Summary. Chapter summary. Teaching Tip CHAPTER 4

Size: px
Start display at page:

Download "Summary. Chapter summary. Teaching Tip CHAPTER 4"

Transcription

1 Chapter summary Teaching Tip Ask students to prepare a concept map for the chapter. The concept map should include most of the vocabulary terms, along with other integral terms or concepts. CHAPTER 4 Summary SECTION 1 Changes in Motion Force is a vector quantity that causes acceleration (when unbalanced). Force can act either through the physical contact of two objects (contact force) or at a distance (field force). A free-body diagram shows only the forces that act on one object. These forces are the only ones that affect the motion of that object. KEY TERM force SECTION 2 Newton s First Law The tendency of an object not to accelerate is called inertia. Mass is the physical quantity used to measure inertia. The net force acting on an object is the vector sum of all external forces acting on the object. An object is in a state of equilibrium when the net force acting on the object is zero. KEY TERMS inertia net force equilibrium SECTION 3 Newton s Second and Third Laws The net force acting on an object is equal to the product of the object s mass and the object s acceleration. When two bodies exert force on each other, the forces are equal in magnitude and opposite in direction. These forces are called an action-reaction pair. Forces always exist in such pairs. SECTION 4 Everyday Forces The weight of an object is the magnitude of the gravitational force on the object and is equal to the object s mass times the acceleration due to gravity. A normal force is a force that acts on an object in a direction perpendicular to the surface of contact. Friction is a resistive force that acts in a direction opposite to the direction of the relative motion of two contacting surfaces. The force of friction between two surfaces is proportional to the normal force. KEY TERMS weight normal force static friction kinetic friction coefficient of friction VARIABLE SYMBOLS Quantities Units Conversions F (vector) force N newtons = kg m/s 2 F (scalar) force N newtons = kg m/s 2 μ coefficient of friction (no units) Problem Solving See Appendix D: Equations for a summary of the equations introduced in this chapter. If you need more problem-solving practice, see Appendix I: Additional Problems. 142 Chapter 4 Untitled /4/2011 2:53: Chapter 4

2 CHAPTER 4 Forces and Newton s First Law 1. Is it possible for an object to be in motion if no net force is acting on it? Explain. 2. If an object is at rest, can we conclude that no external forces are acting on it? 3. An object thrown into the air stops at the highest point in its path. Is it in equilibrium at this point? Explain. 4. What physical quantity is a measure of the amount of inertia an object has? CONCEPTUAL QUESTIONS 5. A beach ball is left in the bed of a pickup truck. Describe what happens to the ball when the truck accelerates forward. 6. A large crate is placed on the bed of a truck but is not tied down. a. As the truck accelerates forward, the crate slides across the bed until it hits the tailgate. Explain what causes this. b. If the driver slammed on the brakes, what could happen to the crate? PRACTICE PROBLEMS For problems 7 9, see Sample Problem A. Review 7. Earth exerts a downward gravitational force of 8.9 N on a cake that is resting on a plate. The plate exerts a force of 11.0 N upward on the cake, and a knife exerts a downward force of 2.1 N on the cake. Draw a free-body diagram of the cake. 8. A chair is pushed forward with a force of 185 N. The gravitational force of Earth on the chair is 155 N downward, and the floor exerts a force of 155 N upward on the chair. Draw a free-body diagram showing the forces acting on the chair. 9. Draw a free-body diagram representing each of the following objects: a. a ball falling in the presence of air resistance b. a helicopter lifting off a landing pad c. an athlete running along a horizontal track For problems 10 12, see Sample Problem B. 10. Four forces act on a hot-air balloon, shown from the side in the figure below. Find the magnitude and direction of the resultant force on the balloon N 5120 N 950 N 4050 N 11. Two lifeguards pull on ropes attached to a raft. If they pull in the same direction, the raft experiences a net force of 334 N to the right. If they pull in opposite directions, the raft experiences a net force of 106 N to the left. a. Draw a free-body diagram representing the raft for each situation. b. Find the force exerted by each lifeguard on the raft for each situation. (Disregard any other forces acting on the raft.) 12. A dog pulls on a pillow with a force of 5 N at an angle of 37 above the horizontal. Find the x and y components of this force. Chapter Review 143 Answers 1. yes; The object could move at a constant velocity. 2. no, just that the net force equals zero 3. no; It has a net force downward (gravitational force). 4. mass 5. The ball moves toward the back of the truck because inertia keeps it in place relative to the ground. 6. a. the inertia of the crate b. It could continue forward by inertia and hit the cab. 7. F g (8.9 N) and F applied (2.1 N) point downward, and F n (11.0 N) points upward. 8. F applied (185 N) points forward, F g (155 N) points downward, and F n (155 N) points upward. The diagram may also include F friction backward. 9. a. F g points down, and F R points up. b. F rotors points up, and F g points down. c. F g points down, F track points in the direction of motion, and F n points up N at 62 above the 1520 N force 11. a. F 1 (220 N) and F 2 (114 N) both point right; F 1 (220 N) points left, and F 2 (114 N) points right. b. first situation: 220 N to the right, 114 N to the right; second situation: 220 N to the left, 114 N to the right N; 3 N titled /4/2011 2:53:17 PM Forces and the Laws of Motion 143

