Introduction to Economic Time Series

Size: px
Start display at page:

Download "Introduction to Economic Time Series"

Transcription

1 Econometrics II Introduction to Economic Time Series Morten Nyboe Tabor

2 Learning Goals 1 Give an account for the important differences between (independent) cross-sectional data and time series data. 2 Give a precise definition and interpretation of the concept of stationarity of time series data, and explain the consequences of stationarity and weak dependence of a stochastic process. 3 Evaluate and justify if a time series is stationary based on a graphical analysis. Econometrics II Introduction to Economic Time Series Slide 2

3 Outline 1 The difference between cross-sectional and time series data 2 Stationarity 3 Measuring time dependence 4 Characteristics of economic time series data 5 Non-stationarity and transformations to stationarity Econometrics II Introduction to Economic Time Series Slide 3

4 1. The difference between cross-sectional and time series data

5 Random Sampling (Cross-Sectional Data) The observations x 1,..., x N are randomly drawn from a fixed population. N observations from the same distribution. No ordering. Random Sampling (Cross-Sectional Data) The observations 1 are randomly drawn from a fixed population. When Observations N is large we fromcan the same characterize distribution. the Noordering. distribution. Law of large numbers (for I.I.D. variables): N 1 N xi E(xi). i=1 When is large we can characterize the distribution. Law of large numbers: X 1 ( ). =1 Random sampling from population Sample distribution approximates the population y y y 2 y 1 y 3 y 8 y 7 y 4 y 9 y 6 y 5 5of17 Econometrics II Introduction to Economic Time Series Slide 5

6 Time Series Data A time series is a set of observations y 1, y 2,..., y t,..., y T, where t is the time index. Natural temporal ordering: 1 < 2 <... < t <... < T. It holds that y t 1 is realized (and often observed) when y t is determined. We often focus on conditional models y t y t 1, y t 2,... E.g. a model for the conditional mean, or for the entire conditional distribution. Most data in macro-economics and finance come in this form. Very different characteristics. Crucial: The tools should match the characteristics of the data! Econometrics II Introduction to Economic Time Series Slide 6

7 Stochastic Processes (Time Series Data) Stochastic Processes (Time Series Data) ervation is a realization of a random variable. Observation y t is a realization of a random variable y y one observation per random variable! t. Only one observation per random variable! The sequence of random variables y 1,..., y T is denoted a stochastic process. sequence of random variables 1 is denoted a stochastic process. y t Econometrics II Introduction to Economic Time Series Slide 7

8 If we could rerun history M times: Stochastic process: y 1, y 2,..., y t,..., y T Realization 1: y (1) 1, y (1) (1) 2,..., y t,..., y (1) T.... Realization m: y (m) 1, y (m) 2,..., y (m) t,..., y (m) T.... Realization M: y (M) 1, y (M) 2,..., y (M) t,..., y (M) T Define the ensemble mean, E (y t). Estimated with the cross-sectional average Ê(y t) = 1 M M m=1 y (m) t. Fundamentally different from the time average of a realized sample path y T = 1 T T y t. t=1 Econometrics II Introduction to Economic Time Series Slide 8

9 2. Stationarity

10 Stationarity Strict stationarity A time series, y 1, y 2,..., y t,..., y T, is called strictly stationary if the distributions of (y t, y t+1,..., y t+s) and (y t+h, y t+1+h,..., y t+s+h ) are the same for all h. The distribution of y t does not depend on t. Weak stationarity The time series is called weakly stationary if E(y t) = µ V (y t) = E((y t µ) 2 ) = γ 0 Cov(y t, y t h ) = E((y t µ) (y t h µ)) = γ h for h = 1, 2,... Econometrics II Introduction to Economic Time Series Slide 10

11 Stationarity y Strict stationarity implies that y t (t = 1, 2,..., T ) are random draws from the same unconditional distribution. Weak stationary is only a statement about the mean and the variance, i.e. the first two moments of the distribution. And y t fluctuates around a constnat level: equilibrium correcting / mean reverting. t Econometrics II Introduction to Economic Time Series Slide 11

