LCLS Undulators Present Status and Future Upgrades

Size: px
Start display at page:

Download "LCLS Undulators Present Status and Future Upgrades"

Transcription

1 LCLS Undulators Present Status and Future Upgrades Heinz-Dieter Nuhn LCLS Undulator Group Leader 1 1 Heinz-Dieter Nuhn

2 Linac Coherent Light Source INJECTOR LINAC BEAM TRANSPORT UNDULATOR HALL 2 2 Heinz-Dieter Nuhn

3 Undulator Hall 33 Undulator Segments Installed 3 3 Heinz-Dieter Nuhn

4 Short Break Section Undulator Segment BFW Part of WPM Support RF Cavity BPM Segment Slider Quadrupole and horz/vert Correctors Girder HLS Sensor Girder Mover (cam) 4 4 Heinz-Dieter Nuhn

5 Fully Assembled Girder (seen from downstream end) Undulator Segment Quadrupole Vacuum Chamber RF Cavity BPM Girder 5 5 Heinz-Dieter Nuhn

6 Girder Precision Alignment on CMM Quadrupole Undulator Segment with mu-metal Shield Coordinate Measurement Machine Position Sensor RF Cavity BPM 6 6 Heinz-Dieter Nuhn

7 LCLS Undulator Components BFW Vacuum Chamber and Support Segment m Cam Shaft Movers WPM Quadrupole BPM Long Break 89.8 cm Short Break 47.0 cm Manual Adjustments Horizontal Slides Not visible Sand-Filled, Thermally Isolated Fixed Supports HLS 7 7 Heinz-Dieter Nuhn

8 Vacuum Chamber Inserted into Gap Undulator Segment Magnet Block Horizontal Trajectory Shim Holder Vacuum Chamber Pole Piece 8 8 Heinz-Dieter Nuhn

9 LCLS Undulator Module Pole Canting Pole canting enables remote K adjustment for fixed gap undulators. Canting comes from wedged spacers 4.5 mrad cant angle Gap can be adjusted by lateral displacement of wedges 1 mm shift means 4.5 µm in gap, or 8.2 G K eff can be adjusted to desired value 9 9 Heinz-Dieter Nuhn

10 Undulator Roll-Away and K Adjustment Pole Center Line Vacuum Chamber Neutral; First; K=3.5000; K=3.4881; x= mm Neutral; K=3.4881; x= 0.0 mm Roll-Away; Neutral; K=3.4881; K=0.0000; x= x=+80.0 mm mm Horizontal Slide Heinz-Dieter Nuhn

11 LCLS-I Undulator Parameters units Nominal Undulator Parameter K 3.5 Undulator Period λ u 30 mm Undulator peak Field, B pk B pk T Full Gap Height (fixed) g 6.8 mm Undulator Type Planar Hybrid Permanent Magnet Magnet Material Nd 2 FeB 14 Pole Material Vanadium Permendur Magnet Block Dimensions Pole Dimensions h t w h t w Periods per Segment mm mm 3 Gap Cant Angle α 4.5 mrad Number of Installed Segments Heinz-Dieter Nuhn

12 Taper Design Considerations 1. Compensation of spontaneous radiation (linear tapering over 132 m) ˆ 2 E E/ E = B Nλ T 2 u Vm e 2. Compensation of vacuum chamber wakefields (linear tapering over 132 m, for 0.25 nc) E/ E From Wakefield budget based on S2E Simulations 3. Gain enhancement (linear tapering before saturation) [Z. Huang] E/ E = 2ρ 4. Enhanced energy extraction (quadratic tapering after saturation) [W. Fawley] E/ E 0.25% The ratio between changes in E and K to maintain the resonance condition at a given wavelength is dk dk K 2 = K = de dγ K E γ Heinz-Dieter Nuhn

13 K Tapering Requirements K for segment 1 K for segment Å ± 0.3 % spont wake gain post sat 15 Å spont ± 0.3 % gain post sat wake Heinz-Dieter Nuhn

14 Figure 3: K Tapering Scenarios (Continuous) Avoid Reliance on Good Field Region at 1.5 Å Heinz-Dieter Nuhn

15 Measured Field Integrals on SN25 L 0 B x ( xyz,, ) dz L z 0 0 Bx ( xyz,, ') dz ' dz L 0 B y ( xyz,, ) dz L z 0 0 By ( xyz,, ') dz ' dz y : +200 µm +0 µm -200 µm Heinz-Dieter Nuhn

