Sep 15th Il Palazzone SNS - Cortona (AR)

Size: px
Start display at page:

Download "Sep 15th Il Palazzone SNS - Cortona (AR)"

Transcription

1 Repertoire o Sep 5th 25 Il Palazzone SNS - Cortona (AR)

2 Repertoire of nematic biaxial phases. Fulvio Bisi SMMM - Soft Matter Mathematical Modeling Dip. di Matematica - Univ. di Pavia (Italy) fulvio.bisi@unipv.it Sep 5th 25 Il Palazzone SNS - Cortona (AR)

3 Summary Introduction Biaxial Interactions Mean-Field Theory Free Energy and Stability Bogolubov Principle Tricritical and Triple Points Repertoire of Phases Sep 5th 25 Il Palazzone SNS - Cortona (AR) 2

4 2 Introduction For more than 3 years has the hunt for nematic biaxial phases been going on. Strong evidence for existence of this phase recently emerged: Acharya et al. (24) Madsen et al. (24) Merkel et al. (24) This should open a new era for research, in LC field, eventually ending in new applications. We need a complete model for uniaxial and biaxial nematic phases, and a thorough understanding of how they are related as a function of temperature. Sep 5th 25 Il Palazzone SNS - Cortona (AR) 3

5 3 Biaxial Interactions Biaxial Molecules: described by platelets in which we distinguish three axes: m, major axis, and e, e (eigenvectors of any molecular polarizability tensor). Two components for the anisotropic part of every molecular biaxial tensor: q := m m 3 I, b := e e e e () m e e Sep 5th 25 Il Palazzone SNS - Cortona (AR) 4

6 Interaction Energy between two molecules (Straley s potential): Remark : λ = γ = Remark 2: λ = γ 2 V = U [q q + γ(q b + b q ) + λb b ], (2) Maier-Saupe interaction energy. London s dispersion forces approximation. There exist V invariant transformations (Longa et al., 25; De Matteis et al., 25) Sep 5th 25 Il Palazzone SNS - Cortona (AR) 5

7 Conjugation Chart λ γ Sep 5th 25 Il Palazzone SNS - Cortona (AR) 6

8 Ensemble Averages: Q := q =: S (e z e z 3 I ) + T (e x e x e y e y ) (3a) B := b =: S ( e z e z 3 I ) + T (e x e x e y e y ) (3b) Remark : unlike q and b, Q and B are NOT orthogonal. Terminology: Uniaxial Phases have T = T = (both Q and B uniaxial. Phase Biaxiality occurs when S = T = (cylindrical molecules). Intrinsic Biaxiality occurs whenever T. Sep 5th 25 Il Palazzone SNS - Cortona (AR) 7

9 Order Parameter Manifold: Euler Angles (ϑ, ϕ, ψ) representing the rotation that take {e x, e y, e z } into {m, e, e }. Then: S = 3 2 < cos2 ϑ /3 > /2 S T = 2 < sin2 ϑ cos 2ϕ > (/3)( S) T (/3)( S) S = 3 2 < sin2 ϑ cos 2ψ > ( S) S ( S) T = 2 < ( + cos2 ϑ) cos 2ϕ cos 2ψ 2 cos ϑ sin 2ϕ sin 2ψ > T (4a) (4b) (4c) (4d) Sep 5th 25 Il Palazzone SNS - Cortona (AR) 8

10 Different set of order parameters may describe the same state: we recast (S, T, S, T ) in a selected region of the order parameter manifold by using the mappings: (S, T, S, T ) (S, T, S, T ) (S, T, S, T ) ( ±3T S 2, T ± S 2, ±3T S 2, T ± S 2 (5a) ) (5b) T S Sep 5th 25 Il Palazzone SNS - Cortona (AR) 9

11 4 Mean-Field Model Pseudopotential: Partition Function: Z := U = U [q Q + γ(q B + b Q) + λb B], (6) T exp[β(q Q + γ(q B + b Q) + λb B], (7) where T = S 2 S is the toroidal manifold, β := U /(k B T ), with k B being the Boltzmann constant and T the absolute temperature. Sep 5th 25 Il Palazzone SNS - Cortona (AR)

12 Free Energy: F := F/U = 2 (Q Q + 2γQ B + λb B) β log Z 8π 2 3 S2 + T 2 + 2γ( 3 SS + T T ) + λ( 3 (S ) 2 + (T ) 2 ) β log Z 8π 2 (8) The states corresponding to equilibrium point of F in (8) satisfy the compatibility conditions Q = T fq =< q > B = T fb =< b > (9) Sep 5th 25 Il Palazzone SNS - Cortona (AR)

13 5 Bogolubov Principle We can write the the interaction potential V as a function of new tensor variables: V = U (a + q + q + + a q q ), () with q ± := q ± γ ± b and q + q =. Hence: F (Q +, Q ) = (a + Q + Q + + a Q Q ) β log Z 8π 2 ; () Above the parabola, both a + and a are positive: stable states are local minima. Below the parabola, one coefficient is negative: a <. It can be shown that for all stationary states F has a maximum in Q at given Q +. Sep 5th 25 Il Palazzone SNS - Cortona (AR) 2