12 Simulation Illustration We consider three simulated time series: We plot the simulated series along with the sample average. We increase the sample size by adding new observations and recursively update the sample average. What do you see? Econometrics II Introduction to Economic Time Series Slide 12

13 Simulation Illustration: What Do We See? (A) IID observations: y 1t = t y 1t Recursive sample average, ȳ 1 (T ) (B) Recursive sample average of y 1t (C) Stationary AR(1): y 2t =0.85 y 2t 1 t y 2t Recursive sample average, ȳ 2 (T ) 1 (D) Recursive sample average of y 2t (E) Non-stat. AR(1): y 3t = t (F) Recursive sample average of y 15 3t Recursive sample average, ȳ 3 (T ) y 3t Recursive sample average, ȳ 3 (T ) Page: 1 of 1 Econometrics II Introduction to Economic Time Series Slide 13

14 Why do we care if a time series process is stationary and weakly dependent? Econometrics II Introduction to Economic Time Series Slide 14

15 Stationarity: Main Result Strict stationarity implies that y t (t = 1, 2,..., T ) contains information about the same distribution. And, in terms of weak stationarity, y t fluctuates around a constant level: equilibrium correcting. To estimate parameters, we need a law of a large numbers (LLN) to hold. We make an additional technical assumption called weak dependence: Observations y t and y t h becomes approximately independent for h. Then y is a consistent estimator of E(y t). Given stationarity and weak dependence of y t and x t, most properties of OLS in the IID case carry over to the time series regression y t = x t β + ɛ t. We return to this issue later. Compared to the I.I.D. case, weak stationarity replaces the condition that observations are Identically Distributed, whereas weak dependence replaces the Independence condition. The most important distinction in time series econometrics is whether the time series of interest are stationary or not! Determines which methods we should use. Econometrics II Introduction to Economic Time Series Slide 15

16 3. Measuring time dependence

17 Measuring Time Dependence A characteristic feature of economic time series is a clear dependence over time. We can measure the dependence by the correlation Corr(y t, y t h ) = Cov(yt, y t h), h =..., 2, 1, 0, 1, 2,... V (yt) V (y t h ) As a function of h this is called a correlogram. Under stationarity the formula simplifies to ρ h = Cov(yt, y t h), h =..., 2, 1, 0, 1, 2,... V (y t) called the autocorrelation function (ACF). You may think of weak dependence as ρ h 0 as h. Both can be estimated by replacing population moments with sample moments: Ĉov(y t, y t h ) = 1 T h T (y t y) (y t h y). t=h+1 Under stationarity the associated estimators are asymptotically equivalent. Econometrics II Introduction to Economic Time Series Slide 17

18 Empirical Example Look at the US unemployment rate. Empirical Example Look at It the is US notunemployment clear whether urate. t equilibrium corrects. It is not clear whether equilibrium corrects. It fluctuates It fluctuates within within bounds, bounds, but but deviations deviations are very are very persistent persistent and and equilibrium correction is very slow. equilibrium correction is very slow. u t and u t h are highly correlated for large values of h. and are highly correlated for large values of. We return to formal testing later. We return to formal testing later (A) US unemployment rate 1.0 (B) ACF for (A) Econometrics II Introduction to Economic Time Series 13 Slide of 17 18

19 4. Characteristics of economic time series data

20 What arecharacteristics the characteristics of of economic Timetime Series seriesdata data? 12.5 (A) US unemployment rate 1.00 (B) Danish productivity (logs) (C) Danish income and consumption (logs) Income Consumption (D) Daily change in the NASDAQ index (%) Period: 3/ to 26/ of17 Econometrics II Introduction to Economic Time Series Slide 20

21 5. Non-stationarity and transformations to stationarity

22 Transformations to Stationarity Many economic time series are not stationary. But sometimes a non-stationary time series can be transformed to stationarity. Three important cases: (A) Remove a deterministic trend. Trend stationary. (B) Take first differences. Difference stationary or integrated or first order. (C) Combine several variables. Cointegration. Econometrics II Introduction to Economic Time Series Slide 22

