MSO202: Introduction To Complex Analysis

Size: px
Start display at page:

Download "MSO202: Introduction To Complex Analysis"

Transcription

1 1 MSO0: Introduction To Complex Analysis Lecture z a Geometrical Interpretation of Ha { z:im( ) 0}, b 0 b z We first give the geometrical of H0 { z:im( ) 0, b 1}, i.e. b when a = 0 and b 1. In this case, write z r(cos isin ) and bcos isin, then z r[cos( ) isin( )]. b a L a b Now, z H0 sin( ) 0 ( z Im( ) 0) b 0 H 0 L is the half plane lying to the left of line L passing through origin, if one walks along L in the direction of b.

2 Now, a w a w wh0 awha ( Im( ) Im( ) 0). b b Therefore, H a is the half plane lying to the left of line L a passing through a and in the direction of b (as we walk in the direction of b ). Ellipses in terms of Complex Numbers za za r represents an ellipse for r > 0 and a r z r a 0 a za za r represents the interior of the above ellipse za za r represents the exterior of the above ellipse. Annulus r1 za r a r 1 r z

3 3 Half Plane in terms of Complex Numbers H0 { z: z1 z1} represents the right half plane. z 1 i 1 Another way to represent H 0 is z H0 z:im 0 z:rez 0 i Hyperbola in terms of Complex Numbers The hyperbola is represented by the parametric equation 1 1 z t i ( x t, y xy 1) t t

4 Interior Point of a Set, Open Set, Connected Set and Domain of Complex Numbers: Interior Point, Exterior Point of a Set: A point is called interior point of a set A C if an open disk centered at this point and contained in A can be found. A point is called exterior point of a set A if it is an interior c point of A (complement of A). Example: Every point of A { z: za za r} is an interior * point of set A. Every point of A { z: za za r} is an exterior point of set A. Open Set: A set G C is called an open set if every point of G is an interior point of G. Example: The set A { z: za za r} is an open set. Connected Set: A set A C is called connected, if for every pair of points in A, a continuous curve contained in A can be found that joins these points. Example: (i) The set A { z: za za r} is connected (ii) union of two disjoint disks is not a connected set. Domain: A set A C which is both open and connected is called domain. 4

5 Example: (i) The set A { z: za za r} is a domain (ii) union of two disjoint disks is not a domain (iii) The set A { z: za za r} is not a domain. 5 Convergent Sequences of Complex Numbers. A sequence z n of complex numbers is said to be convergent if, for some z0 and every 0, there exists a non negative integer n such that is 0 z z for alln n (*) n 0 0 z 0 is called limit of the sequence and we use the notation z0 lim z n. n It is easily seen that zn xn i yn converges to z0 x0 i y0 iff and only if x n converges to x 0 and y n converges to y 0 (use x x z z, y y z z ) n 0 n 0 n 0 n 0

6 6 All the results as well as their proofs about convergence of sequences of complex numbers are analogous to corresponding results and their proofs for convergence of sequences of real numbers. For example, it can be easily shown by arguments similar to those for real sequences that the sequence { z n } converges to complex number 0 as n if z 1 (using (*)), while, for n z 1, the sequence { z } does not converge, since cosn isin n, real, does not converge (since, the sequence cosn of its real part does not converge as n ).

7 7 Continuous Functions. A function f : is called continuous at z0, if for any 0, there exists a 0 such that f( z) f( z ) for zz. 0 0 The function f is said to be continuous in a set A if f is continuous at all the points of A. The definition of continuity is meaningful only if f is defined in some neighbourhood of z 0(i.e. a disk centered at z 0). Example 1: Let xy z Im( ) if ( x, y) (0,0) f( x, y) x y z 0 if ( x, y) (0,0) m Then, f ( x, y) along the line y mx 1 m Consequently, f is not continuous at (0, 0). as ( xy, ) 0,0.