14 In this latter case, according to Bogolubov principle, the best approximation to the stable equilibrium state are given by: min Q + max Q F(Q+, Q ) ; (2) As the dimension of the eigenspace associated to Q is 2, assessing the stability of an equilibrium solution below the parabola boils down to the third eigenvalue criterion. Sep 5th 25 Il Palazzone SNS - Cortona (AR) 3

15 Essential Triangle λ γ We explore some points inside the essential triangle to assess the effect of several flavours in the interaction potential. Sep 5th 25 Il Palazzone SNS - Cortona (AR) 4

16 Experimental Evidence Recently experimental results obtained on tetrapodes seem to be in agreement with the prediction of the model with γ = (Merkel, Vij et al., 24). What if γ? Sep 5th 25 Il Palazzone SNS - Cortona (AR) 5

17 6 Bifurcation plots γ =.4667, λ =.25, τ = UP LP S UP BP BP LP LP UP.5 UP LP.5 T.5 β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 6

18 S γ =.4667, λ =.25, τ = β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 7

19 T γ =.4667, λ =.25, τ = LP.5 LP UP β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 8

20 γ =.62934, λ =.2746, τ = S.5 UP LP BP UP BP UP LP LP UP UP.5.5 T.5 β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 9

21 γ =.9667, λ =.5, τ =.483 S.5 UP BP UP BP UP LP UP.5 T 2 β 4 6 Sep 5th 25 Il Palazzone SNS - Cortona (AR) 2

22 γ =.9667, λ =.5, τ = UP BP.6 S.4 UP LP.2 UP β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 2

23 γ =.9667, λ =.5, τ = T UP LP UP UP BP UP BP β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 22

24 γ =.3486, λ =.6365, τ = BP UP UP BP.5 S.5 UP LP UP.5 T.5 2 β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 23

25 γ =.3486, λ =.6365, τ = UP BP.5 UP LP S UP β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 24

26 γ =.3486, λ =.6365, τ = T UP LP BP UP UP BP β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 25

27 γ =.3486, λ =.6365 F β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 26

28 γ =.547, λ =.23932, τ = BP BP UP.6 S UP LP UP UP.5 T β Sep 5th 25 Il Palazzone SNS - Cortona (AR) 27

29 γ =.698, λ =.93654, τ = BP U2 S LP U2.5.5 T U2.5 2 β 4 6 Sep 5th 25 Il Palazzone SNS - Cortona (AR) 28

30 7 Tricritical and Triple Lines λ.3 I B.25 I U B.2 I U=B γ Sep 5th 25 Il Palazzone SNS - Cortona (AR) 29

31 8 Final Remarks : above the parabola, the sequence of phases somehow mimicks the one predicted for γ = 2: upon crossing the high-degeneracy line of the parabola, the bifurcation diagramme unfolds. 3: more detail on some aspects of the model can be discussed during this afternoon s Round Table on Biaxial Nematics (see E.G. Virga s and G. De Matteis presentations). Sep 5th 25 Il Palazzone SNS - Cortona (AR) 3

32 9 Acknowledgements Giovanni De Matteis Georges Durand Eugene C. Gartland Epifanio G. Virga Co-authors Institutions Royal Society of London (Southampton-Pavia Collaborative Project) Italian MIUR (PRIN Grant No M. Osipov, R. Rosso Sep 5th 25 Il Palazzone SNS - Cortona (AR) 3

33 References G.R. Luckhurst, C. Zannoni, P.L. Nordio, and U. Segre, Mol. Phys. 3, 345 (975). A.M. Sonnet, E.G. Virga, and G.E. Durand, Phys. Rev. E 67, 67 (23). B.R. Acharya, A. Primak, and S. Kumar, Phys. Rev. Lett. 92, 673 (24). L. A. Madsen, T. J. Dingemans, M. Nakata, and E. T. Samulski, Phys. Rev. Lett. 92, 4555 (24). K. Merkel, A. Kocot, J. K. Vij, R. Korlacki, G. H. Mehl, and T. Meyer, Phys. Rev. Lett. 93, 2378 (24). G. De Matteis, and E.G. Virga, Phys. Rev. E 7, 673 (25). Sep 5th 25 Il Palazzone SNS - Cortona (AR) 32

Stability and Symmetry Properties for the General Quadrupolar Interaction between Biaxial Molecules

Stability and Symmetry Properties for the General Quadrupolar Interaction between Biaxial Molecules Stability and Symmetry Properties for the General Quadrupolar Interaction between Biaxial Molecules Epifanio G. Virga SMMM Soft Matter Mathematical Modelling Department of Mathematics University of Pavia,

More information

Attraction and Repulsion. in Biaxial Molecular Interactions. Interaction Potential