16 Beam Based Measurement: 1 st Field Integral SN14 Horizontal (I1X) and vertical (I1Y) first field integrals measured by fitting a kick to the difference trajectory as function of undulator displacement Reference Point SN14 Requires 20 nm BPM resolution MMF Measurement Beam Based Measurements SN Heinz-Dieter Nuhn

17 Segmented Undulator Pre-Taper Heinz-Dieter Nuhn

18 CMM K eff Measurements for U33/SN20 K=3.497 K= Heinz-Dieter Nuhn

19 Segmented Undulator K Control TEMPERATURE CORRECTED KACT K ADJUSTMENT RANGE (MEASURED) TAPER REQUEST K ADJUSTMENT RANGE (MEASURED) Heinz-Dieter Nuhn

20 Tolerance Budget Analysis Analysis based on time dependent SASE simulations with GENESIS Eight individual error sources considered: Beta-Function Mismatch, Launch Position Error, Segment Detuning, Segment Offset in x, Segment Offset in y, Quadrupole Gradient Error, Transverse Quadrupole Offset, Break Length Error. The observed parameter is the average of the FEL power at 90 m (around saturation) and 130 m (undulator exit) The Results are combined into the Error Budget Heinz-Dieter Nuhn

21 Segment K Errors Simulation and fit results of Module Detuning analysis. The larger amplitude data occur at the 130-mpoint, the smaller amplitude data at the 90-m-point. qi = K / K Budget Tolerance 130 m 90 m Module Detuning (Gauss Fit) Location Fit rms Unit 090 m % 130 m % Average % Heinz-Dieter Nuhn

22 Individual Studies (Example K) Choose a set of K m /K values to be tested, e.g. { 0.000%, 0.045%, 0.100%, 0.200%} For each K m /K choose 33 K s values from a random flattop distribution with maximum K m. Apply these errors, K s, to the respective segment K s values and perform a GENESIS FEL simulation. Evaluate the simulation result to extract power levels at the 90 m and 130 m points, P 90,m and P 130,m, respectively. Loop Plot these results, P 90,m and P 130,m, versus the rms of the distribution, i.e. 1 Km K 12 Apply Gaussian fit to obtain rms-dependence. Pi = 0 q 2 Pe σ 2 i 2 i Heinz-Dieter Nuhn

23 Horizontal Segment Misalignment 130 m Simulation and fit results of Horizontal Module Offset analysis. The larger amplitude data occur at the 130-mpoint, the smaller amplitude data at the 90-m-point. 90 m Horizontal Model Offset (Gauss Fit) Location Fit rms Unit 090 m 0782 µm 130 m 1121 µm Average 0952 µm Budget Tolerance Heinz-Dieter Nuhn

24 Vertical Segment Misalignment Simulation and fit results of Vertical Module Offset analysis. The larger amplitude data occur at the 130-mpoint, the smaller amplitude data at the 90-m-point. 130 m 90 m Vertical Model Offset (Gauss Fit) Location Fit rms Unit 090 m 268 µm 130 m 268 µm Average 268 µm Budget Tolerance Heinz-Dieter Nuhn

25 Tolerance Budget Gaussian fit yields functional dependence of power reduction on error amplitude: 2 P i P 0 = e q 2σ Assuming that each error is independent on the others other, i.e. each error source causes a given fraction power reduction independent of the presence of the other sources: i 2 i tolerance fitted rms P P 0 2 i 2 i q 1 1 f 2σ 2 2 e e e = = = 2 2 i fi f i =q i /σ i Heinz-Dieter Nuhn

26 LCLS Tolerance Budget P P 0 = e f i Error Source σ i f i σ i f i 130 m (24.2% red.) Hor/Ver Optics Mismatch (ζ-1) ζ < <β/β 0 <1.56 Hor/Ver Transverse Beam Offset µm Module Detuning K/K % Module Offset in x µm Module Offset in y µm Quadrupole Gradient Error % Transverse Quadrupole Offset µm Break Length Error mm Heinz-Dieter Nuhn

27 Model Detuning Sub-Budget K = K + α T + β x MMF K K ( δk) Parameter p i Typical Value rms dev. δp i Note K MMF ±0.015 % uniform α K C C -1 Thermal Coefficient T 0 C 0.32 C ±0.56 C uniform without compensation β K mm mm -1 Canting Coefficient x 1.5 mm 0.05 mm Horizontal Positioning 2 2 K = δ pi i pi ( ) ( ) ( ) ( ) ( ) MMF K K K K δ K = δ K + Tδα + α δ T + xδβ + β δ x δ K / K = 0.020% LCLS 27 Undulator Status Heinz-Dieter Nuhn