23 (A) If the non-stationarity of is due to a deterministic trend, then the de-trended variable (A) If the non-stationarity of y t is due to a deterministic trend, then the de-trended variable = 0 1 might be stationary. In this case, yt = y t µ 0 µ is called trend-stationary. 1t, Themight de-trended be stationary. variable can In be thisfound case, asy t the is estimated called trend-stationary. residual in the linear regression The de-trended variable can be found as the estimated residual in the linear regression = As an example look at the Danish y t = productivity. µ 0 + µ 1t + yt. As an example look at the Danish productivity: (C) Danish productivity (log) minus trend 1.0 (D) ACF for (C) of 17 Econometrics II Introduction to Economic Time Series Slide 23

24 (B) Alternatively it might turn out that y t is non-stationary while the first (B) Alternatively difference, it might turn out that is non-stationary while the first difference, y t = y t y t 1, is stationary. In this case, y t is difference = stationary 1 or integrated of first is stationary. order, I(1). In this case, is difference stationary or integrated of first order, I(1). As an example look at Danish private consumption. As an example look at Danish private consumption: (E) change in Danish consumption (log) 1 (F) ACF for (E) Econometrics II Introduction to Economic Time Series Slide 24

25 (C) Finally, it might turn out that two variables, y t and x t, are non-stationary, (C) Finally, but it related mightso turn that outa that linear two combination variables, and, are non-stationary, but related so that a linear combination z t = y t β x t, = is stationary. Here y t and x t are I(1) but so-called co-integrated. is stationary. Here and are I(1) but so-called co-integrated. As an example consider consumption, c t, and income, y t. Both are I(1) As an and example have no consider equilibrium. consumption, They are related,,andincome, however,. Both and the are savings I(1) and rate, have no equilibrium. They are related, however, and the savings rate, s t = y t c t, = seems to be stationary and equilibrium corrects. seems to be stationary and equilibrium corrects. (G) Danish savings rate (log) 1 (H) ACF for (G) of 17 Econometrics II Introduction to Economic Time Series Slide 25

26 Learning Goals, Again 1 Give an account of the important differences between (independent) cross-sectional data and time series data. 2 Give a precise definition and interpretation of the concept of stationarity and weak dependence, and explain the important consequences of stationarity and weak dependence of a time series process. 3 Evaluate and justify if a time series is stationary based on a graphical analysis. Next: The linear regression model for stationary time series. Econometrics II Introduction to Economic Time Series Slide 26

This note introduces some key concepts in time series econometrics. First, we

This note introduces some key concepts in time series econometrics. First, we INTRODUCTION TO TIME SERIES Econometrics 2 Heino Bohn Nielsen September, 2005 This note introduces some key concepts in time series econometrics. First, we present by means of examples some characteristic

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

7 Introduction to Time Series Time Series vs. Cross-Sectional Data Detrending Time Series... 15

7 Introduction to Time Series Time Series vs. Cross-Sectional Data Detrending Time Series... 15 Econ 495 - Econometric Review 1 Contents 7 Introduction to Time Series 3 7.1 Time Series vs. Cross-Sectional Data............ 3 7.2 Detrending Time Series................... 15 7.3 Types of Stochastic

More information

Lecture 3 Stationary Processes and the Ergodic LLN (Reference Section 2.2, Hayashi)

Lecture 3 Stationary Processes and the Ergodic LLN (Reference Section 2.2, Hayashi) Lecture 3 Stationary Processes and the Ergodic LLN (Reference Section 2.2, Hayashi) Our immediate goal is to formulate an LLN and a CLT which can be applied to establish sufficient conditions for the consistency

More information

7 Introduction to Time Series

7 Introduction to Time Series Econ 495 - Econometric Review 1 7 Introduction to Time Series 7.1 Time Series vs. Cross-Sectional Data Time series data has a temporal ordering, unlike cross-section data, we will need to changes some

More information

9) Time series econometrics

9) Time series econometrics 30C00200 Econometrics 9) Time series econometrics Timo Kuosmanen Professor Management Science http://nomepre.net/index.php/timokuosmanen 1 Macroeconomic data: GDP Inflation rate Examples of time series