Attraction and Repulsion. in Biaxial Molecular Interactions. Interaction Potential Attraction and Repulsion Interaction Potential Slide in Biaxial Molecular Interactions Epifanio G. Virga SMMM Soft Matter Mathematical Modelling Department of Mathematics University of Pavia, Italy Slide

More information

Biaxial Phase Transitions in Nematic Liquid Crystals

Biaxial Phase Transitions in Nematic Liquid Crystals - Biaxial Phase Transitions in Nematic Liquid Crystals Cortona, 6 September 5 Giovanni De Matteis Department of Mathematics University of Strathclyde ra.gdem@maths.strath.ac.uk Summary General quadrupolar

More information

Biaxial Nematics Fact, Theory and Simulation

Biaxial Nematics Fact, Theory and Simulation Soft Matter Mathematical Modelling Cortona 12 th -16 th September 2005 Biaxial Nematics Fact, Theory and Simulation Geoffrey Luckhurst School of Chemistry University of Southampton Fact The elusive biaxial

More information

High-resolution Calorimetric Study of a Liquid Crystalline Organo-Siloxane Tetrapode with a Biaxial Nematic Phase

High-resolution Calorimetric Study of a Liquid Crystalline Organo-Siloxane Tetrapode with a Biaxial Nematic Phase High-resolution Calorimetric Study of a Liquid Crystalline Organo-Siloxane Tetrapode with a Biaxial Nematic Phase George Cordoyiannis, 1 Daniela Apreutesei, 2 Georg H. Mehl, 2 Christ Glorieux, 1 and Jan

More information

I seminari del giovedì. Transizione di fase in cristalli liquidi II: Ricostruzione d ordine in celle nematiche frustrate

I seminari del giovedì. Transizione di fase in cristalli liquidi II: Ricostruzione d ordine in celle nematiche frustrate Università di Pavia Dipartimento di Matematica F. Casorati 1/23 http://www-dimat.unipv.it I seminari del giovedì Transizione di fase in cristalli liquidi II: Ricostruzione d ordine in celle nematiche frustrate

More information

arxiv: v1 [cond-mat.soft] 13 Sep 2015

arxiv: v1 [cond-mat.soft] 13 Sep 2015 Abstract arxiv:1509.03834v1 [cond-mat.soft] 13 Sep 2015 Investigations of the phase diagram of biaxial liquid crystal systems through analyses of general Hamiltonian models within the simplifications of

More information

Mathematical Theories of Liquid Crystals II. The Maier-Saupe Theory

Mathematical Theories of Liquid Crystals II. The Maier-Saupe Theory Mathematical Theories of Liquid Crystals II. The Maier-Saupe Theory Epifanio G. Virga Mathematical Institute University of Oxford virga@maths.ox.ac.uk on leave from Department of Mathematics University

More information

Dissipative Ordered Fluids

Dissipative Ordered Fluids Dissipative Ordered Fluids Andr é M. Sonnet Epifanio G. Virga Dissipative Ordered Fluids Theories for Liquid Crystals Andr é M. Sonnet Department of Mathematics and Statistics University of Strathclyde

More information

An Overview of the Oseen-Frank Elastic Model plus Some Symmetry Aspects of the Straley Mean-Field Model for Biaxial Nematic Liquid Crystals

An Overview of the Oseen-Frank Elastic Model plus Some Symmetry Aspects of the Straley Mean-Field Model for Biaxial Nematic Liquid Crystals An Overview of the Oseen-Frank Elastic Model plus Some Symmetry Aspects of the Straley Mean-Field Model for Biaxial Nematic Liquid Crystals Chuck Gartland Department of Mathematical Sciences Kent State

More information

arxiv: v2 [math.ap] 1 Jul 2009

arxiv: v2 [math.ap] 1 Jul 2009 Equilibrium order parameters of nematic liquid crystals in the Landau-De Gennes theory Apala Majumdar arxiv:0808.1870v2 [math.ap] 1 Jul 2009 July 1, 2009 Abstract We study equilibrium liquid crystal configurations

More information

PHASE BIAXIALITY IN NEMATIC LIQUID CRYSTALS Experimental evidence for phase biaxiality in various thermotropic liquid crystalline systems

PHASE BIAXIALITY IN NEMATIC LIQUID CRYSTALS Experimental evidence for phase biaxiality in various thermotropic liquid crystalline systems Book_Ramamoorthy_74_Proof2_November, CHAPTER 5 PHASE BIAXIALITY IN NEMATIC LIQUID CRYSTALS Experimental evidence for phase biaxiality in various thermotropic liquid crystalline systems KIRSTEN SEVERING

More information

Order Parameters and Defects in Liquid Crystals

Order Parameters and Defects in Liquid Crystals Order Parameters and Defects in Liquid Crystals Ferroelectric phenomena in liquid crystals June, 2007 Liquid Crystal-substance with a degree of electronic-liquid Crystal Crystal Presentations crystalline

More information

Global orientation dynamics for liquid crystalline polymers

Global orientation dynamics for liquid crystalline polymers Physica D 228 2007) 122 129 www.elsevier.com/locate/physd Global orientation dynamics for liquid crystalline polymers Hailiang Liu Iowa State University, Mathematics Department, Ames, IA 50011, United