28 Beam Based Alignment Tolerance Verification Beam Based Measurements Random misalignment with flat distribution of widh ±a => rms distribution a/sqrt(3) Heinz-Dieter Nuhn

29 Beam Based K Tolerance Verification Beam Based Measurements Heinz-Dieter Nuhn

30 LCLS Undulator Tolerance Budget BB Verification P P f i e 2 = Tolerance Budget Components Error Source σ i f i σ i f i 130 m (24.2% red.) Hor/Ver Optics Mismatch (ζ-1) Hor/Ver Transverse Beam Offset µm Module Detuning K/K % Module Offset in x µm Module Offset in y µm Quadrupole Gradient Error % Transverse Quadrupole Offset µm Break Length Error mm Module Offset in z SAT 780 µm MEASUREMENTS 30 Heinz-Dieter Nuhn

31 LCLS-II An initial rough evaluation of LCLS-II undulator parameters will be presented. Priority is given to the Soft-Xray line, which is likely to be based on short variable gap undulators. Shortness is required to enable the low beta-functions needed for optimum FEL performance Heinz-Dieter Nuhn

32 4-GeV SXR and 14-GeV HXR simultaneous op s with bypass line Phased Enhancement Plan for LCLS-II EEHG*? 6-60 Å adjust. gap full polarization control 2-pulse 2-color 6-60 Å adjust. gap full polarization control 3-7-GeV bypass 4-14 GeV 240 nm 6 nm SXR1 (45 m) 5 m self-seeding option SXR2 (45 m) 5 m FEE-2 full polarization control Phase-0 Phase-1 Phase-2 Phase-3 Existing Shortened Large Gap Larger Large Gap Undulator GapSHAB Existing Shortened 112-m 74-m Undulator ( Å) ( (0.5-5 Å) ( (0.5-5 Å) 30 m self-seeding HXR option 0.75 Å (2 bunches) Å 5 m FEE-1 No civil construction. Uses existing beam energy and quality. * G. Stupakov, Phys. Rev. Lett. 102, (2009) Heinz-Dieter Nuhn

33 LCLS-I U 1 Enhancement σ γ = 2.8 I pk = 3000 A, γε xy = 0.6 µm Heinz-Dieter Nuhn

34 LCLS-II U 2 FEL Performance Estimate helical linear <β> = 5 m, σ γ = 2.8 I pk = 2000 A, γε xy = 0.6 µm Heinz-Dieter Nuhn

35 LCLS-II U 2 FEL Performance Estimate helical linear <β> = 5 m, σ γ = 2.8 I pk = 2000 A, γε xy = 0.6 µm Heinz-Dieter Nuhn

36 Beta-Function at 6 nm L G ~0.69 m for β x,y = 5 m Optimum L G ~0.65 m for β x,y = 4 m Smallest practical beta function 4-5 m is above optimum Heinz-Dieter Nuhn

37 Optimum Beta-Function at 6nm L G ~0.27 m for β x,y ~ 0.1 m Optimum beta function would reduce undulator length by more than factor 2 but is not accessible Heinz-Dieter Nuhn

38 Optimum Beta-Function at 0.6 nm Considered Value Optimum Value At 0.6 nm beta function of 4-5 m is close to optimum Heinz-Dieter Nuhn

39 Beta Function and Undulator Length β L The smallest average beta-function achievable with a FODO lattice is The FODO length is determined by segment length and break length xy, FODO Breaks between segments need to be sufficiently wide to allow space for essential components, such as quadrupole, BPM, Chicane. Smallest practical quadrupole separation is 2.5 m, corresponding to a FODO length of 5 m. EXAMPLE: Bellows Break 0.70 m Undulator: 1.80 m Break 0.70 m Half FODO Length: 2.50 m Minimum <β x,y > = 5 m Chicane RF Cavity BPM Quadrupole Heinz-Dieter Nuhn

40 Example Chicane Dimensions Multi-Segment variable gap undulators require phase shifters between segments to adjust gap dependent inter-segment phase slippage. An example for such a chicane is shown here. Field levels have been kept low to reduce in-tunnel power release. x max L = 9 cm L = 4.5 cm 3 cm L =4.5 cm L = 24 cm E GeV λ r nm B G x µrad x max µm φ degxray η x µm R nm Heinz-Dieter Nuhn