3 13. because Earth has a very large mass 14. An object with greater mass requires a larger force for a given acceleration. 15. One-sixth of the force needed to lift an object on Earth is needed on the moon. 16. on the horse: the force of the cart, F g down, F n up, a reaction force of the ground on the hooves; on the cart: the force of the horse, F g down, F n up, kinetic friction 17. push it gently; With a smaller force, the astronaut will experience a smaller reaction force. 18. As the climber exerts a force downward, the rope supplies a reaction force that is directed upward. When this reaction force is greater than the climber s weight, the climber accelerates upward. 19. a. zero b. zero m/s N to the right 22. a. 770 N at 8.1 to the right of forward b m/s 2 at 8.1 to the right of forward 23. Mass is the inertial property of matter. Weight is the gravitational force acting on an object. Weight is equal to mass times the free-fall acceleration. 24. a N b N 25. a. F g points down, and F n points up. b. F g points down, and F n points up perpendicular to the surface of the ramp. c. same as (b) d. same as (b) 26. a. 54 N b. 53 N Newton s Second and Third Laws 13. The force that attracts Earth to an object is equal to and opposite the force that Earth exerts on the object. Explain why Earth s acceleration is not equal to and opposite the object s acceleration. 14. State Newton s second law in your own words. 15. An astronaut on the moon has a 110 kg crate and a 230 kg crate. How do the forces required to lift the crates straight up on the moon compare with the forces required to lift them on Earth? (Assume that the astronaut lifts with constant velocity in both cases.) 16. Draw a force diagram to identify all the action-reaction pairs that exist for a horse pulling a cart. CONCEPTUAL QUESTIONS 17. A space explorer is moving through space far from any planet or star and notices a large rock, taken as a specimen from an alien planet, floating around the cabin of the ship. Should the explorer push it gently or kick it toward the storage compartment? Why? 18. Explain why a rope climber must pull downward on the rope in order to move upward. Discuss the force exerted by the climber s arms in relation to the weight of the climber during the various stages of each step up the rope. 19. An 1850 kg car is moving to the right at a constant speed of 1.44 m/s. a. What is the net force on the car? b. What would be the net force on the car if it were moving to the left? PRACTICE PROBLEMS For problems 20 22, see Sample Problem C. 20. What acceleration will you give to a 24.3 kg box if you push it horizontally with a net force of 85.5 N? 21. What net force is required to give a 25 kg suitcase an acceleration of 2.2 m/s 2 to the right? 144 Chapter Two forces are applied to a car in an effort to accelerate it, as shown below. a. What is the resultant of these two forces? b. If the car has a mass of 3200 kg, what acceleration does it have? (Disregard friction.) 450 N Weight, Friction, and Normal Force 380 N 23. Explain the relationship between mass and weight. 24. A kg baseball is thrown upward with an initial speed of 20.0 m/s. a. What is the force on the ball when it reaches half of its maximum height? (Disregard air resistance.) b. What is the force on the ball when it reaches its peak? 25. Draw free-body diagrams showing the weight and normal forces on a laundry basket in each of the following situations: a. at rest on a horizontal surface b. at rest on a ramp inclined 12 above the horizontal c. at rest on a ramp inclined 25 above the horizontal d. at rest on a ramp inclined 45 above the horizontal 26. If the basket in item 25 has a mass of 5.5 kg, find the magnitude of the normal force for the situations described in (a) through (d). Untitled /4/2011 2:53: Chapter 4