More information

Group Theory pt 2. PHYS Southern Illinois University. November 16, 2016

Group Theory pt 2. PHYS Southern Illinois University. November 16, 2016 Group Theory pt 2 PHYS 500 - Southern Illinois University November 16, 2016 PHYS 500 - Southern Illinois University Group Theory pt 2 November 16, 2016 1 / 6 SO(3) Fact: Every R SO(3) has at least one

More information

arxiv: v2 [cond-mat.soft] 13 Jun 2017

arxiv: v2 [cond-mat.soft] 13 Jun 2017 Determination of the symmetry classes of orientational ordering tensors Stefano S. Turzi 1 and Fulvio Bisi 2 1 Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32 20133 Milano

More information

Modeling Colloidal Particles in a Liquid Crystal Matrix

Modeling Colloidal Particles in a Liquid Crystal Matrix Modeling Colloidal Particles in a Liquid Crystal Matrix Paula Dassbach, Carme Calderer, and Douglas Arnold School of Mathematics University of Minnesota June 12, 2015 Paula Dassbach, Carme Calderer, and

More information

Study of phase transition in homogeneous, rigid extended nematics and magnetic suspensions using an order-reduction method

Study of phase transition in homogeneous, rigid extended nematics and magnetic suspensions using an order-reduction method PHYSICS OF FLUIDS 18, 13103 006 Study of phase transition in homogeneous, rigid extended nematics and magnetic suspensions using an order-reduction method Guanghua Ji LMAM and School of Mathematical Sciences,

More information

Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field

Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 998 Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field Zhiqun Lin, Hongdong Zhang, and Yuliang Yang,, * Laboratory of

More information

Linearized Theory: Sound Waves

Linearized Theory: Sound Waves Linearized Theory: Sound Waves In the linearized limit, Λ iα becomes δ iα, and the distinction between the reference and target spaces effectively vanishes. K ij (q): Rigidity matrix Note c L = c T in

More information

Random matrix pencils and level crossings

Random matrix pencils and level crossings Albeverio Fest October 1, 2018 Topics to discuss Basic level crossing problem 1 Basic level crossing problem 2 3 Main references Basic level crossing problem (i) B. Shapiro, M. Tater, On spectral asymptotics

More information

phases of liquid crystals and their transitions

phases of liquid crystals and their transitions phases of liquid crystals and their transitions Term paper for PHYS 569 Xiaoxiao Wang Abstract A brief introduction of liquid crystals and their phases is provided in this paper. Liquid crystal is a state

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Molecular simulation and theory of a liquid crystalline disclination core

Molecular simulation and theory of a liquid crystalline disclination core PHYSICAL REVIEW E VOLUME 61, NUMBER 1 JANUARY 2000 Molecular simulation and theory of a liquid crystalline disclination core Denis Andrienko and Michael P. Allen H. H. Wills Physics Laboratory, University

More information

arxiv: v2 [cond-mat.soft] 11 Nov 2016

arxiv: v2 [cond-mat.soft] 11 Nov 2016 A tensor model for nematic phases of bent-core molecules based on molecular theory arxiv:1408.3722v2 [cond-mat.soft] 11 Nov 2016 Jie Xu 1, Fangfu Ye 2,3 & Pingwen Zhang 1 1 LMAM & School of Mathematical

More information

Dissipative solutions for a hyperbolic system arising in liquid crystals modeling

Dissipative solutions for a hyperbolic system arising in liquid crystals modeling Dissipative solutions for a hyperbolic system arising in liquid crystals modeling E. Rocca Università degli Studi di Pavia Workshop on Differential Equations Central European University, Budapest, April

More information

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil Brazilian Journal of Physics ISSN: 003-9733 luizno.bjp@gmail.com Sociedade Brasileira de Física Brasil Simonario, P. S.; de Andrade, T. M.; M. Freire, F. C. Elastic Constants of a Disc-Like Nematic Liquid

More information

Shear Flow of a Nematic Liquid Crystal near a Charged Surface

Shear Flow of a Nematic Liquid Crystal near a Charged Surface Physics of the Solid State, Vol. 45, No. 6, 00, pp. 9 96. Translated from Fizika Tverdogo Tela, Vol. 45, No. 6, 00, pp. 5 40. Original Russian Text Copyright 00 by Zakharov, Vakulenko. POLYMERS AND LIQUID

More information

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13 Optics and Optical Design Chapter 6: Polarization Optics Lectures 11 13 Cord Arnold / Anne L Huillier Polarization of Light Arbitrary wave vs. paraxial wave One component in x direction y x z Components

More information

tutorial ii: One-parameter bifurcation analysis of equilibria with matcont

tutorial ii: One-parameter bifurcation analysis of equilibria with matcont tutorial ii: One-parameter bifurcation analysis of equilibria with matcont Yu.A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3508 TA, Utrecht February 13, 2018 1 This session