8 8 Example : Let x y if ( x, y) (0,0) f( x, y) 4 x y 0 if ( x, y) (0,0) f ( x, y) 0 along the line y mx as ( x, y) 0,0 1 but f( x, y) along y x as ( x, y) (0,0). Consequently, f is not continuous at (0, 0). Then,

9 9 Proposition 1. TFAE ( The following are equivalent) (i) f is continuous at z 0 (ii) zn z0 f( zn) f( z0) Proof. Equivalence of (i) and (ii) () i ( ii) : Let for any 0, there exists a 0 such that f( z) f( z0) for zz0. (1) Now, zn z0 zn zz0 for all n n0 f ( zn ) f ( z0) for all n n0 f ( z ) f( z ) n 0 ( ii) ( i) : Let zn z0 f( zn) f( z0). Let f be not continuous at z 0. Then, 0 such that, for every natural number n, 0 zz 1/ n contains a point satisfying 0 * n 0 0. * * n 0 n 0 f( z ) f( z ) z z but f ( z ) f ( z ). * z n

10 Proposition. The functions f g, f, fg, f / g ( g 0) are continuous whenever f and g are continuous. Converse need not be true. Proposition 3. If f is continuous in A and g is continuous in the range of f, then g f is continuous in A. The proofs of above propositions are analogous to corresponding proofs for real valued functions of real variables. 10

11 11 Examples. (i) Any polynomial in z is continuous in (use Proposition ). (ii) f is continuous if and only if Re( f ) and Im( f ) are continuous (use Proposition and Re( f ) f, Im( f ) f ). (iii) f is continuous if and only if f is continuous (use f f ). (iv) f is continuous, then f is continuous. Converse need not be true, e.g. consider, f ( z) u( z) iv( z), where, if z has rational coordinates uz ( ), vz ( )., otherwise

12 1 Differentiable Functions. A function f : 0 is called differentiable at z 0 if f( z0 ) f( z0) lim (1) exists finitely. In that case, the limit in (1) is called the derivative of f(z) at the point z 0 and is denoted by f ( z0). Note that f ( z0) can also be written as f f ( z0 z) f( z0) f( z) f( z0) ( z0) lim lim z zz z 0 zz0 ( take z z z) 0 0 Remark. All the results on differentiability of functions f : are true for differentiability of functions f : and can be proved analogously.

13 13 Note: If f is diff. it is cont. but the converse need not be true. (Ex. f ( z) z is cont. everywhere but is diff. only at 0) z0 z z0 z0 z z0zz0 z z0 lim lim z 0 z z 0 z z lim ( z0 zz0 ) z 0 z = 0 if z0 0 (limit does not exist if z0 0)

14 14 Analytic Function. A function f is said to be analytic at z 0 if f (i) f is differentiable at z 0 and (ii) f is differentiable in some neighbourhood of z 0 (i.e. in a disk centered at z 0). The function f is said to be analytic in a set A, if f is analytic at all points of A. It is clear that if f is differentiable in any open set G, then f is analytic in G. Converse holds obviously. Examples: (i) z is not analytic anywhere. (ii) Any polynomial is analytic at all points of.

Part IB. Further Analysis. Year

Part IB. Further Analysis. Year Year 2004 2003 2002 2001 10 2004 2/I/4E Let τ be the topology on N consisting of the empty set and all sets X N such that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a piecewise 1 -function

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Introduction Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

Functions of a Complex Variable and Integral Transforms

Functions of a Complex Variable and Integral Transforms Functions of a Complex Variable and Integral Transforms Department of Mathematics Zhou Lingjun Textbook Functions of Complex Analysis with Applications to Engineering and Science, 3rd Edition. A. D. Snider

More information

(x x 0 ) 2 + (y y 0 ) 2 = ε 2, (2.11)

(x x 0 ) 2 + (y y 0 ) 2 = ε 2, (2.11) 2.2 Limits and continuity In order to introduce the concepts of limit and continuity for functions of more than one variable we need first to generalise the concept of neighbourhood of a point from R to

