The need for complex dynamic models

Size: px
Start display at page:

Download "The need for complex dynamic models"

Transcription

1 School of Compuer Sciece Probabilisic Graphical Models Complex Graphical Models Eric ig Lecure 5, Ocober 28, 2009 Readig: Eric CMU, The eed for complex dyamic models Complex dyamic sysems: No-lieariy No-Gaussiaiy Muli-modaliy Limiaio of LDS xˆ ˆ + + = x+ + K+ y+ Cxˆ + P + + = P + KCP + defies oly lieariy evolvig, uimodal, ad Gaussia belief saes Kalma filer will predic he locaio of he bird usig a sigle Gaussia ceered o he obsacle. more realisic model allows for he bird s evasive acio, predicig ha i will fly o oe side or he oher. Eric CMU,

2 Represeig complex dyamic processes The problem wih HMMs Suppose we wa o rack he sae e.g., he posiio of D objecs i a image sequece. Le each objec be i K possible saes. The =,, D ca have K D possible values. Iferece akes ime ad space. P - eed parameers o specify. Eric CMU, Dyamic Bayesia Nework DBN represes he sae of he world a ime usig a se of radom variables,,, D facored/ disribued represeaio. DBN represes P - i a compac way usig a parameerized graph. DBN may have expoeially fewer parameers ha is correspodig HMM. Iferece i a DBN may be expoeially faser ha i he correspodig HMM. Eric CMU,

3 DBNs are a kid of graphical model I a graphical model, odes represe radom variables, ad lack of arcs represes codiioal idepedecies. DBNs are Bayes es for dyamic processes. Iformally, a arc from i o + j meas i "causes" j. Ca "resolve" cycles i a "saic" BN Eric CMU, road map o complex dyamic models discree Y discree Y coiuous Y discree coiuous coiuous Mixure model e.g., mixure of muliomials Mixure model e.g., mixure of Gaussias Facor aalysis y y 2 y 3 y N y y 2 y 3 y N y y 2 y 3 y N x x 2 x 3 x N x x 2 x 3 x N x x 2 x 3 HMM HMM for discree sequeial daa, e.g., ex for coiuous sequeial daa, e.g., speech sigal x N Sae space model S S 2 S 3 S N S S 2 S 3 S N y y 2 y 3 y N y y 2 y 3 y N Facorial HMM y k y k2 y k3 y kn Swichig SSM y k y k2 y k3 y kn x x 2 x 3 x N x x 2 x 3 x N Eric CMU,

4 HMM varias represeed as DBNs The same code sadard forward-backward, vierbi, ad Baum-Welsh ca do iferece ad learig i all of hese models. Eric CMU, Facorial HMM The belief sae a each ime is = {, k Q, K Q } ad i he mos geeral case has a sae space Od k for k d-ary chais The commo observed child Y couples all he pares explaiig away. Bu he parameerizaio cos for fhmm is Okd 2 for k chai-specific i i rasiio models p Q Q, raher ha Od 2k for p Eric CMU,

5 Facorial HMMs vs HMMs Le us compare a facorial HMM wih D chais, each wih K values, o is equivale HMM. Num. parameers o specify HMM: p fhmm: Compuaioal complexiy of exac iferece: HMM fhmm: Eric CMU, Triagulaig fhmm Is he followig riagulaio correc? S S 2 S 3 S N y y k x y 2 y 3 Here is a riagulaio y k2 y k3 x 2 x 3 y N y kn x N? We have creaed cliques of size k+, ad here are OkT of hem. The jucio ree algorihm is o efficie for facorial HMMs. Eric CMU,

6 Special case: swichig HMM The clipper S S 2 S 3 S N Perso y y 2 y 3 y N Perso k y k y k2 y k3 y kn The scee x x 2 x 3 x N Differe chais have differe sae space ad differe semaics The exac calculaio is iracable ad we mus use approximae iferece mehods Eric CMU, Hidde Markov decisio rees Jorda,Ghahramai,&Saul,97 combiaio of decisio rees wih facorial HMMs This gives a "commad srucure" o he facorial represeaio ppropriae for muli-resoluio ime series gai, he exac calculaio is iracable ad we mus use approximae iferece mehods Eric CMU,