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 8 Oct 2000

arxiv:cond-mat/ v2 [cond-mat.soft] 8 Oct 2000 Numerical study of surface-induced reorientation and smectic layering in a nematic liquid crystal arxiv:cond-mat/0007040v [cond-mat.soft] 8 Oct 000 Joachim Stelzer Schwetzinger Str. 0, 69190 Walldorf (Baden),

More information

Homework 2. Solutions T =

Homework 2. Solutions T = Homework. s Let {e x, e y, e z } be an orthonormal basis in E. Consider the following ordered triples: a) {e x, e x + e y, 5e z }, b) {e y, e x, 5e z }, c) {e y, e x, e z }, d) {e y, e x, 5e z }, e) {

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

MATH 1700 FINAL SPRING MOON

MATH 1700 FINAL SPRING MOON MATH 700 FINAL SPRING 0 - MOON Write your answer neatly and show steps If there is no explanation of your answer, then you may not get the credit Except calculators, any electronic devices including laptops

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Reflections and Rotations in R 3

Reflections and Rotations in R 3 Reflections and Rotations in R 3 P. J. Ryan May 29, 21 Rotations as Compositions of Reflections Recall that the reflection in the hyperplane H through the origin in R n is given by f(x) = x 2 ξ, x ξ (1)

More information

Static continuum theory of nematic liquid crystals.

Static continuum theory of nematic liquid crystals. Static continuum theory of nematic liquid crystals. Dmitry Golovaty The University of Akron June 11, 2015 1 Some images are from Google Earth and http://www.personal.kent.edu/ bisenyuk/liquidcrystals Dmitry

More information

Computer simulation of liquid crystal mesophases

Computer simulation of liquid crystal mesophases Computer simulation of liquid crystal mesophases Roberto Berardi, Luca Muccioli, Silvia Orlandi, Matteo Ricci, Claudio Zannoni*. Dipartimento di Chimica Fisica ed Inorganica e INSTM, Via Risorgimento,

More information

Statistical Theory of Elastic Constants of Cholesteric Liquid Crystals

Statistical Theory of Elastic Constants of Cholesteric Liquid Crystals Statistical Theory of Elastic Constants of Cholesteric Liquid Crystals Andrzej Kapanowski Institute of Physics, Jagellonian University, ulica Reymonta 4, 3-59 Cracow, Poland Reprint requests to Dr. A.

More information

Directional Field. Xiao-Ming Fu

Directional Field. Xiao-Ming Fu Directional Field Xiao-Ming Fu Outlines Introduction Discretization Representation Objectives and Constraints Outlines Introduction Discretization Representation Objectives and Constraints Definition Spatially-varying

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Effect of particle geometry on phase transitions in two-dimensional liquid crystals

Effect of particle geometry on phase transitions in two-dimensional liquid crystals THE JOURNAL OF CHEMICAL PHYSICS 122, 064903 2005 Effect of particle geometry on phase transitions in two-dimensional liquid crystals Yuri Martínez-Ratón a Grupo Interdisciplinar de Sistemas Complejos (GISC),

More information

Photoinduced molecular reorientation of absorbing liquid crystals

Photoinduced molecular reorientation of absorbing liquid crystals PHYSICAL REVIEW E VOLUME 56, NUMBER 2 AUGUST 1997 Photoinduced molecular reorientation of absorbing liquid crystals L. Marrucci and D. Paparo INFM, Dipartimento di Scienze Fisiche, Università Federico

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

On a hyperbolic system arising in liquid crystals modeling

On a hyperbolic system arising in liquid crystals modeling On a hyperbolic system arising in liquid crystals modeling E. Rocca Università degli Studi di Pavia Workshop on Mathematical Fluid Dynamics Bad Boll, May 7 11, 2018 jointly with Eduard Feireisl (Prague)-Giulio

More information

Report Number 09/33. Nematic liquid crystals : from Maier-Saupe to a continuum theory. John M. Ball and Apala Majumdar

Report Number 09/33. Nematic liquid crystals : from Maier-Saupe to a continuum theory. John M. Ball and Apala Majumdar Report Number 09/33 Nematic liquid crystals : from Maier-Saupe to a continuum theory by John M. Ball and Apala Majumdar Oxford Centre for Collaborative Applied Mathematics Mathematical Institute 24-29

More information

Elastic forces on nematic point defects

Elastic forces on nematic point defects Elastic forces on nematic point defects Eugene C. Gartland, Jr. Department of Mathematical Sciences, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 USA André M. Sonnet and Epifanio G. Virga

More information

Theory and Phenomenology of CP Violation

Theory and Phenomenology of CP Violation Theory and Phenomenology of CP Violation Thomas Mannel a a Theretische Physik I, University of Siegen, 57068 Siegen, Germany In this talk I summarize a few peculiar features of CP violation in the Standard

More information

7 To solve numerically the equation of motion, we use the velocity Verlet or leap frog algorithm. _ V i n = F i n m i (F.5) For time step, we approxim