More information

Linear Regression with Time Series Data

Linear Regression with Time Series Data u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f e c o n o m i c s Econometrics II Linear Regression with Time Series Data Morten Nyboe Tabor u n i v e r s i t y o f c o p e n h a g

More information

Problem set 1 - Solutions

Problem set 1 - Solutions EMPIRICAL FINANCE AND FINANCIAL ECONOMETRICS - MODULE (8448) Problem set 1 - Solutions Exercise 1 -Solutions 1. The correct answer is (a). In fact, the process generating daily prices is usually assumed

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

MA Advanced Econometrics: Applying Least Squares to Time Series

MA Advanced Econometrics: Applying Least Squares to Time Series MA Advanced Econometrics: Applying Least Squares to Time Series Karl Whelan School of Economics, UCD February 15, 2011 Karl Whelan (UCD) Time Series February 15, 2011 1 / 24 Part I Time Series: Standard

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Lecture 6a: Unit Root and ARIMA Models

Lecture 6a: Unit Root and ARIMA Models Lecture 6a: Unit Root and ARIMA Models 1 2 Big Picture A time series is non-stationary if it contains a unit root unit root nonstationary The reverse is not true. For example, y t = cos(t) + u t has no

More information

Cointegration, Stationarity and Error Correction Models.

Cointegration, Stationarity and Error Correction Models. Cointegration, Stationarity and Error Correction Models. STATIONARITY Wold s decomposition theorem states that a stationary time series process with no deterministic components has an infinite moving average

More information

11. Further Issues in Using OLS with TS Data

11. Further Issues in Using OLS with TS Data 11. Further Issues in Using OLS with TS Data With TS, including lags of the dependent variable often allow us to fit much better the variation in y Exact distribution theory is rarely available in TS applications,

More information

Non-Stationary Time Series, Cointegration, and Spurious Regression

Non-Stationary Time Series, Cointegration, and Spurious Regression Econometrics II Non-Stationary Time Series, Cointegration, and Spurious Regression Econometrics II Course Outline: Non-Stationary Time Series, Cointegration and Spurious Regression 1 Regression with Non-Stationarity

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

10) Time series econometrics

10) Time series econometrics 30C00200 Econometrics 10) Time series econometrics Timo Kuosmanen Professor, Ph.D. 1 Topics today Static vs. dynamic time series model Suprious regression Stationary and nonstationary time series Unit

More information

Eksamen på Økonomistudiet 2006-II Econometrics 2 June 9, 2006

Eksamen på Økonomistudiet 2006-II Econometrics 2 June 9, 2006 Eksamen på Økonomistudiet 2006-II Econometrics 2 June 9, 2006 This is a four hours closed-book exam (uden hjælpemidler). Please answer all questions. As a guiding principle the questions 1 to 4 have equal

More information

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Tessa L. Childers-Day February 8, 2013 1 Introduction Today s section will deal with topics such as: the mean function, the auto- and cross-covariance

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Econometrics I: Univariate Time Series Econometrics (1)

Econometrics I: Univariate Time Series Econometrics (1) Econometrics I: Dipartimento di Economia Politica e Metodi Quantitativi University of Pavia Overview of the Lecture 1 st EViews Session VI: Some Theoretical Premises 2 Overview of the Lecture 1 st EViews

More information

Covers Chapter 10-12, some of 16, some of 18 in Wooldridge. Regression Analysis with Time Series Data

Covers Chapter 10-12, some of 16, some of 18 in Wooldridge. Regression Analysis with Time Series Data Covers Chapter 10-12, some of 16, some of 18 in Wooldridge Regression Analysis with Time Series Data Obviously time series data different from cross section in terms of source of variation in x and y temporal

More information

This note discusses some central issues in the analysis of non-stationary time

This note discusses some central issues in the analysis of non-stationary time NON-STATIONARY TIME SERIES AND UNIT ROOT TESTING Econometrics 2 LectureNote5 Heino Bohn Nielsen January 14, 2007 This note discusses some central issues in the analysis of non-stationary time series. We

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series Econometrics I Professor William Greene Stern School of Business Department of Economics 25-1/25 Econometrics I Part 25 Time Series 25-2/25 Modeling an Economic Time Series Observed y 0, y 1,, y t, What

More information

Empirical Macroeconomics

Empirical Macroeconomics Empirical Macroeconomics Francesco Franco Nova SBE April 5, 2016 Francesco Franco Empirical Macroeconomics 1/39 Growth and Fluctuations Supply and Demand Figure : US dynamics Francesco Franco Empirical

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes Chapter 2 Some basic tools 2.1 Time series: Theory 2.1.1 Stochastic processes A stochastic process is a sequence of random variables..., x 0, x 1, x 2,.... In this class, the subscript always means time.