7 Recall Sae Space Models SSMs lso kow as liear dyamical sysem, dyamic liear model, Kalma filer model, ec. The Kalma ler ca compue P i Omi{M 3 ;D 2 Y } : operaios per ime sep. Eric CMU, Facored liear-gaussia models produce sparse marices Direced arc from i - o j iff i,j >0 udireced arc bewee i o j iff Σ i,j >0 e.g., cosider a 2-chai facorial SSM wih i i i i i i P = N ;, Q P, 2 2, = Eric CMU,

8 8 Eric CMU, Discree-sae models Facored discree-sae models do NOT produce sparse rasiio marices e.g., cosider a 2-chai facorial HMM,, = P P P Eric CMU, Problems wih SSMs lieariy Gaussiaiy Ui-modaliy

9 Swichig SMM Possible world: muliple moio sae: Task: Trajecory predicio Model: Combiaio of HMM ad SSM p = x = x, S = i = N x ; x p Y = y = x = N ; Cx, R p S = j S = i = M i, j, Q Belief sae has Ok Gaussia modes: i i Eric CMU, Daa associaio correspodece problem Opimal belief sae has Ok modes. Commo o use eares eighbor approximaio. For each ime slice, ca eforce ha a mos oe source causes each observaio Correspodece problem also arises i shape machig ad sereo visio. Eric CMU,

10 Kids of iferece for DBNs Eric CMU, Complexiy of iferece i DBN Eve wih local coeciviy, everyhig becomes correlaed due o shared commo iflueces i he pas. E.g. coupled HMM chmm Eve hough CHMMs are sparse, all odes eveually become correlaed, so P y : has size O2 N. Eric CMU,

11 Jucio ree for coupled HMMs Cliques form a froier ha sakes from o. Eric CMU, pproximae Filerig May possible represeaios for belief sae α P Y : : Discree disribuio hisogram Gaussia Mixure of Gaussias Se of samples paricles Eric CMU,

12 Belief sae = discree disribuio Discree disribuio is o-parameric flexible, bu iracable. Oly cosider k mos probable values --- Beam search. pproximae joi as produc of facors DF/BK approximaio α ~ α = C i= P i Y : Eric CMU, Example: ssumed desiy filerig DF DF forces he belief sae o live i some resriced family F, e.g., produc of hisograms, Gaussia. Give a prior ~ α F, do oe sep of exac Bayesia updaig o ge αˆ F. The do a projecio sep o fid he closes approximaio i he family: ~ α arg mi KL q α q F The Boye-Koller BK algorihm is DF applied o a DBN e.g., le F be a produc of sigleo margials: This is also a variaioal mehod, ad he updaig sep ca sill be iracable Eric CMU,

13 pproximae smoohig off-lie Two-ler smoohig Loopy belief propagaio Variaioal mehods Gibbs samplig Ca combie exac ad approximae mehods Used as a subrouie for learig Eric CMU, NLP ad Daa Miig We wa: Semaic-based search ifer opics ad caegorize documes Mulimedia iferece uomaic raslaio Predic how opics evolve Research opics Eric CMU,

14 The Vecor Space Model Represe each docume by a high-dimesioal vecor i he space of words Eric CMU, Lae Semaic Idexig Docume Term = * * m x T m x k r w= K k= r d k λ T k Λ k x k k D T k x LS does o defie a properly ormalized probabiliy disribuio of observed ad lae eiies Does o suppor probabilisic reasoig uder uceraiy ad daa fusio Eric CMU,

15 moey bak bak loa river2 sream2 bak moey river2 bak moey bak loa moey sream2 bak moey bak bak loa river2 sream2 bak moey river2 bak moey bak loa bak moey sream2 moey bak bak loa river2 sream2 bak moey river2 bak moey bak loa moey sream2 bak moey bak bak loa river2 sream2 bak moey river2 bak moey bak loa bak moey sream2 moey bak bak loa river2 sream2 bak moey river2 bak moey bak loa moey sream2 bak moey bak bak loa river2 sream2 bak moey river2 bak moey bak loa bak moey sream2 moey bak bak loa river2 sream2 bak moey river2 bak moey bak loa moey sream2 bak moey bak bak loa river2 sream2 bak moey river2 bak moey bak loa bak moey sream2 Lae Semaic Srucure Lae Srucure l Disribuio over words P w = P w,l l Words w Iferrig lae srucure Pw l P l P l w = Pw Predicio P w = w + Eric CMU, dmixure Models Objecs are bags of elemes Mixures are disribuios over elemes Objecs have mixig vecor θ Represes each mixures coribuios Objec is geeraed as follows: Pick a mixure compoe from θ Pick a eleme from ha compoe Eric CMU,