41 Undulator Types A number of different variable field undulator types are under consideration Parallel-Pole Variable Gap Fixed Linear Polarization Hybrid or Pure Permanent Magnet Apple Type Variable Gap Variable Linear/Circular Polarization Hybrid or Pure Permanent Magnet Delta Type Variable Phase Variable Linear/Circular Polarization and Intensity Pure Permanent Magnet Superconducting Helical Variable Excitation current Fixed Circular Polarization [Substantial R&D required] New Designs Key issues are Precision Hall probe measurements K stability and settability Compact design to mount on movable girders. Gap > 7 mm Heinz-Dieter Nuhn

42 Summary The LCLS-I undulators have performed very well during commissioning and first user operation. Initial parameter development for the LCLS-II undulators has started, giving priority to the new soft x-ray line. The goal is a compact variable gap design to cover wavelengths between 6 nm and <0.6 nm at electron energies in the range 3-7 GeV. The low emittance and lower electron energy require beta functions of order 5 m or smaller for best utilization. Low beta-functions require a short FODO length, i.e., short undulator segments of length 1.8 m and compact break sections. The total length of each of the 2 soft x-ray undulator lines is expected to be about 50 m Heinz-Dieter Nuhn

43 End of Presentation Heinz-Dieter Nuhn

LCLS-II Undulator Tolerance Budget*

LCLS-II Undulator Tolerance Budget* LCLS-TN-13-5 rev2 April 16, 2013 LCLS-II Undulator Tolerance Budget* Heinz-Dieter Nuhn, Stanford Linear Accelerator Center, MS-18, 2575 Sandhill Road, Menlo Park, California 94025. 1 Introduction This

More information

Part V Undulators for Free Electron Lasers

Part V Undulators for Free Electron Lasers Part V Undulators for Free Electron Lasers Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble V, 1/22, P. Elleaume, CAS, Brunnen July 2-9, 2003. Oscillator-type Free Electron Laser V, 2/22,

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Vertical Polarization Option for LCLS-II. Abstract

Vertical Polarization Option for LCLS-II. Abstract SLAC National Accelerator Lab LCLS-II TN-5-8 March 5 Vertical Polarization Option for LCLS-II G. Marcus, T. Raubenheimer SLAC, Menlo Park, CA 95 G. Penn LBNL, Berkeley, CA 97 Abstract Vertically polarized

More information

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II G. Marcus, Y. Ding, P. Emma, Z. Huang, T. Raubenheimer, L. Wang, J. Wu SLAC, Menlo Park, CA 9, USA Abstract The design and performance of the LCLS-II

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM LCLS-II TN-15-41 11/23/2015 J. Qiang, M. Venturini November 23, 2015 LCLSII-TN-15-41 1 Introduction L C L S - I I T E C H N I C

More information

Variable Gap Tapering for LCLS-II Undulators

Variable Gap Tapering for LCLS-II Undulators Variable Gap Tapering for LCLS-II Undulators Heinz-Dieter Nuhn April 12, 2018 Continuous Taper, Apr 12, 2018 1 Schematic Layout of LCLS-II New So; X- ray FEL with adjustable- gap undulator line (SXR) New

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

LCLS Undulator Parameter Workshop

LCLS Undulator Parameter Workshop LCLS Undulator Parameter Workshop Performance Analysis Using RON (and some notes on the LCLS prototype) Roger Dejus and Nikolai Vinokurov October 24, 2003 Budker Institute of Nuclear Physics, Novosibirsk

More information

FIRST LASING OF THE LCLS X-RAY FEL AT 1.5 Å

FIRST LASING OF THE LCLS X-RAY FEL AT 1.5 Å FIRST LASING OF THE LCLS X-RAY FEL AT 1.5 Å P. Emma, for the LCLS Commissioning Team; SLAC, Stanford, CA 94309, USA Abstract The Linac Coherent Light Source (LCLS) is a SASE 1.5-15 Å x-ray Free-Electron

More information

Chromatic Corrections for the LCLS-II Electron Transport Lines

Chromatic Corrections for the LCLS-II Electron Transport Lines Chromatic Corrections for the LCLS-II Electron Transport Lines LCLS-II TN-16-07 3/4/2016 P. Emma, Y. Nosochkov, M. Woodley March 23, 2016 LCLSII-TN-16-07 Chromatic Corrections for the LCLS-II Electron