7 To solve numerically the equation of motion, we use the velocity Verlet or leap frog algorithm. _ V i n = F i n m i (F.5) For time step, we approxim 69 Appendix F Molecular Dynamics F. Introduction In this chapter, we deal with the theories and techniques used in molecular dynamics simulation. The fundamental dynamics equations of any system is the

More information

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch. HOMEWORK From Dieter -3, -4, 3-7 Module #3 Transformation of stresses in 3-D READING LIST DIETER: Ch., pp. 7-36 Ch. 3 in Roesler Ch. in McClintock and Argon Ch. 7 in Edelglass The Stress Tensor z z x O

More information

Molecular simulation of hierarchical structures in bent-core nematics

Molecular simulation of hierarchical structures in bent-core nematics Molecular simulation of hierarchical structures in bent-core nematics Stavros D. Peroukidis, Alexandros G. Vanakaras and Demetri J. Photinos Department of Materials Science, University of Patras, Patras

More information

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics Physical Chemistry Chemical Physics ccp698b Q Q2 Biaxial nematic phases in fluids of hard board-like particles Y. Martı nez-rato n, S. Varga and E. Velasco Phase diagram of fluids of hard boards in the

More information

Cross products, invariants, and centralizers

Cross products, invariants, and centralizers Cross products, invariants, and centralizers Alberto Elduque (joint work with Georgia Benkart) 1 Schur-Weyl duality 2 3-tangles 3 7-dimensional cross product 4 3-dimensional cross product 5 A (1 2)-dimensional

More information

Phase transitions in liquid crystals

Phase transitions in liquid crystals Phase transitions in liquid crystals Minsu Kim Liquid crystals can be classified into 5 phases; Liquid, Nematic, Smetic, Columnar and Crystalline according to their position order and orientational order.

More information

arxiv:quant-ph/ v1 15 Jul 2004

arxiv:quant-ph/ v1 15 Jul 2004 Spin network setting of topological quantum computation arxiv:quant-ph/0407119v1 15 Jul 2004 Annalisa Marzuoli Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia and Istituto Nazionale

More information

Order Reconstruction Phenomena and Temperature-Driven Dynamics in a 3D Zenithally Bistable Device

Order Reconstruction Phenomena and Temperature-Driven Dynamics in a 3D Zenithally Bistable Device epl draft Order Reconstruction Phenomena and Temperature-Driven Dynamics in a 3D Zenithally Bistable Device A. Raisch 1 and A. Majumdar 2 1 Oxford Centre for Collaborative Applied Mathematics, University

More information

Upon successful completion of this unit, the students should be able to:

Upon successful completion of this unit, the students should be able to: Unit 9. Liquids and Solids - ANSWERS Upon successful completion of this unit, the students should be able to: 9.1 List the various intermolecular attractions in liquids and solids (dipole-dipole, London

More information

Finding Brake Orbits in the (Isosceles) Three- Body Problem. Rick Moeckel -- University of Minnesota

Finding Brake Orbits in the (Isosceles) Three- Body Problem. Rick Moeckel -- University of Minnesota Finding Brake Orbits in the (Isosceles) Three- Body Problem Rick Moeckel -- University of Minnesota rick@math.umn.edu Goal: Describe an Existence Proof for some simple, periodic solutions of the 3BP Brake

More information

Totally quasi-umbilic timelike surfaces in R 1,2

Totally quasi-umbilic timelike surfaces in R 1,2 Totally quasi-umbilic timelike surfaces in R 1,2 Jeanne N. Clelland, University of Colorado AMS Central Section Meeting Macalester College April 11, 2010 Definition: Three-dimensional Minkowski space R

More information

Bifurcation and symmetry breaking in geometric variational problems

Bifurcation and symmetry breaking in geometric variational problems in geometric variational problems Joint work with M. Koiso and B. Palmer Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo EIMAN I ENCONTRO INTERNACIONAL DE MATEMÁTICA

More information

Math 205 A B Final Exam page 1 12/12/2012 Name

Math 205 A B Final Exam page 1 12/12/2012 Name Math 205 A B Final Exam page 1 12/12/2012 Name 1. Let F be the vector space of continuous functions f : R R that we have been using in class. Let H = {f F f has the same y-coordinate at x = 1 as it does

More information

Recurrences and Full-revivals in Quantum Walks

Recurrences and Full-revivals in Quantum Walks Recurrences and Full-revivals in Quantum Walks M. Štefaňák (1), I. Jex (1), T. Kiss (2) (1) Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,

More information

Chapter 2: The Nature of Bonds and Structure of Organic Molecules Bonds and Polarity

Chapter 2: The Nature of Bonds and Structure of Organic Molecules Bonds and Polarity rganic Chemistry Interactive otes by jim.maxka@nau.edu Chapter 2: The ature of Bonds and Structure of rganic Molecules Bonds and Polarity. Bond polarity is based on the difference of the electronegativity