16 Topic Models =dmixure Models Geeraig a docume Draw θ from he prior For each word - Draw - Draw z from muliomia l w z, θ { β } from muliomia l β : k z Prior θ z Which prior o use? β K w N d N Eric CMU, Choice of Prior Dirichle LD Blei e al Cojugae prior meas efficie iferece Ca oly capure variaios i each opic s iesiy idepedely Logisic Normal CTM=LoNTM Blei & Laffery 2005, hmed & ig 2006 Capure he iuiio ha some opics are highly correlaed ad ca rise up i iesiy ogeher No a cojugae prior implies hard iferece Eric CMU,

17 Logisic Normal Vs. Dirichle Dirichle Eric CMU, Logisic Normal Vs. Dirichle Logisic Normal Eric CMU,

18 Mixed Membership Model M 3 Mixure versus admixure Bayesia mixure model Bayesia admixure model: Mixed membership model Eric CMU, Lae Dirichle llocaio: M 3 i ex miig docume is a bag of words each geeraed from a radomly seleced opic Eric CMU,

19 9 Eric CMU, Populaio admixure: M 3 i geeics The geeic maerials of each moder idividual are iheried from muliple acesral populaios, each DN locus may have a differe geeric origi cesral labels may have e.g., Markovia depedecies Eric CMU, Iferece i Mixed Membership Models Mixure versus admixure Iferece is very hard i M 3, all hidde variables are coupled ad o facorizable! = } {,,, m z N m m z m d d d G p p z p x p D p φ π π φ α π π φ L L } {,,, ~ m z i m m z m d d G p p z p x p D p φ π φ α π π φ π

20 pproaches o iferece Exac iferece algorihms The elimiaio algorihm The jucio ree algorihms pproximae iferece echiques Moe Carlo algorihms: Sochasic simulaio / samplig mehods Markov chai Moe Carlo mehods Variaioal algorihms: Belief propagaio Variaioal iferece Eric CMU,

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Review Answers for E&CE 700T02

Review Answers for E&CE 700T02 Review Aswers for E&CE 700T0 . Deermie he curre soluio, all possible direcios, ad sepsizes wheher improvig or o for he simple able below: 4 b ma c 0 0 0-4 6 0 - B N B N ^0 0 0 curre sol =, = Ch for - -

More information

Generalized Linear Models + Learning Fully Observed Bayes Nets

Generalized Linear Models + Learning Fully Observed Bayes Nets School of Compuer Sciece 0-708 Probabilisic Graphical Moels Geeralize Liear Moels + Learig Full Observe Baes Nes Reaigs: KF Chap. 7 Jora Chap. 8 Jora Chap. 9. 9. Ma Gormle Lecure 5 Jauar 7, 06 Machie Learig

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

6.01: Introduction to EECS I Lecture 3 February 15, 2011

6.01: Introduction to EECS I Lecture 3 February 15, 2011 6.01: Iroducio o EECS I Lecure 3 February 15, 2011 6.01: Iroducio o EECS I Sigals ad Sysems Module 1 Summary: Sofware Egieerig Focused o absracio ad modulariy i sofware egieerig. Topics: procedures, daa

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

O & M Cost O & M Cost

O & M Cost O & M Cost 5/5/008 Turbie Reliabiliy, Maieace ad Faul Deecio Zhe Sog, Adrew Kusiak 39 Seamas Ceer Iowa Ciy, Iowa 54-57 adrew-kusiak@uiowa.edu Tel: 39-335-5934 Fax: 39-335-5669 hp://www.icae.uiowa.edu/~akusiak Oulie

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

A Probabilistic Nearest Neighbor Filter for m Validated Measurements.