More information

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

LCLS Accelerator Parameters and Tolerances for Low Charge Operations LCLS-TN-99-3 May 3, 1999 LCLS Accelerator Parameters and Tolerances for Low Charge Operations P. Emma SLAC 1 Introduction An option to control the X-ray FEL output power of the LCLS [1] by reducing the

More information

Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure. Karl Bane, 7 April 2017,, KEK

Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure. Karl Bane, 7 April 2017,, KEK Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure Karl Bane, 7 April 2017,, KEK Introduction At the end of acceleration in an X-ray FEL, the beam

More information

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS LCLS Technical Advisory Committee December 10-11, 2001. SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS Patrick Krejcik LCLS Technical Advisory Committee Report 1: July 14-15, 1999 The

More information

X-Ray Diagnostics Commissioning at the LCLS

X-Ray Diagnostics Commissioning at the LCLS X-Ray Diagnostics Commissioning at the LCLS - Selected Studies - J. Welch, SLAC National Accelerator Laboratory Aug. 3-27, 2010 Commissioning Studies Microbunching Instability Laser Heater tune-up Gas

More information

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac Zhirong Huang, Faya Wang, Karl Bane and Chris Adolphsen SLAC Compact X-Ray (1.5 Å) FEL Parameter symbol LCLS CXFEL unit Bunch Charge Q 250 250

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

E ect Of Quadrant Taper On Delta Undulator Phase Errors

E ect Of Quadrant Taper On Delta Undulator Phase Errors LCLS-TN-5- E ect Of Quadrant Taper On Delta Undulator Phase Errors Zachary Wolf SLAC February 8, 05 Abstract The elds in the Delta undulator are very sensitive to the position of the magnet arrays. A taper

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

Layout of the HHG seeding experiment at FLASH

Layout of the HHG seeding experiment at FLASH Layout of the HHG seeding experiment at FLASH V. Miltchev on behalf of the sflash team: A. Azima, J. Bödewadt, H. Delsim-Hashemi, M. Drescher, S. Düsterer, J. Feldhaus, R. Ischebeck, S. Khan, T. Laarmann

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Coherence Requirements for Various Seeding Schemes

Coherence Requirements for Various Seeding Schemes Coherence Requirements for Various Seeding Schemes G. Penn 2.5 1 1 2. 1 1 sase 4 high current 4 low current SSSFEL12 Trieste 1 December 212 # photons / mev 1.5 1 1 1. 1 1 5. 1 9 1238.5 1239 1239.5 124

More information

A PPM Phase Shifter Design

A PPM Phase Shifter Design LCLS-TN-- A PPM Phase Shifter Design Zachary Wolf SLAC July 30, 0 Abstract This note describes the design of a pure permanent magnet (PPM) phase shifter for LCLS-II. A PPM phase shifter has the advantage

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

ACCELERATOR LAYOUT AND PHYSICS OF X-RAY FREE-ELECTRON LASERS

ACCELERATOR LAYOUT AND PHYSICS OF X-RAY FREE-ELECTRON LASERS ACCELERATOR LAYOUT AND PHYSICS OF X-RAY FREE-ELECTRON LASERS W. Decking, DESY, Notkestraße 85, 22603 Hamburg, Germany Abstract X-ray Free-Electron Lasers facilities are planned or are already under construction

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

CSR Benchmark Test-Case Results

CSR Benchmark Test-Case Results CSR Benchmark Test-Case Results Paul Emma SLAC January 4, 2 BERLIN CSR Workshop Chicane CSR Test-Case Chicane parameters symbol value unit Bend magnet length (not curved length) L B.5 m Drift length (projected;

More information

Undulator Commissioning Spectrometer for the European XFEL

Undulator Commissioning Spectrometer for the European XFEL Undulator Commissioning Spectrometer for the European XFEL FEL Beam Dynamics Group meeting DESY, Hamburg, Nov. 9 th 010 Wolfgang Freund, WP74 European XFEL wolfgang.freund@xfel.eu Contents Undulator commissioning

More information

Some Sample Calculations for the Far Field Harmonic Power and Angular Pattern in LCLS-1 and LCLS-2

Some Sample Calculations for the Far Field Harmonic Power and Angular Pattern in LCLS-1 and LCLS-2 Some Sample Calculations for the Far Field Harmonic Power and Angular Pattern in LCLS-1 and LCLS-2 W.M. Fawley February 2013 SLAC-PUB-15359 ABSTRACT Calculations with the GINGER FEL simulation code are

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Gennady Stupakov DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Research in ARDA Broad expertise in many areas: lattice design, collective effects, electron cloud, beam-beam

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

2.6 Electron transport lines

2.6 Electron transport lines 2.6 Electron transport lines 2.6 Electron transport lines Overview The electron transport lines consist of all of the electron beamline segments that are neither part of the Linacs nor part of the injector.