More information

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill Lecture Notes omplex Analysis based on omplex Variables and Applications 7th Edition Brown and hurchhill Yvette Fajardo-Lim, Ph.D. Department of Mathematics De La Salle University - Manila 2 ontents THE

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ Matthew Straughn Math 402 Homework 5 Homework 5 (p. 429) 13.3.5, 13.3.6 (p. 432) 13.4.1, 13.4.2, 13.4.7*, 13.4.9 (p. 448-449) 14.2.1, 14.2.2 Exercise 13.3.5. Let (X, d X ) be a metric space, and let f

More information

University of Regina. Lecture Notes. Michael Kozdron

University of Regina. Lecture Notes. Michael Kozdron University of Regina Mathematics 32 omplex Analysis I Lecture Notes Fall 22 Michael Kozdron kozdron@stat.math.uregina.ca http://stat.math.uregina.ca/ kozdron List of Lectures Lecture #: Introduction to

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II Chapter 2 Further properties of analytic functions 21 Local/Global behavior of analytic functions;

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by Homework 27 Define f : C C and u, v : R 2 R by f(z) := xy where x := Re z, y := Im z u(x, y) = Re f(x + iy) v(x, y) = Im f(x + iy). Show that 1. u and v satisfies the Cauchy Riemann equations at (x, y)

More information

This chapter contains a very bare summary of some basic facts from topology.

This chapter contains a very bare summary of some basic facts from topology. Chapter 2 Topological Spaces This chapter contains a very bare summary of some basic facts from topology. 2.1 Definition of Topology A topology O on a set X is a collection of subsets of X satisfying the

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

Part 2 Continuous functions and their properties

Part 2 Continuous functions and their properties Part 2 Continuous functions and their properties 2.1 Definition Definition A function f is continuous at a R if, and only if, that is lim f (x) = f (a), x a ε > 0, δ > 0, x, x a < δ f (x) f (a) < ε. Notice

More information

R- and C-Differentiability

R- and C-Differentiability Lecture 2 R- and C-Differentiability Let z = x + iy = (x,y ) be a point in C and f a function defined on a neighbourhood of z (e.g., on an open disk (z,r) for some r > ) with values in C. Write f (z) =

More information

Complex variables lecture 6: Taylor and Laurent series

Complex variables lecture 6: Taylor and Laurent series Complex variables lecture 6: Taylor and Laurent series Hyo-Sung Ahn School of Mechatronics Gwangju Institute of Science and Technology (GIST) 1 Oryong-dong, Buk-gu, Gwangju, Korea Advanced Engineering

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

Complex Analysis Homework 1: Solutions

Complex Analysis Homework 1: Solutions Complex Analysis Fall 007 Homework 1: Solutions 1.1.. a) + i)4 + i) 8 ) + 1 + )i 5 + 14i b) 8 + 6i) 64 6) + 48 + 48)i 8 + 96i c) 1 + ) 1 + i 1 + 1 i) 1 + i)1 i) 1 + i ) 5 ) i 5 4 9 ) + 4 4 15 i ) 15 4

More information

COMPLEX NUMBERS

COMPLEX NUMBERS COMPLEX NUMBERS 1. Any number of the form x+iy where x, y R and i -1 is called a Complex Number.. In the complex number x+iy, x is called the real part and y is called the imaginary part of the complex

More information

MATH 423 Linear Algebra II Lecture 3: Subspaces of vector spaces. Review of complex numbers. Vector space over a field.