A Probabilistic Nearest Neighbor Filter for m Validated Measurements. A Probabilisic Neares Neighbor iler for m Validaed Measuremes. ae Lyul Sog ad Sag Ji Shi ep. of Corol ad Isrumeaio Egieerig, Hayag Uiversiy, Sa-og 7, Asa, Kyuggi-do, 45-79, Korea Absrac - he simples approach

More information

Conditional Probability and Conditional Expectation

Conditional Probability and Conditional Expectation Hadou #8 for B902308 prig 2002 lecure dae: 3/06/2002 Codiioal Probabiliy ad Codiioal Epecaio uppose X ad Y are wo radom variables The codiioal probabiliy of Y y give X is } { }, { } { X P X y Y P X y Y

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

A Two-Level Quantum Analysis of ERP Data for Mock-Interrogation Trials. Michael Schillaci Jennifer Vendemia Robert Buzan Eric Green

A Two-Level Quantum Analysis of ERP Data for Mock-Interrogation Trials. Michael Schillaci Jennifer Vendemia Robert Buzan Eric Green A Two-Level Quaum Aalysis of ERP Daa for Mock-Ierrogaio Trials Michael Schillaci Jeifer Vedemia Rober Buza Eric Gree Oulie Experimeal Paradigm 4 Low Workload; Sigle Sessio; 39 8 High Workload; Muliple

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

BAYESIAN ESTIMATION METHOD FOR PARAMETER OF EPIDEMIC SIR REED-FROST MODEL. Puji Kurniawan M

BAYESIAN ESTIMATION METHOD FOR PARAMETER OF EPIDEMIC SIR REED-FROST MODEL. Puji Kurniawan M BAYESAN ESTMATON METHOD FOR PARAMETER OF EPDEMC SR REED-FROST MODEL Puji Kuriawa M447 ABSTRACT. fecious diseases is a impora healh problem i he mos of couries, belogig o doesia. Some of ifecious diseases

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

Localization. MEM456/800 Localization: Bayes Filter. Week 4 Ani Hsieh

Localization. MEM456/800 Localization: Bayes Filter. Week 4 Ani Hsieh Localiaio MEM456/800 Localiaio: Baes Filer Where am I? Week 4 i Hsieh Evirome Sesors cuaors Sofware Ucerai is Everwhere Level of ucerai deeds o he alicaio How do we hadle ucerai? Eamle roblem Esimaig a

More information

AdaBoost. AdaBoost: Introduction

AdaBoost. AdaBoost: Introduction Slides modified from: MLSS 03: Guar Räsch, Iroducio o Boosig hp://www.boosig.org : Iroducio 2 Classifiers Supervised Classifiers Liear Classifiers Percepro, Leas Squares Mehods Liear SVM Noliear Classifiers

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

July 24-25, Overview. Why the Reliability Issue is Important? Some Well-known Reliability Measures. Weibull and lognormal Probability Plots

July 24-25, Overview. Why the Reliability Issue is Important? Some Well-known Reliability Measures. Weibull and lognormal Probability Plots Par I: July 24-25, 204 Overview Why he Reliabiliy Issue is Impora? Reliabiliy Daa Paer Some Well-kow Reliabiliy Measures Weibull ad logormal Probabiliy Plos Maximum Likelihood Esimaor 2 Wha is Reliabiliy?

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Probabilisic reasoning over ime So far, we ve mosly deal wih episodic environmens Excepions: games wih muliple moves, planning In paricular, he Bayesian neworks we ve seen so far describe

More information

Statistical Estimation

Statistical Estimation Learig Objecives Cofidece Levels, Iervals ad T-es Kow he differece bewee poi ad ierval esimaio. Esimae a populaio mea from a sample mea f large sample sizes. Esimae a populaio mea from a sample mea f small

More information

Development of Kalman Filter and Analogs Schemes to Improve Numerical Weather Predictions

Development of Kalman Filter and Analogs Schemes to Improve Numerical Weather Predictions Developme of Kalma Filer ad Aalogs Schemes o Improve Numerical Weaher Predicios Luca Delle Moache *, Aimé Fourier, Yubao Liu, Gregory Roux, ad Thomas Warer (NCAR) Thomas Nipe, ad Rolad Sull (UBC) Wid Eergy

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Commuicaio heory 7. Represeaio of Digially Modulaed Sigals II Z. Aliyazicioglu Elecrical ad Compuer Egieerig Deparme Cal Poly Pomoa Represeaio of Digial Modulaio wih Memory Liear Digial Modulaio

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Priciples of Commuicaios Lecure : Sigals ad Sysems Chih-Wei Liu 劉志尉 Naioal Chiao ug Uiversiy cwliu@wis.ee.cu.edu.w Oulies Sigal Models & Classificaios Sigal Space & Orhogoal Basis Fourier Series &rasform