More information

HARMONIC LASING OPTIONS FOR LCLS-II

HARMONIC LASING OPTIONS FOR LCLS-II MOP54 Proceedings of FEL4, Basel, Switzerland HARMONIC LASING OPTIONS FOR LCLS-II G. Marcus, Y. Ding, Z. Huang, T. Raubenheimer, SLAC, Menlo Park, CA 945, USA G. Penn, LBNL, Berkeley, CA 947, USA Copyright

More information

LCLS Commissioning Status

LCLS Commissioning Status LCLS Commissioning Status Paul Emma (for the LCLS Commissioning Team) June 20, 2008 LCLS ANL LLNL UCLA FEL Principles Electrons slip behind EM wave by λ 1 per undulator period ( (λ u ) x K/γ e λ u v x

More information

MULTI-DIMENSIONAL FREE-ELECTRON LASER SIMULATION CODES: A COMPARISON STUDY *

MULTI-DIMENSIONAL FREE-ELECTRON LASER SIMULATION CODES: A COMPARISON STUDY * SLAC-PUB-9729 April 2003 Presented at 21st International Conference on Free Electron Laser and 6th FEL Applications Workshop (FEL 99, Hamburg, Germany, 23-28 Aug 1999. MULTI-DIMENSIONAL FREE-ELECT LASER

More information

Switchyard design for the Shanghai soft x-ray free electron laser facility

Switchyard design for the Shanghai soft x-ray free electron laser facility Switchyard design for the Shanghai soft x-ray free electron laser facility Gu Duan, Wang Zhen, Huang Dazhang, Gu Qiang, Zhang Meng* Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai,

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim S2E (Start-to-End) Simulations for PAL-FEL Aug. 25 2008 Kyungpook Nat l Univ. Eun-San Kim 1 Contents I Lattice and layout for a 10 GeV linac II Beam parameters and distributions III Pulse-to-pulse stability

More information

STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER

STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER H.P. Freund, 1,2,3 1 Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico USA 2 Department of Electrical

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

MAGNETS AND INSERTION DEVICES FOR THE ESRF II

MAGNETS AND INSERTION DEVICES FOR THE ESRF II MAGNETS AND INSERTION DEVICES FOR THE ESRF II OUTLINE Magnetic design R&D and Magnetic measurements IDs & BM sources Summary J. Chavanne G. Lebec C. Benabderrahmane C.Penel On behalf the accelerator upgrade

More information

Update on and the Issue of Circularly-Polarized On-Axis Harmonics

Update on and the Issue of Circularly-Polarized On-Axis Harmonics Update on FERMI@Elettra and the Issue of Circularly-Polarized On-Axis Harmonics W. Fawley for the FERMI Team Slides courtesy of S. Milton & Collaborators The FERMI@Elettra Project FERMI@Elettra is a single-pass

More information

Transverse Beam Optics of the FLASH Facility

Transverse Beam Optics of the FLASH Facility Transverse Beam Optics of the FLASH Facility ( current status and possible updates ) Nina Golubeva and Vladimir Balandin XFEL Beam Dynamics Group Meeting, 18 June 2007 Outline Different optics solutions

More information

Harmonic Lasing Self-Seeded FEL

Harmonic Lasing Self-Seeded FEL Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov FEL seminar, DESY Hamburg June 21, 2016 In a planar undulator (K ~ 1 or K >1) the odd harmonics can be radiated on-axis (widely used in SR

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

First operation of a Harmonic Lasing Self-Seeded FEL

First operation of a Harmonic Lasing Self-Seeded FEL First operation of a Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov ICFA workshop, Arcidosso, Italy, 22.09.2017 Outline Harmonic lasing Harmonic lasing self-seeded (HLSS) FEL Experiments

More information

Linac optimisation for the New Light Source

Linac optimisation for the New Light Source Linac optimisation for the New Light Source NLS source requirements Electron beam requirements for seeded cascade harmonic generation LINAC optimisation (2BC vs 3 BC) CSR issues energy chirp issues jitter

More information

What limits the gap in a flat dechirper for an X-ray FEL?