More information

ECON3327: Financial Econometrics, Spring 2016

ECON3327: Financial Econometrics, Spring 2016 ECON3327: Financial Econometrics, Spring 2016 Wooldridge, Introductory Econometrics (5th ed, 2012) Chapter 11: OLS with time series data Stationary and weakly dependent time series The notion of a stationary

More information

EC408 Topics in Applied Econometrics. B Fingleton, Dept of Economics, Strathclyde University

EC408 Topics in Applied Econometrics. B Fingleton, Dept of Economics, Strathclyde University EC408 Topics in Applied Econometrics B Fingleton, Dept of Economics, Strathclyde University Applied Econometrics What is spurious regression? How do we check for stochastic trends? Cointegration and Error

More information

Econometrics. Week 11. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 11. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 11 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 30 Recommended Reading For the today Advanced Time Series Topics Selected topics

More information

Time Series Econometrics 4 Vijayamohanan Pillai N

Time Series Econometrics 4 Vijayamohanan Pillai N Time Series Econometrics 4 Vijayamohanan Pillai N Vijayamohan: CDS MPhil: Time Series 5 1 Autoregressive Moving Average Process: ARMA(p, q) Vijayamohan: CDS MPhil: Time Series 5 2 1 Autoregressive Moving

More information

Linear Regression with Time Series Data

Linear Regression with Time Series Data u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f e c o n o m i c s Econometrics II Linear Regression with Time Series Data Morten Nyboe Tabor u n i v e r s i t y o f c o p e n h a g

More information

Cointegration and Error Correction Exercise Class, Econometrics II

Cointegration and Error Correction Exercise Class, Econometrics II u n i v e r s i t y o f c o p e n h a g e n Faculty of Social Sciences Cointegration and Error Correction Exercise Class, Econometrics II Department of Economics March 19, 2017 Slide 1/39 Todays plan!

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Empirical Macroeconomics

Empirical Macroeconomics Empirical Macroeconomics Francesco Franco Nova SBE April 21, 2015 Francesco Franco Empirical Macroeconomics 1/33 Growth and Fluctuations Supply and Demand Figure : US dynamics Francesco Franco Empirical

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 II. Basic definitions A time series is a set of observations X t, each

More information

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets TIME SERIES AND FORECASTING Luca Gambetti UAB, Barcelona GSE 2014-2015 Master in Macroeconomic Policy and Financial Markets 1 Contacts Prof.: Luca Gambetti Office: B3-1130 Edifici B Office hours: email:

More information

Dynamic Regression Models (Lect 15)

Dynamic Regression Models (Lect 15) Dynamic Regression Models (Lect 15) Ragnar Nymoen University of Oslo 21 March 2013 1 / 17 HGL: Ch 9; BN: Kap 10 The HGL Ch 9 is a long chapter, and the testing for autocorrelation part we have already

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Lecture note 2 considered the statistical analysis of regression models for time

Lecture note 2 considered the statistical analysis of regression models for time DYNAMIC MODELS FOR STATIONARY TIME SERIES Econometrics 2 LectureNote4 Heino Bohn Nielsen March 2, 2007 Lecture note 2 considered the statistical analysis of regression models for time series data, and

More information

STAT 248: EDA & Stationarity Handout 3

STAT 248: EDA & Stationarity Handout 3 STAT 248: EDA & Stationarity Handout 3 GSI: Gido van de Ven September 17th, 2010 1 Introduction Today s section we will deal with the following topics: the mean function, the auto- and crosscovariance