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Introduction to Mobile Robotics Mapping with Known Poses

Introduction to Mobile Robotics Mapping with Known Poses Iroducio o Mobile Roboics Mappig wih Kow Poses Wolfra Burgard Cyrill Sachiss Mare Beewi Kai Arras Why Mappig? Learig aps is oe of he fudaeal probles i obile roboics Maps allow robos o efficiely carry ou

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables Available olie a wwwsciecedireccom ScieceDirec Procedia - Social ad Behavioral Scieces 30 ( 016 ) 35 39 3 rd Ieraioal Coferece o New Challeges i Maageme ad Orgaizaio: Orgaizaio ad Leadership, May 016,

More information

Learning in the Deep-Structured Conditional Random Fields

Learning in the Deep-Structured Conditional Random Fields Learig i he Deep-Srucured Codiioal Radom Fields Dog Yu, Li Deg Shizhe Wag Microsof Research Uiversiy of Califoria Oe Microsof Way 405 Hilgard Aveue Redmod, WA 9805 Los Ageles, CA 90095 {dogyu, deg}@microsof.com

More information

Manipulations involving the signal amplitude (dependent variable).

Manipulations involving the signal amplitude (dependent variable). Oulie Maipulaio of discree ime sigals: Maipulaios ivolvig he idepede variable : Shifed i ime Operaios. Foldig, reflecio or ime reversal. Time Scalig. Maipulaios ivolvig he sigal ampliude (depede variable).

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Sigals ad Sysems Lecure 8 March 2, 2010 6.003: Sigals ad Sysems Mid-erm Examiaio #1 Tomorrow, Wedesday, March 3, 7:30-9:30pm. No reciaios omorrow. Coverage: Represeaios of CT ad DT Sysems Lecures

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

Analysis of Using a Hybrid Neural Network Forecast Model to Study Annual Precipitation

Analysis of Using a Hybrid Neural Network Forecast Model to Study Annual Precipitation Aalysis of Usig a Hybrid Neural Nework Forecas Model o Sudy Aual Precipiaio Li MA, 2, 3, Xuelia LI, 2, Ji Wag, 2 Jiagsu Egieerig Ceer of Nework Moiorig, Najig Uiversiy of Iformaio Sciece & Techology, Najig

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LDA, logisic

More information

CSE 202: Design and Analysis of Algorithms Lecture 16

CSE 202: Design and Analysis of Algorithms Lecture 16 CSE 202: Desig ad Aalysis of Algorihms Lecure 16 Isrucor: Kamalia Chaudhuri Iequaliy 1: Marov s Iequaliy Pr(X=x) Pr(X >= a) 0 x a If X is a radom variable which aes o-egaive values, ad a > 0, he Pr[X a]

More information

Affine term structure models

Affine term structure models /5/07 Affie erm srucure models A. Iro o Gaussia affie erm srucure models B. Esimaio by miimum chi square (Hamilo ad Wu) C. Esimaio by OLS (Adria, Moech, ad Crump) D. Dyamic Nelso-Siegel model (Chrisese,

More information

Clock Skew and Signal Representation

Clock Skew and Signal Representation Clock Skew ad Sigal Represeaio Ch. 7 IBM Power 4 Chip 0/7/004 08 frequecy domai Program Iroducio ad moivaio Sequeial circuis, clock imig, Basic ools for frequecy domai aalysis Fourier series sigal represeaio

More information

Available online at ScienceDirect. Procedia Computer Science 103 (2017 ) 67 74

Available online at   ScienceDirect. Procedia Computer Science 103 (2017 ) 67 74 Available olie a www.sciecedirec.com ScieceDirec Procedia Compuer Sciece 03 (07 67 74 XIIh Ieraioal Symposium «Iellige Sysems» INELS 6 5-7 Ocober 06 Moscow Russia Real-ime aerodyamic parameer ideificaio

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

Discrete-Time Signals and Systems. Introduction to Digital Signal Processing. Independent Variable. What is a Signal? What is a System?