More information

Chapter 8 Equilibria in Nonlinear Systems

Chapter 8 Equilibria in Nonlinear Systems Chapter 8 Equilibria in Nonlinear Sstems Recall linearization for Nonlinear dnamical sstems in R n : X 0 = F (X) : if X 0 is an equilibrium, i.e., F (X 0 ) = 0; then its linearization is U 0 = AU; A =

More information

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2)

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2) MAT65 Mathematical Quantum Mechanics Brief Review of the Representations of SU() (Notes for MAT80 taken by Shannon Starr, October 000) There are many references for representation theory in general, and

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Nematic colloids for photonic systems with FreeFem++

Nematic colloids for photonic systems with FreeFem++ Nematic colloids for photonic systems with FreeFem++ Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko Univerza v Ljubljani Slovenija Outline Nematic liquid crystals Colloidal

More information

Masonry strength domain by homogenization in generalized plane state

Masonry strength domain by homogenization in generalized plane state Masonry strength domain by homogenization in generalized plane state Enrica Bernardini, Nicola Cavalagli, Federico Cluni, Vittorio Gusella Department of Civil and Environmental Engineering, University

More information

PHY 5246: Theoretical Dynamics, Fall Assignment # 10, Solutions. (1.a) N = a. we see that a m ar a = 0 and so N = 0. ω 3 ω 2 = 0 ω 2 + I 1 I 3

PHY 5246: Theoretical Dynamics, Fall Assignment # 10, Solutions. (1.a) N = a. we see that a m ar a = 0 and so N = 0. ω 3 ω 2 = 0 ω 2 + I 1 I 3 PHY 54: Theoretical Dynamics, Fall 015 Assignment # 10, Solutions 1 Graded Problems Problem 1 x 3 a ω First we calculate the moments of inertia: ( ) a I 1 = I = m 4 + b, 1 (1.a) I 3 = ma. b/ α The torque

More information

Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows

Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows PHYSICS OF FLUIDS VOLUME 12, NUMBER 3 MARCH 2000 Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows M. Gregory Forest Department of

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226 INDEX 363 A Absolute differentiation 120 Absolute scalar field 43 Absolute tensor 45,46,47,48 Acceleration 121, 190, 192 Action integral 198 Addition of systems 6, 51 Addition of tensors 6, 51 Adherence

More information

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis:

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis: 5 Representations 5.3 Given a three-dimensional Hilbert space, consider the two observables ξ and η that, with respect to the basis 1, 2, 3, arerepresentedby the matrices: ξ ξ 1 0 0 0 ξ 1 0 0 0 ξ 3, ξ

More information

1 Geometry of R Conic Sections Parametric Equations More Parametric Equations Polar Coordinates...

1 Geometry of R Conic Sections Parametric Equations More Parametric Equations Polar Coordinates... Contents 1 Geometry of R 2 2 1.1 Conic Sections............................................ 2 1.2 Parametric Equations........................................ 3 1.3 More Parametric Equations.....................................

More information

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T 16.20 Techniques of Structural Analysis and Design Spring 2013 Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T February 15, 2013 2 Contents 1 Stress and equilibrium 5 1.1 Internal forces and

More information

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review 1 PHYS 705: Classical Mechanics Rigid Body Motion Introduction + Math Review 2 How to describe a rigid body? Rigid Body - a system of point particles fixed in space i r ij j subject to a holonomic constraint:

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

Find the general solution of the system y = Ay, where

Find the general solution of the system y = Ay, where Math Homework # March, 9..3. Find the general solution of the system y = Ay, where 5 Answer: The matrix A has characteristic polynomial p(λ = λ + 7λ + = λ + 3(λ +. Hence the eigenvalues are λ = 3and λ

More information

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 NBA Lecture 1 Simplest bifurcations in n-dimensional ODEs Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 Contents 1. Solutions and orbits: equilibria cycles connecting orbits other invariant sets

More information

Liquid Crystals. Martin Oettel. Some aspects. May 2014

Liquid Crystals. Martin Oettel. Some aspects. May 2014 Liquid Crystals Some aspects Martin Oettel May 14 1 The phases in Physics I gas / vapor change in density (scalar order parameter) no change in continuous translation liquid change in density change from

More information

Elastic energies for nematic elastomers

Elastic energies for nematic elastomers Elastic energies for nematic elastomers Antonio DeSimone SISSA International School for Advanced Studies Trieste, Italy http://people.sissa.it/~desimone/ Drawing from collaborations with: S. Conti, Bonn;

More information

arxiv: v1 [math-ph] 20 Dec 2018

arxiv: v1 [math-ph] 20 Dec 2018 J. Elast. manuscript No. (will be inserted by the editor) The symmetries of octupolar tensors Giuseppe Gaeta Epifanio G. Virga arxiv:8.889v [math-ph] Dec 8 Received: December 4, 8/ Accepted: date Abstract

More information

Space of SO (3)-orbits of elasticity tensors

Space of SO (3)-orbits of elasticity tensors Arch. Mech., 60, 2, pp. 123 138, Warszawa 2008 SIXTY YEAS OF THE ACHIVES OF MECHANICS Space of SO 3)-orbits of elasticity tensors A. BÓNA1), I. BUCATAU 2), M. A. SLAWINSKI 3) 1) Department of Exploration