MATH 423 Linear Algebra II Lecture 3: Subspaces of vector spaces. Review of complex numbers. Vector space over a field. MATH 423 Linear Algebra II Lecture 3: Subspaces of vector spaces. Review of complex numbers. Vector space over a field. Vector space A vector space is a set V equipped with two operations, addition V V

More information

1 Functions of Several Variables 2019 v2

1 Functions of Several Variables 2019 v2 1 Functions of Several Variables 2019 v2 11 Notation The subject of this course is the study of functions f : R n R m The elements of R n, for n 2, will be called vectors so, if m > 1, f will be said to

More information

Definitions & Theorems

Definitions & Theorems Definitions & Theorems Math 147, Fall 2009 December 19, 2010 Contents 1 Logic 2 1.1 Sets.................................................. 2 1.2 The Peano axioms..........................................

More information

Course 214 Section 2: Infinite Series Second Semester 2008

Course 214 Section 2: Infinite Series Second Semester 2008 Course 214 Section 2: Infinite Series Second Semester 2008 David R. Wilkins Copyright c David R. Wilkins 1989 2008 Contents 2 Infinite Series 25 2.1 The Comparison Test and Ratio Test.............. 26

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-1: Basic Ideas 1 Introduction

More information

2 Topology of a Metric Space

2 Topology of a Metric Space 2 Topology of a Metric Space The real number system has two types of properties. The first type are algebraic properties, dealing with addition, multiplication and so on. The other type, called topological

More information

2 Sequences, Continuity, and Limits

2 Sequences, Continuity, and Limits 2 Sequences, Continuity, and Limits In this chapter, we introduce the fundamental notions of continuity and limit of a real-valued function of two variables. As in ACICARA, the definitions as well as proofs

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Class test: week 10, 75 minutes. (30%) Final exam: April/May exam period, 3 hours (70%).

Class test: week 10, 75 minutes. (30%) Final exam: April/May exam period, 3 hours (70%). 17-4-2013 12:55 c M. K. Warby MA3914 Complex variable methods and applications 0 1 MA3914 Complex variable methods and applications Lecture Notes by M.K. Warby in 2012/3 Department of Mathematical Sciences

More information

INTRODUCTION TO COMPLEX ANALYSIS W W L CHEN

INTRODUCTION TO COMPLEX ANALYSIS W W L CHEN INTRODUTION TO OMPLEX ANALYSIS W W L HEN c W W L hen, 986, 2008. This chapter originates from material used by the author at Imperial ollege, University of London, between 98 and 990. It is available free

More information

Complex Analysis - Final exam - Answers

Complex Analysis - Final exam - Answers Complex Analysis - Final exam - Answers Exercise : (0 %) Let r, s R >0. Let f be an analytic function defined on D(0, r) and g be an analytic function defined on D(0, s). Prove that f +g is analytic on

More information

Complex Series. Chapter 20

Complex Series. Chapter 20 hapter 20 omplex Series As in the real case, representation of functions by infinite series of simpler functions is an endeavor worthy of our serious consideration. We start with an examination of the

More information

Chapter 5. Measurable Functions

Chapter 5. Measurable Functions Chapter 5. Measurable Functions 1. Measurable Functions Let X be a nonempty set, and let S be a σ-algebra of subsets of X. Then (X, S) is a measurable space. A subset E of X is said to be measurable if

More information

1 Complex Numbers. 1.1 Sums and Products

1 Complex Numbers. 1.1 Sums and Products 1 Complex Numbers 1.1 Sums Products Definition: The complex plane, denoted C is the set of all ordered pairs (x, y) with x, y R, where Re z = x is called the real part Imz = y is called the imaginary part.

More information

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007 Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 007 Questions will be set on the following and related topics. Algebra: Sets, operations on sets. Prime numbers, factorisation of integers

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 67 Outline

More information

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106 Name (Last name, First name): MTH 02 omplex Variables Final Exam May, 207 :0pm-5:0pm, Skurla Hall, Room 06 Exam Instructions: You have hour & 50 minutes to complete the exam. There are a total of problems.

