: Profs. Andrew Rinzler, Paul Avery, Selman Hershfield PHYSICS DEPARTMENT PHY 049 Exam 3 April 7, 00 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Electricity & Magnetism Lecture 20

Electricity & Magnetism Lecture 20 Electricity & Magnetism Lecture 20 Today s Concept: AC Circuits Maximum currents & voltages Phasors: A Simple Tool Electricity & Magne?sm Lecture 20, Slide 1 Other videos: Prof. W. Lewin, MIT Open Courseware

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes!

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes! Physics 2102 Gabriela González Marathon review of the course: 15 weeks in ~60 minutes! Fields: electric & magnetic electric and magnetic forces on electric charges potential energy, electric potential,

More information

Lecture 13.2 :! Inductors

Lecture 13.2 :! Inductors Lecture 13.2 :! Inductors Lecture Outline:! Induced Fields! Inductors! LC Circuits! LR Circuits!! Textbook Reading:! Ch. 33.6-33.10 April 9, 2015 1 Announcements! HW #10 due on Tuesday, April 14, at 9am.!

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiple-choice questions. The first 10 questions are the makeup Quiz. The remaining questions are

More information

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. A charge of +4.0 C is placed at the origin. A charge of 3.0 C

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1 Chapter 21: RC Circuits PHY2054: Chapter 21 1 Voltage and Current in RC Circuits AC emf source: driving frequency f ε = ε sinωt ω = 2π f m If circuit contains only R + emf source, current is simple ε ε

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

FINAL EXAM - Physics Patel SPRING 1998 FORM CODE - A

FINAL EXAM - Physics Patel SPRING 1998 FORM CODE - A FINAL EXAM - Physics 202 - Patel SPRING 1998 FORM CODE - A Be sure to fill in your student number and FORM letter (A, B, C, D, E) on your answer sheet. If you forget to include this information, your Exam

More information

20. Alternating Currents

20. Alternating Currents University of hode sland DigitalCommons@U PHY 204: Elementary Physics Physics Course Materials 2015 20. lternating Currents Gerhard Müller University of hode sland, gmuller@uri.edu Creative Commons License

More information

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be

More information

AC Circuits and Electromagnetic Waves

AC Circuits and Electromagnetic Waves AC Circuits and Electromagnetic Waves Physics 102 Lecture 5 7 March 2002 MIDTERM Wednesday, March 13, 7:30-9:00 pm, this room Material: through next week AC circuits Next week: no lecture, no labs, no

More information

Physics 202, Lecture Today s Topics Middle T erm Term 1 Review

Physics 202, Lecture Today s Topics Middle T erm Term 1 Review Physics 202, Lecture 7 Today s Topics Middle Term 1 Review About Exam 1 When and where Monday Sept. 27 th 5:30-7:00 pm 2301, 2241 Chamberlin (room allocation to be announced) nced) Format Close book One

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

ELEC ELE TRO TR MAGNETIC INDUCTION

ELEC ELE TRO TR MAGNETIC INDUCTION ELECTRO MAGNETIC INDUCTION Faraday Henry 1791-1867 1797 1878 Laws:- Faraday s Laws :- 1) When ever there is a change in magnetic flux linked with a coil, a current is generated in the coil. The current

More information

1) Opposite charges and like charges. a) attract, repel b) repel, attract c) attract, attract

1) Opposite charges and like charges. a) attract, repel b) repel, attract c) attract, attract ) Opposite charges and like charges. a) attract, repel b) repel, attract c) attract, attract ) The electric field surrounding two equal positive charges separated by a distance of 0 cm is zero ; the electric

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,

Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15, Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 Inductance Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this in turn induces an emf in that same coil. This induced

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

More information

Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-32) Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

More information

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

5) Ohm s Law gives the relationship between potential difference and current for a.

5) Ohm s Law gives the relationship between potential difference and current for a. ) During any process, the net charge of a closed system. a) increases b) decreases c) stays constant ) In equilibrium, the electric field in a conductor is. a) always changing b) a constant non-zero value

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions Maxwell s equations Physics /5/ Lecture XXIV Kyoto /5/ Lecture XXIV James Clerk Maxwell James Clerk Maxwell (83 879) Unification of electrical and magnetic interactions /5/ Lecture XXIV 3 Φ = da = Q ε

More information

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011 Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits Nov. 7 & 9, 2011 Material from Textbook by Alexander & Sadiku and Electrical Engineering: Principles & Applications,

More information

Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by

Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by PHY049 Spring 008 Prof. Darin Acosta Prof. Selman Hershfield April 9, 008. A metal rod is forced to move with constant velocity of 60 cm/s [or 90 cm/s] along two parallel metal rails, which are connected

More information

PHYS General Physics for Engineering II FIRST MIDTERM

PHYS General Physics for Engineering II FIRST MIDTERM Çankaya University Department of Mathematics and Computer Sciences 2010-2011 Spring Semester PHYS 112 - General Physics for Engineering II FIRST MIDTERM 1) Two fixed particles of charges q 1 = 1.0µC and