More information

arxiv: v3 [math.dg] 13 Mar 2011

arxiv: v3 [math.dg] 13 Mar 2011 GENERALIZED QUASI EINSTEIN MANIFOLDS WITH HARMONIC WEYL TENSOR GIOVANNI CATINO arxiv:02.5405v3 [math.dg] 3 Mar 20 Abstract. In this paper we introduce the notion of generalized quasi Einstein manifold,

More information

Parameter-dependent normal forms for bifurcation equations of dynamical systems

Parameter-dependent normal forms for bifurcation equations of dynamical systems Parameter-dependent normal forms for bifurcation equations of dynamical systems Angelo uongo Dipartento di Ingegneria delle Strutture delle Acque e del Terreno Università dell Aquila Monteluco Roio 67040

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

On level crossing in deterministic and random matrix pencils

On level crossing in deterministic and random matrix pencils On level crossing in deterministic and random matrix pencils May 3, 2018 Topics to discuss 1 Basic level crossing problem 2 3 4 Main references (i) B. Shapiro, M. Tater, On spectral asymptotics of quasi-exactly

More information

The Principles of Quantum Mechanics: Pt. 1

The Principles of Quantum Mechanics: Pt. 1 The Principles of Quantum Mechanics: Pt. 1 PHYS 476Q - Southern Illinois University February 15, 2018 PHYS 476Q - Southern Illinois University The Principles of Quantum Mechanics: Pt. 1 February 15, 2018

More information

Chap. 2. Polarization of Optical Waves

Chap. 2. Polarization of Optical Waves Chap. 2. Polarization of Optical Waves 2.1 Polarization States - Direction of the Electric Field Vector : r E = E xˆ + E yˆ E x x y ( ω t kz + ϕ ), E = E ( ωt kz + ϕ ) = E cos 0 x cos x y 0 y - Role :

More information

HW 3 Solution Key. Classical Mechanics I HW # 3 Solution Key

HW 3 Solution Key. Classical Mechanics I HW # 3 Solution Key Classical Mechanics I HW # 3 Solution Key HW 3 Solution Key 1. (10 points) Suppose a system has a potential energy: U = A(x 2 R 2 ) 2 where A is a constant and R is me fixed distance from the origin (on

More information

9. The two strands in DNA are held together by. A. dispersion forces B. dipole-dipole forces C. hydrogen bonding D. ion-dipole forces E.

9. The two strands in DNA are held together by. A. dispersion forces B. dipole-dipole forces C. hydrogen bonding D. ion-dipole forces E. hemistry 400 omework 11, hapter 11 I. Multiple hoice 1. The molecules in a sample of pure liquid dichloromethane, 2 l 2, experience which of the following intermolecular forces? I. dispersion forces II.

More information

SQUARE ROOTS OF 2x2 MATRICES 1. Sam Northshield SUNY-Plattsburgh

SQUARE ROOTS OF 2x2 MATRICES 1. Sam Northshield SUNY-Plattsburgh SQUARE ROOTS OF x MATRICES Sam Northshield SUNY-Plattsburgh INTRODUCTION A B What is the square root of a matrix such as? It is not, in general, A B C D C D This is easy to see since the upper left entry

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each.

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each. Physical Chemistry Final Name Spring 2004 Prof. Shattuck Constants: h=6.626x10-34 J s h =1.054x10-34 J s 1Å=1x10-8cm=1x10-10m NA=6.022x1023 mol-1 R=8.314 J/mol K 1eV= 96.485 kj/mol Part 1. Answer 7 of

More information

C Spoke k. Spoke k+1

C Spoke k. Spoke k+1 Numerical Accuracy Case Studies: D Rimless Spoked Wheel and a 3D Passive-Dynamic Model of Walking Michael J. Coleman Andy Ruina Anindya Chatterjee 1 Department of Theoretical and Applied Mechanics Cornell

More information

11.1 Intermolecular Forces Keeping Matter Together

11.1 Intermolecular Forces Keeping Matter Together 11.1 Intermolecular Forces Keeping Matter Together Nature s Forces Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Intermolecular Forces Keeping Matter Together Phases of Matter: Terminology Energy

More information

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

Physics 221A Fall 2017 Notes 27 The Variational Method

Physics 221A Fall 2017 Notes 27 The Variational Method Copyright c 2018 by Robert G. Littlejohn Physics 221A Fall 2017 Notes 27 The Variational Method 1. Introduction Very few realistic problems in quantum mechanics are exactly solvable, so approximation methods

More information

Math 5BI: Problem Set 6 Gradient dynamical systems

Math 5BI: Problem Set 6 Gradient dynamical systems Math 5BI: Problem Set 6 Gradient dynamical systems April 25, 2007 Recall that if f(x) = f(x 1, x 2,..., x n ) is a smooth function of n variables, the gradient of f is the vector field f(x) = ( f)(x 1,

More information