What limits the gap in a flat dechirper for an X-ray FEL? What limits the gap in a flat dechirper for an X-ray FEL? LCLS-II TN-13-01 12/9/2013 K.L.F. Bane and G. Stupakov December 9, 2013 LCLSII-TN-13-01 SLAC-PUB-15852 LCLS-II-TN-13-01 December 2013 What limits

More information

COMMISSIONING OF THE DELTA POLARIZING UNDULATOR AT LCLS*

COMMISSIONING OF THE DELTA POLARIZING UNDULATOR AT LCLS* COMMISSIONING OF THE DELTA POLARIZING UNDULATOR AT LCLS* H.-D. Nuhn #, S.D. Anderson, R.N. Coffee, Y. Ding, Z. Huang, M. Ilchen, Y. Levashov, A.A. Lutman, J. MacArthur, A. Marinelli, S.P. Moeller, F. Peters,

More information

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract SLAC PUB 11781 March 26 Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator Z. Huang, G. Stupakov Stanford Linear Accelerator Center, Stanford, CA 9439 S. Reiche University of

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

THE TESLA FREE ELECTRON LASER CONCEPT AND STATUS

THE TESLA FREE ELECTRON LASER CONCEPT AND STATUS THE TESLA FREE ELECTRON LASER CONCEPT AND STATUS J. Rossbach, for the TESLA FEL Collaboration Deutsches Elektronen-Synchrotron, DESY, 603 Hamburg, Germany Abstract The aim of the TESLA Free Electron Laser

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

Beam Echo Effect for Generation of Short Wavelength Radiation

Beam Echo Effect for Generation of Short Wavelength Radiation Beam Echo Effect for Generation of Short Wavelength Radiation G. Stupakov SLAC NAL, Stanford, CA 94309 31st International FEL Conference 2009 Liverpool, UK, August 23-28, 2009 1/31 Outline of the talk

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with ILC Spin Rotator Super B Workshop III Presenter: Jeffrey Smith, Cornell University with Peter Schmid, DESY Peter Tenenbaum and Mark Woodley, SLAC Georg Hoffstaetter and David Sagan, Cornell Based on NLC

More information

Operational Performance of LCLS Beam Instrumentation. Henrik Loos, SLAC BIW 2010, Santa Fe, NM

Operational Performance of LCLS Beam Instrumentation. Henrik Loos, SLAC BIW 2010, Santa Fe, NM Editor's Note: PDF version of slides from Beam Instrumentation Workshop 21, Santa Fe, NM Operational Performance of LCLS Beam Instrumentation Henrik Loos, SLAC BIW 21, Santa Fe, NM BIW 21 1 1 Henrik Loos

More information

Femtosecond and sub-femtosecond x-ray pulses from a SASE-based free-electron laser. Abstract

Femtosecond and sub-femtosecond x-ray pulses from a SASE-based free-electron laser. Abstract SLAC-PUB-12 Femtosecond and sub-femtosecond x-ray pulses from a SASE-based free-electron laser P. Emma, K. Bane, M. Cornacchia, Z. Huang, H. Schlarb, G. Stupakov, and D. Walz Stanford Linear Accelerator

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE

DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE Z. Zhang, K. Bane, Y. Ding, Z. Huang, R. Iverson, T. Maxwell, G. Stupakov, L. Wang SLAC National Accelerator Laboratory, Menlo Park, CA 9425,

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Characterization of an 800 nm SASE FEL at Saturation

Characterization of an 800 nm SASE FEL at Saturation Characterization of an 800 nm SASE FEL at Saturation A.Tremaine*, P. Frigola, A. Murokh, C. Pellegrini, S. Reiche, J. Rosenzweig UCLA, Los Angeles, CA 90095 M. Babzien, I. Ben-Zvi, E. Johnson, R. Malone,

More information

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 Commissioning of PETRA III Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 PETRA III Parameters Circumference (m) Energy (GeV) ε x (nm rad) ε y (pm rad) Current (ma) # bunches Straight

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Artemis Kontogoula Supervisor: Vladyslav Libov September 7, 2017 National & Kapodistrian University of Athens, Greece Deutsches Elektronen-Synchrotron

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

LCLS-II Beam Stay-Clear

LCLS-II Beam Stay-Clear LCLSII-TN-14-15 LCLS-II Beam Stay-Clear J. Welch January 23, 2015 1 Introduction This note addresses the theory and details that go into the Beam Stay-Clear (BSC) requirements for LCLS-II [1]. At a minimum

More information

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use.