More information

A LITTLE REAL ANALYSIS AND TOPOLOGY

A LITTLE REAL ANALYSIS AND TOPOLOGY A LITTLE REAL ANALYSIS AND TOPOLOGY 1. NOTATION Before we begin some notational definitions are useful. (1) Z = {, 3, 2, 1, 0, 1, 2, 3, }is the set of integers. (2) Q = { a b : aεz, bεz {0}} is the set

More information

Complex Functions (1A) Young Won Lim 2/22/14

Complex Functions (1A) Young Won Lim 2/22/14 Complex Functions (1A) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

9. Series representation for analytic functions

9. Series representation for analytic functions 9. Series representation for analytic functions 9.. Power series. Definition: A power series is the formal expression S(z) := c n (z a) n, a, c i, i =,,, fixed, z C. () The n.th partial sum S n (z) is

More information

Complex Function. Chapter Complex Number. Contents

Complex Function. Chapter Complex Number. Contents Chapter 6 Complex Function Contents 6. Complex Number 3 6.2 Elementary Functions 6.3 Function of Complex Variables, Limit and Derivatives 3 6.4 Analytic Functions and Their Derivatives 8 6.5 Line Integral

More information

2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

More information

ASYMPTOTIC MAXIMUM PRINCIPLE

ASYMPTOTIC MAXIMUM PRINCIPLE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 27, 2002, 249 255 ASYMPTOTIC MAXIMUM PRINCIPLE Boris Korenblum University at Albany, Department of Mathematics and Statistics Albany, NY 12222,

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

2.3 LIMITS AND CONTINUITY

2.3 LIMITS AND CONTINUITY 70 Chapter 2 Complex Functions 2.3 LIMITS AND CONTINUITY Let u = u (x, y) be a real-valued function of the two real variables x and y. Recall that u has the it u 0 as (x, y) approaches (x 0,y 0 ) provided

More information

Math Homework 1. The homework consists mostly of a selection of problems from the suggested books. 1 ± i ) 2 = 1, 2.

Math Homework 1. The homework consists mostly of a selection of problems from the suggested books. 1 ± i ) 2 = 1, 2. Math 70300 Homework 1 September 1, 006 The homework consists mostly of a selection of problems from the suggested books. 1. (a) Find the value of (1 + i) n + (1 i) n for every n N. We will use the polar

More information

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables Lecture Complex Numbers MATH-GA 245.00 Complex Variables The field of complex numbers. Arithmetic operations The field C of complex numbers is obtained by adjoining the imaginary unit i to the field R

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Comple Analsis II Lecture Notes Part I Chapter 1 Preliminar results/review of Comple Analsis I These are more detailed notes for the results

More information

1. COMPLEX NUMBERS. z 1 + z 2 := (a 1 + a 2 ) + i(b 1 + b 2 ); Multiplication by;

1. COMPLEX NUMBERS. z 1 + z 2 := (a 1 + a 2 ) + i(b 1 + b 2 ); Multiplication by; 1. COMPLEX NUMBERS Notations: N the set of the natural numbers, Z the set of the integers, R the set of real numbers, Q := the set of the rational numbers. Given a quadratic equation ax 2 + bx + c = 0,

More information

Lecture 4. Properties of Logarithmic Function (Contd ) y Log z tan constant x. It follows that

Lecture 4. Properties of Logarithmic Function (Contd ) y Log z tan constant x. It follows that Lecture 4 Properties of Logarithmic Function (Contd ) Since, Logln iarg u Re Log ln( ) v Im Log tan constant It follows that u v, u v This shows that Re Logand Im Log are (i) continuous in C { :Re 0,Im

More information

EE2012 ~ Page 9 / Part 2. ben m chen, nus ece

EE2012 ~ Page 9 / Part 2. ben m chen, nus ece omplex Analysis EE ~ Page 9 / Part Flow hart of Material in omplex Analysis x iy t () xt () iyt () f( ) uivu( x, y) iv( x, y) Starting omplex function of a real variable ~ define a curve on a complex plane