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self-paced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Active Figure 32.3 (SLIDESHOW MODE ONLY) RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. Four charges are at the corners of a square, with B and C on opposite

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges would yield

More information

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

More information

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements Announcements WebAssign HW Set 7 due this Friday Problems cover material from Chapters 20 and 21 We re skipping Sections 21.1-21.7 (alternating current circuits) Review: Self-inductance induced ε induced

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit

More information

Physics 1502: Lecture 25 Today s Agenda

Physics 1502: Lecture 25 Today s Agenda Physics 1502: Lecture 25 Today s Agenda Announcements: Midterm 2: NOT Nov. 6 Following week Homework 07: due Friday net week AC current esonances Electromagnetic Waves Mawell s Equations - evised Energy

More information

ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION ELECTRO MAGNETIC INDUCTION 1) A Circular coil is placed near a current carrying conductor. The induced current is anti clock wise when the coil is, 1. Stationary 2. Moved away from the conductor 3. Moved

More information

PHYS 1444 Section 004 Lecture #22

PHYS 1444 Section 004 Lecture #22 PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

More information

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1 Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

8.022 (E&M) Lecture 15

8.022 (E&M) Lecture 15 8.0 (E&M) Lecture 5 Topics: More on Electromagnetic Inductance Mutual and self inductance Practical applications Last time Electromagnetic inductance Faraday s (and Lentz s) law: Φ Integral form: emf...

More information

Electrical polarization. Figure 19-5 [1]

Electrical polarization. Figure 19-5 [1] Electrical polarization Figure 19-5 [1] Properties of Charge Two types: positive and negative Like charges repel, opposite charges attract Charge is conserved Fundamental particles with charge: electron

More information

Ferromagnetism. we saw that with the propane torch on Thursday

Ferromagnetism. we saw that with the propane torch on Thursday Announcements l Help room hours (1248 BPS) Ian La Valley(TA) Mon 4-6 PM Tues 12-3 PM Wed 6-9 PM Fri 10 AM-noon l LON-CAPA #7 due Oct. 25 l Final Exam Tuesday Dec 11 7:45-9:45 AM Ferromagnetism l What makes

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

AC Source and RLC Circuits

AC Source and RLC Circuits X X L C = 2π fl = 1/2π fc 2 AC Source and RLC Circuits ( ) 2 Inductive reactance Capacitive reactance Z = R + X X Total impedance L C εmax Imax = Z XL XC tanφ = R Maximum current Phase angle PHY2054: Chapter

More information

Exam 3 November 19, 2012 Instructor: Timothy Martin

Exam 3 November 19, 2012 Instructor: Timothy Martin PHY 232 Exam 3 October 15, 2012 Exam 3 November 19, 2012 Instructor: Timothy Martin Student Information Name and section: UK Student ID: Seat #: Instructions Answer the questions in the space provided.

More information

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N Exam Solutions 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017 10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017 CATALOG INFORMATION Dept and Nbr: PHYS 42 Title: ELECTRICITY & MAGNETISM Full Title: Electricity and Magnetism for Scientists

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Impedance/Reactance Problems

Impedance/Reactance Problems Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

More information

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set University of the Philippines College of Science PHYSICS 72 Summer 2012-2013 Second Long Problem Set INSTRUCTIONS: Choose the best answer and shade the corresponding circle on your answer sheet. To change

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

SCIENCE DEPT CHAIR: Mr. Scheidt AS 212B

SCIENCE DEPT CHAIR: Mr. Scheidt AS 212B PHS224 GENERAL PHYSICS II 4 HOURS CREDIT SEMESTER: FALL 2009 INSTRUCTOR: Dr. George Saum Office: Room 16 A & S Bldg. Phone: 573-518-2174 Lab: A & S 112 Office Hours:: 12:00 MTWF 10:00 R SCIENCE DEPT CHAIR:

More information

Principles of Physics II

Principles of Physics II Principles of Physics II J. M. Veal, Ph. D. version 18.05.4 Contents 1 Fluid Mechanics 3 1.1 Fluid pressure............................ 3 1. Buoyancy.............................. 3 1.3 Fluid flow..............................

More information

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r. SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 April 23, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 April 23, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam 3 Section Version April 3, 03 Total Weight: 00 points. Check your examination for completeness prior to starting. There are a

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Physics 201, Lecture 8

Physics 201, Lecture 8 Physics 01, Lecture 8 Today s Topics q Physics 01, Review 1 q Important Notes: v v v v This review is not designed to be complete on its own. It is not meant to replace your own preparation efforts Exercises

More information

Physics: Dr. F. Wilhelm E:\Excel files\230 lecture\230 tests\final 230 F07 Practice.doc page 1 of 9

Physics: Dr. F. Wilhelm E:\Excel files\230 lecture\230 tests\final 230 F07 Practice.doc page 1 of 9 Physics: Dr. F. Wilhelm E:\Excel files\3 lecture\3 tests\final 3 F7 Practice.doc page 1 of 9 NAME:... POINTS:... Dr. Fritz Wilhelm, Diablo Valley College, Physics Department Phone: (95) 671-739 Extension:

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information