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use. 1. Introduction The XTOD Offset Systems are designed to spatially separate the useful FEL radiation from high-energy spontaneous radiation and Bremsstrahlung γ-rays. These unwanted radiations are generated

More information

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Marty Zwikel Department of Physics, Grinnell College, Grinnell, IA, 50 Abstract Free

More information

Studies of Emittance Bumps and Adaptive Alignment method for ILC Main Linac

Studies of Emittance Bumps and Adaptive Alignment method for ILC Main Linac Studies of Emittance Bumps and Adaptive Alignment method for ILC Main Linac Nikolay Solyak #, Kirti Ranjan, Valentin Ivanov, Shekhar Mishra Fermilab 22-nd Particle Accelerator Conference, Albuquerque,

More information

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team Diagnostics at the MAX IV 3 GeV storage ring during commissioning PPT-mall 2 Åke Andersson On behalf of the MAX IV team IBIC Med 2016, linje Barcelona Outline MAX IV facility overview Linac injector mode

More information

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory Chris Melton SLAC Accelerator Operations FACET Tuning And Diagnostics What is FACET? FACET Performance Challenges

More information

IP switch and big bend

IP switch and big bend 1 IP switch and big bend Contents 1.1 Introduction..................................................... 618 1.2 TheIPSwitch.................................................... 618 1.2.1 OpticsDesign...............................................

More information

Towards a Low Emittance X-ray FEL at PSI

Towards a Low Emittance X-ray FEL at PSI Towards a Low Emittance X-ray FEL at PSI A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald,

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Transverse Coherence Properties of the LCLS X-ray Beam

Transverse Coherence Properties of the LCLS X-ray Beam LCLS-TN-06-13 Transverse Coherence Properties of the LCLS X-ray Beam S. Reiche, UCLA, Los Angeles, CA 90095, USA October 31, 2006 Abstract Self-amplifying spontaneous radiation free-electron lasers, such

More information

An Adventure in Marrying Laser Arts and Accelerator Technologies

An Adventure in Marrying Laser Arts and Accelerator Technologies An Adventure in Marrying Laser Arts and Accelerator Technologies Dao Xiang Beam Physics Dept, SLAC, Stanford University Feb-28-2012 An example sample Probe (electron) Pump (laser) Typical pump-probe experiment

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation)

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation) Laser Laser HHG Diagnostic ATHOS PORTHOS ARAMIS THz-Pump P A U L S C H E R R E R I N S T I T U T Length of beam system = 910m &'!( Test & Commissioning steps (A,B,C) A11 Conv. Gun & Injector A12 LINAC

More information

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV 26/11/2014 European Synchrotron Light Source Workshop XXII 1 Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV F. Cullinan, R. Nagaoka (SOLEIL, St. Aubin, France) D. Olsson, G.

More information

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector. Abstract

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector. Abstract SLAC PUB 14534 September 2011 Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector Y. Ding 1, C. Behrens 2, P. Emma 1, J. Frisch 1, Z. Huang 1, H. Loos

More information

Accelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University

Accelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University Accelerator R&D Opportunities: Sources and Linac D. Rubin, Cornell University Electron and positron sources Requirements Status of R&D Linac Modeling of beam dynamics Development of diagnostic and tuning

More information

Analysis of FEL Performance Using Brightness Scaled Variables

Analysis of FEL Performance Using Brightness Scaled Variables Analysis of FEL Performance Using Brightness Scaled Variables Michael Gullans with G. Penn, J. Wurtele, and M. Zolotorev Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Outline Introduce brightness

More information

Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator. Abstract

Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator. Abstract SLAC PUB 10694 August 2004 Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator Z. Huang Stanford Linear Accelerator Center, Menlo Park, CA 94025 S. Reiche UCLA,

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

5 Undulators for SASE and spontaneous emission

5 Undulators for SASE and spontaneous emission 5 Undulators for SASE and spontaneous emission 5.1 Overview 5.1.1 Principles of XFEL operation The free-electron laser (FEL) consists of a relativistic electron beam and a radiation field interacting with

More information