4 27. A teapot is initially at rest on a horizontal tabletop, then one end of the table is lifted slightly. Does the normal force increase or decrease? Does the force of static friction increase or decrease? 28. Which is usually greater, the maximum force of static friction or the force of kinetic friction? 29. A 5.4 kg bag of groceries is in equilibrium on an incline of angle θ = 15. Find the magnitude of the normal force on the bag. CONCEPTUAL QUESTIONS 30. Imagine an astronaut in space at the midpoint between two stars of equal mass. If all other objects are infinitely far away, what is the weight of the astronaut? Explain your answer. 31. A ball is held in a person s hand. a. Identify all the external forces acting on the ball and the reaction force to each. b. If the ball is dropped, what force is exerted on it while it is falling? Identify the reaction force in this case. (Disregard air resistance.) 32. Explain why pushing downward on a book as you push it across a table increases the force of friction between the table and the book. 33. Analyze the motion of a rock dropped in water in terms of its speed and acceleration. Assume that a resistive force acting on the rock increases as the speed increases. 34. A sky diver falls through the air. As the speed of the sky diver increases, what happens to the sky diver s acceleration? What is the acceleration when the sky diver reaches terminal speed? PRACTICE PROBLEMS For problems 35 37, see Sample Problem D. 35. A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion, a horizontal force of 560 N keeps it moving with a constant velocity. Find µ s and µ k between the clock and the floor. 36. A box slides down a 30.0 ramp with an acceleration of 1.20 m/s 2. Determine the coefficient of kinetic friction between the box and the ramp. 37. A 4.00 kg block is pushed along 85 N the ceiling with a constant applied force of 85.0 N that acts 55 at an angle of 55.0 with the horizontal, as in the figure. The block accelerates to the right at 6.00 m/s 2. Determine the coefficient of kinetic friction between the block and the ceiling. For problems 38 39, see Sample Problem E. 38. A clerk moves a box of cans down an aisle by pulling on a strap attached to the box. The clerk pulls with a force of N at an angle of 25.0 with the horizontal. The box has a mass of 35.0 kg, and the coefficient of kinetic friction between box and floor is Find the acceleration of the box. 39. A 925 N crate is being pulled across a level floor by a force F of 325 N at an angle of 25 above the horizontal. The coefficient of kinetic friction between the crate and floor is Find the magnitude of the acceleration of the crate. Mixed Review 40. A block with a mass of 6.0 kg is F held in equilibrium on an incline of angle θ = 30.0 by a horizontal force, F, as shown in the figure. Find the magnitudes of the normal force on the block and of F. (Ignore friction.) 41. A 2.0 kg mass starts from rest and slides down an inclined plane m long in 0.50 s. What net force is acting on the mass along the incline? 42. A 2.26 kg book is dropped from a height of 1.5 m. a. What is its acceleration? b. What is its weight in newtons? c. 49 N d. 38 N 27. The normal force decreases. The force of static friction increases to counteract the component of the weight along the figure. 28. F s,max N N; The forces exerted by each star cancel. 31. a. the weight of the ball and an equal reaction force of the ball on Earth; the force of the person s hand on the ball and an equal reaction force of the ball on the hand b. F g ; the force of the ball on Earth 32. Pushing down on the book increases the normal force and therefore also increases the friction. 33. The rock will accelerate until the magnitude of the resistive force equals the net downward force on the rock. (This downward force is the rock s weight minus the buoyant force of the water.) Then the speed of the rock will be constant. 34. As the sky diver s speed increases, the acceleration decreases because the resistive force increases with increasing speed; zero , m/s 2 down the aisle m/s 2 titled Chapter Review 145 5/4/2011 2:53:18 PM N; 34 N N down the incline 42. a m/s 2 downward b N Forces and the Laws of Motion 145