More information

Introduction to Stochastic processes

Introduction to Stochastic processes Università di Pavia Introduction to Stochastic processes Eduardo Rossi Stochastic Process Stochastic Process: A stochastic process is an ordered sequence of random variables defined on a probability space

More information

Final Exam. Economics 835: Econometrics. Fall 2010

Final Exam. Economics 835: Econometrics. Fall 2010 Final Exam Economics 835: Econometrics Fall 2010 Please answer the question I ask - no more and no less - and remember that the correct answer is often short and simple. 1 Some short questions a) For each

More information

ECON 616: Lecture Two: Deterministic Trends, Nonstationary Processes

ECON 616: Lecture Two: Deterministic Trends, Nonstationary Processes ECON 616: Lecture Two: Deterministic Trends, Nonstationary Processes ED HERBST September 11, 2017 Background Hamilton, chapters 15-16 Trends vs Cycles A commond decomposition of macroeconomic time series

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036

More information

Sample Exam Questions for Econometrics

Sample Exam Questions for Econometrics Sample Exam Questions for Econometrics 1 a) What is meant by marginalisation and conditioning in the process of model reduction within the dynamic modelling tradition? (30%) b) Having derived a model for

More information

Linear Regression with Time Series Data

Linear Regression with Time Series Data Econometrics 2 Linear Regression with Time Series Data Heino Bohn Nielsen 1of21 Outline (1) The linear regression model, identification and estimation. (2) Assumptions and results: (a) Consistency. (b)

More information

Econometric Methods and Applications II Chapter 2: Simultaneous equations. Econometric Methods and Applications II, Chapter 2, Slide 1

Econometric Methods and Applications II Chapter 2: Simultaneous equations. Econometric Methods and Applications II, Chapter 2, Slide 1 Econometric Methods and Applications II Chapter 2: Simultaneous equations Econometric Methods and Applications II, Chapter 2, Slide 1 2.1 Introduction An example motivating the problem of simultaneous

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

CHAPTER 21: TIME SERIES ECONOMETRICS: SOME BASIC CONCEPTS

CHAPTER 21: TIME SERIES ECONOMETRICS: SOME BASIC CONCEPTS CHAPTER 21: TIME SERIES ECONOMETRICS: SOME BASIC CONCEPTS 21.1 A stochastic process is said to be weakly stationary if its mean and variance are constant over time and if the value of the covariance between

More information

Lecture 8a: Spurious Regression

Lecture 8a: Spurious Regression Lecture 8a: Spurious Regression 1 Old Stuff The traditional statistical theory holds when we run regression using (weakly or covariance) stationary variables. For example, when we regress one stationary

More information

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics David B. University of South Carolina Department of Statistics What are Time Series Data? Time series data are collected sequentially over time. Some common examples include: 1. Meteorological data (temperatures,

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity Outline: Further Issues in Using OLS with Time Series Data 13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process I. Stationary and Weakly Dependent Time Series III. Highly Persistent

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

A SARIMAX coupled modelling applied to individual load curves intraday forecasting A SARIMAX coupled modelling applied to individual load curves intraday forecasting Frédéric Proïa Workshop EDF Institut Henri Poincaré - Paris 05 avril 2012 INRIA Bordeaux Sud-Ouest Institut de Mathématiques

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Time Series Methods. Sanjaya Desilva

Time Series Methods. Sanjaya Desilva Time Series Methods Sanjaya Desilva 1 Dynamic Models In estimating time series models, sometimes we need to explicitly model the temporal relationships between variables, i.e. does X affect Y in the same

More information

2.5 Forecasting and Impulse Response Functions

2.5 Forecasting and Impulse Response Functions 2.5 Forecasting and Impulse Response Functions Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables

More information

Heteroskedasticity in Time Series

Heteroskedasticity in Time Series Heteroskedasticity in Time Series Figure: Time Series of Daily NYSE Returns. 206 / 285 Key Fact 1: Stock Returns are Approximately Serially Uncorrelated Figure: Correlogram of Daily Stock Market Returns.