More information

18.04 Practice problems exam 2, Spring 2018 Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions 8.04 Practice problems exam, Spring 08 Solutions Problem. Harmonic functions (a) Show u(x, y) = x 3 3xy + 3x 3y is harmonic and find a harmonic conjugate. It s easy to compute: u x = 3x 3y + 6x, u xx =

More information

MATH NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS

MATH NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS MATH. 4433. NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS TOMASZ PRZEBINDA. Final project, due 0:00 am, /0/208 via e-mail.. State the Fundamental Theorem of Algebra. Recall that a subset K

More information

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017 Name Last name, First name): MTH 31 omplex Variables Solutions: Practice Exam Mar. 6, 17 Exam Instructions: You have 1 hour & 1 minutes to complete the exam. There are a total of 7 problems. You must show

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

MAT137 Calculus! Lecture 48

MAT137 Calculus! Lecture 48 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 48 Today: Taylor Series Applications Next: Final Exams Important Taylor Series and their Radii of Convergence 1 1 x = e x = n=0 n=0 x n n!

More information

Solutions to Tutorial 8 (Week 9)

Solutions to Tutorial 8 (Week 9) The University of Sydney School of Mathematics and Statistics Solutions to Tutorial 8 (Week 9) MATH3961: Metric Spaces (Advanced) Semester 1, 2018 Web Page: http://www.maths.usyd.edu.au/u/ug/sm/math3961/

More information

ECARES Université Libre de Bruxelles MATH CAMP Basic Topology

ECARES Université Libre de Bruxelles MATH CAMP Basic Topology ECARES Université Libre de Bruxelles MATH CAMP 03 Basic Topology Marjorie Gassner Contents: - Subsets, Cartesian products, de Morgan laws - Ordered sets, bounds, supremum, infimum - Functions, image, preimage,

More information

Lecture notes: Introduction to Partial Differential Equations

Lecture notes: Introduction to Partial Differential Equations Lecture notes: Introduction to Partial Differential Equations Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 Classification of Partial Differential

More information

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα Math 411, Complex Analysis Definitions, Formulas and Theorems Winter 014 Trigonometric Functions of Special Angles α, degrees α, radians sin α cos α tan α 0 0 0 1 0 30 π 6 45 π 4 1 3 1 3 1 y = sinα π 90,

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Complex Analysis Qual Sheet

Complex Analysis Qual Sheet Complex Analysis Qual Sheet Robert Won Tricks and traps. traps. Basically all complex analysis qualifying exams are collections of tricks and - Jim Agler Useful facts. e z = 2. sin z = n=0 3. cos z = z

More information

Lecture 4: Partial and Directional derivatives, Differentiability

Lecture 4: Partial and Directional derivatives, Differentiability Lecture 4: Partial and Directional derivatives, Differentiability Rafikul Alam Department of Mathematics IIT Guwahati Differential Calculus Task: Extend differential calculus to the functions: Case I:

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1 OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1 (37) If a bug walks on the sphere x 2 + y 2 + z 2 + 2x 2y 4z 3 = 0 how close and how far can it get from the origin? Solution: Complete

More information

1 Variance of a Random Variable

1 Variance of a Random Variable Indian Institute of Technology Bombay Department of Electrical Engineering Handout 14 EE 325 Probability and Random Processes Lecture Notes 9 August 28, 2014 1 Variance of a Random Variable The expectation

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Extension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Approved scientific calculators and templates

More information

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Section 10.1 Geometry of Parabola, Ellipse, Hyperbola a. Geometric Definition b. Parabola c. Ellipse d. Hyperbola e. Translations f.

More information

QF101: Quantitative Finance August 22, Week 1: Functions. Facilitator: Christopher Ting AY 2017/2018

QF101: Quantitative Finance August 22, Week 1: Functions. Facilitator: Christopher Ting AY 2017/2018 QF101: Quantitative Finance August 22, 2017 Week 1: Functions Facilitator: Christopher Ting AY 2017/2018 The chief function of the body is to carry the brain around. Thomas A. Edison 1.1 What is a function?