5 N upward 44. a. zero b N 45. a m/s 2 forward b. 18 m c. 3.0 m/s m 47. a. 2 s b. The box will never move. The force exerted is not enough to overcome friction. 48. a m/s 2 b c. 9.4 N d m/s m/s 2 ; N 51. a N forward b. 699 N forward N N, 13 N, 0 N, 26 N A 5.0 kg bucket of water is raised from a well by a rope. If the upward acceleration of the bucket is 3.0 m/s 2, find the force exerted by the rope on the bucket of water. 44. A 3.46 kg briefcase is sitting at rest on a level floor. a. What is the briefcases s acceleration? b. What is its weight in newtons? 45. A boat moves through the water with two forces acting on it. One is a N forward push by the motor, and the other is a N resistive force due to the water. a. What is the acceleration of the 1200 kg boat? b. If it starts from rest, how far will it move in 12 s? c. What will its speed be at the end of this time interval? 46. A girl on a sled coasts down a hill. Her speed is 7.0 m/s when she reaches level ground at the bottom. The coefficient of kinetic friction between the sled s runners and the hard, icy snow is 0.050, and the girl and sled together weigh 645 N. How far does the sled travel on the level ground before coming to rest? 47. A box of books weighing 319 N is shoved across the floor by a force of 485 N exerted downward at an angle of 35 below the horizontal. a. If µ k between the box and the floor is 0.57, how long does it take to move the box 4.00 m, starting from rest? b. If µ k between the box and the floor is 0.75, how long does it take to move the box 4.00 m, starting from rest? 48. A 3.00 kg block starts from rest at the top of a 30.0 incline and accelerates uniformly down the incline, moving 2.00 m in 1.50 s. a. Find the magnitude of the acceleration of the block. b. Find the coefficient of kinetic friction between the block and the incline. c. Find the magnitude of the frictional force acting on the block. d. Find the speed of the block after it has slid a distance of 2.00 m. 49. A hockey puck is hit on a frozen lake and starts moving with a speed of 12.0 m/s. Exactly 5.0 s later, its speed is 6.0 m/s. What is the puck s average acceleration? What is the coefficient of kinetic friction between the puck and the ice? 50. The parachute on a racecar that weighs 8820 N opens at the end of a quarter-mile run when the car is traveling 35 m/s. What net retarding force must be supplied by the parachute to stop the car in a distance of 1100 m? 51. A 1250 kg car is pulling a 325 kg trailer. Together, the car and trailer have an acceleration of 2.15 m/s 2 directly forward. a. Determine the net force on the car. b. Determine the net force on the trailer. 52. The coefficient of static friction between the 3.00 kg crate and the 35.0 incline shown here is What is the magnitude of the minimum force, F, that must be applied to the crate perpendicularly to the incline to prevent the crate from sliding down the incline? Speed (cm/s) Time (s) F The graph below shows a plot of the speed of a person s body during a chin-up. All motion is vertical and the mass of the person (excluding the arms) is 64.0 kg. Find the magnitude of the net force exerted on the body at 0.50 s intervals. Speed of a Body 54. A machine in an ice factory is capable of exerting N of force to pull a large block of ice up a slope. The block weighs N. Assuming there is no friction, what is the maximum angle that the slope can make with the horizontal if the machine is to be able to complete the task? 146 Chapter 4 Untitled /4/2011 2:53: Chapter 4

6 ALTERNATIVE ASSESSMENT 1. Predict what will happen in the following test of the laws of motion. You and a partner face each other, each holding a bathroom scale. Place the scales back to back, and slowly begin pushing on them. Record the measurements of both scales at the same time. Perform the experiment. Which of Newton s laws have you verified? 2. Research how the work of scientists Antoine Lavoisier, Isaac Newton, and Albert Einstein related to the study of mass. Which of these scientists might have said the following? a. The mass of a body is a measure of the quantity of matter in the body. b. The mass of a body is the body s resistance to a change in motion. c. The mass of a body depends on the body s velocity. To what extent are these statements compatible or contradictory? Present your findings to the class for review and discussion. Static Friction The force of static friction depends on two factors: the coefficient of static friction for the two surfaces in contact, and the normal force between the two surfaces. The relationship can be represented on a graphing calculator by the following equation: Y 1 = SX Given a value for the coefficient of static friction (S), the graphing calculator can calculate and graph the force of static friction (Y 1 ) as a function of normal force (X). 3. Imagine an airplane with a series of special instruments anchored to its walls: a pendulum, a 100 kg mass on a spring balance, and a sealed half-full aquarium. What will happen to each instrument when the plane takes off, makes turns, slows down, lands, and so on? If possible, test your predictions by simulating airplane motion in elevators, car rides, and other situations. Use instruments similar to those described above, and also observe your body sensations. Write a report comparing your predictions with your experiences. 4. With a small group, determine which of the following statements is correct. Use a diagram to explain your answer. a. Rockets cannot travel in space because there is nothing for the gas exiting the rocket to push against. b. Rockets can travel because gas exerts an unbalanced force on the rocket. c. The action and reaction forces are equal and opposite. Therefore, they balance each other, and no movement is possible. In this activity, you will use a graphing calculator program to compare the force of static friction of wood boxes on a wood surface with that of steel boxes on a steel surface. Go online to HMDScience.com to find this graphing calculator activity. Alternative Assessment Answers 1. Scales will have identical readings because of Newton s third law. 2. Lavoisier: (a), because Lavoisier is credited with establishing the fact that mass is conserved in chemical reactions; Newton: (a) and (b), because Newton established a definition of force by relating it to mass and acceleration; Einstein: (a), (b), and (c), because Einstein showed that at high speeds, Newton s second law of motion requires an additional correction term that is speed dependent 3. Students may construct accelerometers and/or anchor helium-filled balloons to the elevator or car floor. Students reports should compare their predictions to their experiences. 4. Statement (b) is true. The gas pushes in all directions. Some gas pushes forward on the rocket, and some exits through the back. The net force in the forward direction causes the acceleration. Chapter Review 147 titled /4/2011 2:53:20 PM Forces and the Laws of Motion 147