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

Making sense of Econometrics: Basics

Making sense of Econometrics: Basics Making sense of Econometrics: Basics Lecture 2: Simple Regression Egypt Scholars Economic Society Happy Eid Eid present! enter classroom at http://b.socrative.com/login/student/ room name c28efb78 Outline

More information

Univariate linear models

Univariate linear models Univariate linear models The specification process of an univariate ARIMA model is based on the theoretical properties of the different processes and it is also important the observation and interpretation

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 19: Random Processes Jie Liang School of Engineering Science Simon Fraser University 1 Outline Random processes Stationary random processes Autocorrelation of random processes

More information

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test E 4160 Autumn term 2016. Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test Ragnar Nymoen Department of Economics, University of Oslo 24 October

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

Nonlinear time series

Nonlinear time series Based on the book by Fan/Yao: Nonlinear Time Series Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 27, 2009 Outline Characteristics of

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Fall 2008 Environmental Econometrics (GR03) TSII Fall 2008 1 / 16 More on AR(1) In AR(1) model (Y t = µ + ρy t 1 + u t ) with ρ = 1, the series is said to have a unit root or a

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

E 4101/5101 Lecture 6: Spectral analysis

E 4101/5101 Lecture 6: Spectral analysis E 4101/5101 Lecture 6: Spectral analysis Ragnar Nymoen 3 March 2011 References to this lecture Hamilton Ch 6 Lecture note (on web page) For stationary variables/processes there is a close correspondence

More information

Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko

Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko 1 / 36 The PIH Utility function is quadratic, u(c t ) = 1 2 (c t c) 2 ; borrowing/saving is allowed using only the risk-free bond; β(1 + r)

More information

Unit Root and Cointegration

Unit Root and Cointegration Unit Root and Cointegration Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt@illinois.edu Oct 7th, 016 C. Hurtado (UIUC - Economics) Applied Econometrics On the

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 9 Jakub Mućk Econometrics of Panel Data Meeting # 9 1 / 22 Outline 1 Time series analysis Stationarity Unit Root Tests for Nonstationarity 2 Panel Unit Root

More information

Stochastic process for macro

Stochastic process for macro Stochastic process for macro Tianxiao Zheng SAIF 1. Stochastic process The state of a system {X t } evolves probabilistically in time. The joint probability distribution is given by Pr(X t1, t 1 ; X t2,

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

White Noise Processes (Section 6.2)

White Noise Processes (Section 6.2) White Noise Processes (Section 6.) Recall that covariance stationary processes are time series, y t, such. E(y t ) = µ for all t. Var(y t ) = σ for all t, σ < 3. Cov(y t,y t-τ ) = γ(τ) for all t and τ

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Stochastic vs. deterministic

More information

ECON 4160: Econometrics-Modelling and Systems Estimation Lecture 7: Single equation models

ECON 4160: Econometrics-Modelling and Systems Estimation Lecture 7: Single equation models ECON 4160: Econometrics-Modelling and Systems Estimation Lecture 7: Single equation models Ragnar Nymoen Department of Economics University of Oslo 25 September 2018 The reference to this lecture is: Chapter

More information

Applied Econometrics (MSc.) Lecture 3 Instrumental Variables

Applied Econometrics (MSc.) Lecture 3 Instrumental Variables Applied Econometrics (MSc.) Lecture 3 Instrumental Variables Estimation - Theory Department of Economics University of Gothenburg December 4, 2014 1/28 Why IV estimation? So far, in OLS, we assumed independence.

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

1. Fundamental concepts

1. Fundamental concepts . Fundamental concepts A time series is a sequence of data points, measured typically at successive times spaced at uniform intervals. Time series are used in such fields as statistics, signal processing

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

Økonomisk Kandidateksamen 2004 (II) Econometrics 2 June 14, 2004

Økonomisk Kandidateksamen 2004 (II) Econometrics 2 June 14, 2004 Økonomisk Kandidateksamen 2004 (II) Econometrics 2 June 14, 2004 This is a four hours closed-book exam (uden hjælpemidler). Answer all questions! The questions 1 to 4 have equal weight. Within each question,

More information

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 1. Construct a martingale difference process that is not weakly stationary. Simplest e.g.: Let Y t be a sequence of independent, non-identically

More information