More information

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities The Residue Theorem Integration Methods over losed urves for Functions with Singularities We have shown that if f(z) is analytic inside and on a closed curve, then f(z)dz = 0. We have also seen examples

More information

NATIONAL UNIVERSITY OF SINGAPORE. Department of Mathematics. MA4247 Complex Analysis II. Lecture Notes Part IV

NATIONAL UNIVERSITY OF SINGAPORE. Department of Mathematics. MA4247 Complex Analysis II. Lecture Notes Part IV NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part IV Chapter 2. Further properties of analytic/holomorphic functions (continued) 2.4. The Open mapping

More information

Mid Term-1 : Solutions to practice problems

Mid Term-1 : Solutions to practice problems Mid Term- : Solutions to practice problems 0 October, 06. Is the function fz = e z x iy holomorphic at z = 0? Give proper justification. Here we are using the notation z = x + iy. Solution: Method-. Use

More information

18.03 LECTURE NOTES, SPRING 2014

18.03 LECTURE NOTES, SPRING 2014 18.03 LECTURE NOTES, SPRING 2014 BJORN POONEN 7. Complex numbers Complex numbers are expressions of the form x + yi, where x and y are real numbers, and i is a new symbol. Multiplication of complex numbers

More information

MATH 566 LECTURE NOTES 1: HARMONIC FUNCTIONS

MATH 566 LECTURE NOTES 1: HARMONIC FUNCTIONS MATH 566 LECTURE NOTES 1: HARMONIC FUNCTIONS TSOGTGEREL GANTUMUR 1. The mean value property In this set of notes, we consider real-valued functions on two-dimensional domains, although it is straightforward

More information

xy xyy 1 = ey 1 = y 1 i.e.

xy xyy 1 = ey 1 = y 1 i.e. Homework 2 solutions. Problem 4.4. Let g be an element of the group G. Keep g fixed and let x vary through G. Prove that the products gx are all distinct and fill out G. Do the same for the products xg.

More information

b 0 + b 1 z b d z d

b 0 + b 1 z b d z d I. Introduction Definition 1. For z C, a rational function of degree d is any with a d, b d not both equal to 0. R(z) = P (z) Q(z) = a 0 + a 1 z +... + a d z d b 0 + b 1 z +... + b d z d It is exactly

More information

Part D. Complex Analysis

Part D. Complex Analysis Part D. Comple Analsis Chapter 3. Comple Numbers and Functions. Man engineering problems ma be treated and solved b using comple numbers and comple functions. First, comple numbers and the comple plane

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

EE2007: Engineering Mathematics II Complex Analysis

EE2007: Engineering Mathematics II Complex Analysis EE2007: Engineering Mathematics II omplex Analysis Ling KV School of EEE, NTU ekvling@ntu.edu.sg V4.2: Ling KV, August 6, 2006 V4.1: Ling KV, Jul 2005 EE2007 V4.0: Ling KV, Jan 2005, EE2007 V3.1: Ling

More information

ECE-S Introduction to Digital Signal Processing Lecture 4 Part A The Z-Transform and LTI Systems

ECE-S Introduction to Digital Signal Processing Lecture 4 Part A The Z-Transform and LTI Systems ECE-S352-70 Introduction to Digital Signal Processing Lecture 4 Part A The Z-Transform and LTI Systems Transform techniques are an important tool in the analysis of signals and linear time invariant (LTI)

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Lecture 2: A crash course in Real Analysis

Lecture 2: A crash course in Real Analysis EE5110: Probability Foundations for Electrical Engineers July-November 2015 Lecture 2: A crash course in Real Analysis Lecturer: Dr. Krishna Jagannathan Scribe: Sudharsan Parthasarathy This lecture is

More information

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication 7. Banach algebras Definition 7.1. A is called a Banach algebra (with unit) if: (1) A is a Banach space; (2) There is a multiplication A A A that has the following properties: (xy)z = x(yz), (x + y)z =