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws Forces and the Laws of Motion Table of Contents Section 1 Changes in Motion Section 2 Newton's First Law Section 3 Newton's Second and Third Laws Section 4 Everyday Forces Section 1 Changes in Motion Objectives

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0. Newton's Laws 1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.71 m/s 2 2. An astronaut applies a force of 500 N to an

More information

4 Study Guide. Forces in One Dimension Vocabulary Review

4 Study Guide. Forces in One Dimension Vocabulary Review Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

act concurrently on point P, as shown in the diagram. The equilibrant of F 1

act concurrently on point P, as shown in the diagram. The equilibrant of F 1 Page 1 of 10 force-friction-vectors review Name 12-NOV-04 1. A 150.-newton force, F1, and a 200.-newton force, F 2, are applied simultaneously to the same point on a large crate resting on a frictionless,

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

Newton s Laws Student Success Sheets (SSS)

Newton s Laws Student Success Sheets (SSS) --- Newton s Laws unit student success sheets--- Page 1 Newton s Laws Student Success Sheets (SSS) HS-PS2-1 HS-PS2-2 NGSS Civic Memorial High School - Physics Concept # What we will be learning Mandatory

More information

1d forces and motion

1d forces and motion Name: ate: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 4. book weighing 20. newtons slides at constant velocity down a ramp inclined

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Physics 11 Comprehensive Exam Preparation

Physics 11 Comprehensive Exam Preparation Physics 11 Comprehensive Exam Preparation Kinematics 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives 19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who

More information

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion 1. A baseball player slides into home base with an initial speed of 7.90 m/s. If the coefficient of kinetic friction between the

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli Lecture PowerPoints Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Newton s First Law of Motion Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. Force

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Multiple Choice Practice

Multiple Choice Practice Class: Date: Multiple Choice Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An ice skater moving at 10.0 m/s coasts to a halt in 1.0 10 2 m on

More information

CHAPTER 5. Chapter 5, Energy

CHAPTER 5. Chapter 5, Energy CHAPTER 5 2. A very light cart holding a 300-N box is moved at constant velocity across a 15-m level surface. What is the net work done in the process? a. zero b. 1/20 J c. 20 J d. 2 000 J 4. An rock is

More information

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013 Dynamics 1 Definition of Dynamics Dynamics is the study of why an object moves. In order to understand why objects move, we must first study forces. Forces A force is defined as a push or a pull. Forces

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

Friction (static & Kinetic) Review

Friction (static & Kinetic) Review Friction (static & Kinetic) Review 1. Sand is often placed on an icy road because the sand A) decreases the coefficient of friction between the tires of a car and the road B) increases the coefficient

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system. PSI AP Physics I Work and Energy Chapter Questions 1. Define a system, the environment and the system boundary. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to 1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to A) 9.2 10 12 s B) 8.3 10 14 s C) 1.6 10 16 s D) 4.4 10 17 s E) 2.7

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations.

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations. Assignment 8 Unit 2 Newton s Laws (Outcomes 325-5, 325-8) Name: Multiple Choice: Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported

More information

Show all workings for questions that involve multiple choice.

Show all workings for questions that involve multiple choice. Assignment 2 Unit 2 Newton s Laws (Outcomes 325-5, 325-8) Name: Multiple Choice: Show all workings for questions that involve multiple choice. 1 Which choice represents a NON-INERTIAL frame of reference?

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Unit 6: Forces II PRACTICE PROBLEMS

Unit 6: Forces II PRACTICE PROBLEMS Regents Physics Mrs. Long Unit 6: Forces II PRACTICE PROBLEMS Essential Understanding for the Unit: The net force can be determined by using force diagrams in order to show all forces acting, and thereby

More information

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface?

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? Base your answers to questions 2 and 3 on the information A student and the waxed skis she

More information

Chap. 4: Newton s Law of Motion

Chap. 4: Newton s Law of Motion Chap. 4: Newton s Law of Motion And Chap.5 Applying Newton s Laws (more examples) Force; Newton s 3 Laws; Mass and Weight Free-body Diagram (1D) Free-body Diagram (1D, 2 Bodies) Free-body Diagram (2D)

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 1 / 51 1 In the absence of a net force, a moving object will slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 2 / 51 2 When a cat sleeps on a

More information

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

What was Aristotle s view of motion? How did Galileo disagree with Aristotle? Which answers agrees with Aristotle s view? Eliminate the others.

What was Aristotle s view of motion? How did Galileo disagree with Aristotle? Which answers agrees with Aristotle s view? Eliminate the others. Quest Chapter 04 # Problem Hint 1 A ball rolls across the top of a billiard table and slowly comes to a stop. How would Aristotle interpret this observation? How would Galileo interpret it? 1. Galileo

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

5. A balloon of a known mass or weight is dropped from a known height and timed. Determine the average amount of air resistance that acts on it.

5. A balloon of a known mass or weight is dropped from a known height and timed. Determine the average amount of air resistance that acts on it. 1. A satellite of mass 50.0 kg is pulled by 450 N of gravity. Small thrusters are used to maneuver the satellite in its orbit. (a) What thrust would cause the satellite to move with a constant velocity?

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Objectives: Students will describe inertia and how it is related to Newton s first law of motion. Students will calculate an object s acceleration, mass, or the force applied to

More information

Physics 11 Review Questions

Physics 11 Review Questions Physics 11 Review Questions Kinematics 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled by the

More information

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction Chapter 4 The Laws of Motion 1. Force 2. Newton s Laws 3. Applications 4. Friction 1 Classical Mechanics What is classical Mechanics? Under what conditions can I use it? 2 Sir Isaac Newton 1642 1727 Formulated

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

8. The graph below shows a beetle s movement along a plant stem.

8. The graph below shows a beetle s movement along a plant stem. Name: Block: Date: Introductory Physics: Midyear Review 1. Motion and Forces Central Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast

More information

Chapter 2 Dynamics 51

Chapter 2 Dynamics 51 Chapter 2 Dynamics 51 52 AP Physics Multiple Choice Practice Dynamics SECTION A Linear Dynamics 1. A ball of mass m is suspended from two strings of unequal length as shown above. The magnitudes of the

More information

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant?

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant? 1. A 0.50-kilogram cart is rolling at a speed of 0.40 meter per second. If the speed of the cart is doubled, the inertia of the cart is A) halved B) doubled C) quadrupled D) unchanged 2. A force of 25

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Name: Class: Date: d. none of the above

Name: Class: Date: d. none of the above Name: Class: Date: H Phys quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the cause of an acceleration? a. speed b. inertia

More information

Friction forces. Lecture 8. Chapter 6. Physics I. Course website:

Friction forces. Lecture 8. Chapter 6. Physics I. Course website: Lecture 8 Physics I Chapter 6 Friction forces Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 6: Some leftover (Ch.5) Kinetic/Static Friction:

More information

Chapter 3 Laws of Motion

Chapter 3 Laws of Motion Conceptual Physics/ PEP Name: Date: Chapter 3 Laws of Motion Section Review 3.1 1. State Newton s first law in your own words. An object at rest will stay at rest until an outside force acts on it to move.

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Chapter 2. Force and Newton s Laws

Chapter 2. Force and Newton s Laws Chapter 2 Force and Newton s Laws 2 1 Newton s First Law Force Force A push or pull that one body exerts on another body. Examples : 2 Categories of Forces Forces Balanced Forces Unbalanced Forces Balanced

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information