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 27 Complex Analysis Module: 2:

More information

STA2112F99 ε δ Review

STA2112F99 ε δ Review STA2112F99 ε δ Review 1. Sequences of real numbers Definition: Let a 1, a 2,... be a sequence of real numbers. We will write a n a, or lim a n = a, if for n all ε > 0, there exists a real number N such

More information

INTRODUCTION TO REAL ANALYTIC GEOMETRY

INTRODUCTION TO REAL ANALYTIC GEOMETRY INTRODUCTION TO REAL ANALYTIC GEOMETRY KRZYSZTOF KURDYKA 1. Analytic functions in several variables 1.1. Summable families. Let (E, ) be a normed space over the field R or C, dim E

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

Complex Analysis. Travis Dirle. December 4, 2016

Complex Analysis. Travis Dirle. December 4, 2016 Complex Analysis 2 Complex Analysis Travis Dirle December 4, 2016 2 Contents 1 Complex Numbers and Functions 1 2 Power Series 3 3 Analytic Functions 7 4 Logarithms and Branches 13 5 Complex Integration

More information

Complex Analysis Problems

Complex Analysis Problems Complex Analysis Problems transcribed from the originals by William J. DeMeo October 2, 2008 Contents 99 November 2 2 2 200 November 26 4 3 2006 November 3 6 4 2007 April 6 7 5 2007 November 6 8 99 NOVEMBER

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 20, 2015 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 20, 2015 (Day 1) Tuesday January 20, 2015 (Day 1) 1. (AG) Let C P 2 be a smooth plane curve of degree d. (a) Let K C be the canonical bundle of C. For what integer n is it the case that K C = OC (n)? (b) Prove that if

More information

LECTURE 6. CONTINUOUS FUNCTIONS AND BASIC TOPOLOGICAL NOTIONS

LECTURE 6. CONTINUOUS FUNCTIONS AND BASIC TOPOLOGICAL NOTIONS ANALYSIS FOR HIGH SCHOOL TEACHERS LECTURE 6. CONTINUOUS FUNCTIONS AND BASIC TOPOLOGICAL NOTIONS ROTHSCHILD CAESARIA COURSE, 2011/2 1. The idea of approximation revisited When discussing the notion of the

More information

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, 2013 1 5 Tuesday 29th January 5.1 Limits points, closure, boundary continued Definition 5.1. Let (X, O X ) be a topological space, and let A be a subset of X.

More information

Math 185 Homework Exercises II

Math 185 Homework Exercises II Math 185 Homework Exercises II Instructor: Andrés E. Caicedo Due: July 10, 2002 1. Verify that if f H(Ω) C 2 (Ω) is never zero, then ln f is harmonic in Ω. 2. Let f = u+iv H(Ω) C 2 (Ω). Let p 2 be an integer.

More information

Complex Analysis I MAST31006

Complex Analysis I MAST31006 Complex Analysis I MAST36 Lecturer: Ritva Hurri-Syrjänen Lectures: Tuesday: :5-2:, Wednesday: 4:5-6: University of Helsinki June 2, 28 Complex Analysis I CONTENTS Contents Background 4. The vector space

More information

Assignment 2 - Complex Analysis

Assignment 2 - Complex Analysis Assignment 2 - Complex Analysis MATH 440/508 M.P. Lamoureux Sketch of solutions. Γ z dz = Γ (x iy)(dx + idy) = (xdx + ydy) + i Γ Γ ( ydx + xdy) = (/2)(x 2 + y 2 ) endpoints + i [( / y) y ( / x)x]dxdy interiorγ

More information

Math212a1413 The Lebesgue integral.

Math212a1413 The Lebesgue integral. Math212a1413 The Lebesgue integral. October 28, 2014 Simple functions. In what follows, (X, F, m) is a space with a σ-field of sets, and m a measure on F. The purpose of today s lecture is to develop the

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information