Discrete-Time Signals and Systems. Introduction to Digital Signal Processing. Independent Variable. What is a Signal? What is a System? Discree-Time Sigals ad Sysems Iroducio o Digial Sigal Processig Professor Deepa Kudur Uiversiy of Toroo Referece: Secios. -.4 of Joh G. Proakis ad Dimiris G. Maolakis, Digial Sigal Processig: Priciples,

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

Time Series, Part 1 Content Literature

Time Series, Part 1 Content Literature Time Series, Par Coe - Saioariy, auocorrelaio, parial auocorrelaio, removal of osaioary compoes, idepedece es for ime series - Liear Sochasic Processes: auoregressive (AR), movig average (MA), auoregressive

More information

Approximate Message Passing with Consistent Parameter Estimation and Applications to Sparse Learning

Approximate Message Passing with Consistent Parameter Estimation and Applications to Sparse Learning Approximae Message Passig wih Cosise Parameer Esimaio ad Applicaios o Sparse Learig Ulugbek S. Kamilov EPFL ulugbek.kamilov@epfl.ch Sudeep Raga Polyechic Isiue of New York Uiversiy sraga@poly.edu Alyso

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Temporal probability models

Temporal probability models Temporal probabiliy models CS194-10 Fall 2011 Lecure 25 CS194-10 Fall 2011 Lecure 25 1 Ouline Hidden variables Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

Hough search for continuous gravitational waves using LIGO S4 data

Hough search for continuous gravitational waves using LIGO S4 data Hough search for coiuous graviaioal waves usig LIGO S4 daa A.M. Sies for he LIGO Scieific Collaboraio Uiversia de les Illes Balears, Spai Alber Eisei Isiu, Germay MG11, GW4- GW daa Aalysis Berli - July

More information

Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds. Proceedigs of he 2015 Wier Simulaio Coferece L. Yilmaz, W. K. V. Cha, I. Moo, T. M. K. Roeder, C. Macal, ad M. D. Rossei, eds. WEAVING MULTI-AGENT MODELING AND BIG DATA FOR STOCHASTIC PROCESS INFERENCE

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LTU, decision

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

State and Parameter Estimation of The Lorenz System In Existence of Colored Noise

State and Parameter Estimation of The Lorenz System In Existence of Colored Noise Sae ad Parameer Esimaio of he Lorez Sysem I Eisece of Colored Noise Mozhga Mombeii a Hamid Khaloozadeh b a Elecrical Corol ad Sysem Egieerig Researcher of Isiue for Research i Fudameal Scieces (IPM ehra

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S.

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S. Sochasic Processes Adoped From p Chaper 9 Probabiliy, adom Variables ad Sochasic Processes, 4h Ediio A. Papoulis ad S. Pillai 9. Sochasic Processes Iroducio Le deoe he radom oucome of a experime. To every

More information

Stochastic filtering for diffusion processes with level crossings

Stochastic filtering for diffusion processes with level crossings 1 Sochasic filerig for diffusio processes wih level crossigs Agosio Cappoi, Ibrahim Fakulli, ad Lig Shi Absrac We provide a geeral framework for compuig he sae desiy of a oisy sysem give he sequece of

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

1.225J J (ESD 205) Transportation Flow Systems

1.225J J (ESD 205) Transportation Flow Systems .5J J ESD 5 Trasporaio Flow Sysems Lecre 3 Modelig Road Traffic Flow o a Li Prof. Ismail Chabii ad Prof. Amedeo Odoi Lecre 3 Olie Time-Space Diagrams ad Traffic Flow Variables Irodcio o Li Performace Models

More information

Parameter Estimation of a Class of Hidden Markov Model with Diagnostics

Parameter Estimation of a Class of Hidden Markov Model with Diagnostics Joural of oder Applied Saisical ehods Volume Issue Aricle 5--3 Parameer Esimaio of a Class of Hidde arkov odel wih Diagosics E. B. Nkemole Uiversiy of Lagos, Nigeria, Africa O. Abass Uiversiy of Lagos,

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

The Innovations Algorithm and Parameter Driven Models

The Innovations Algorithm and Parameter Driven Models he Iovaios Algorihm ad Parameer Drive Models Richard A. Davis Colorado Sae Uiversi hp://www.sa.colosae.edu/~rdavis/lecures Joi work wih: William Dusmuir Uiversi of New Souh Wales Gabriel Rodriguez-Yam

More information

MANY-SERVER QUEUES WITH CUSTOMER ABANDONMENT: A SURVEY OF DIFFUSION AND FLUID APPROXIMATIONS

MANY-SERVER QUEUES WITH CUSTOMER ABANDONMENT: A SURVEY OF DIFFUSION AND FLUID APPROXIMATIONS J Sys Sci Sys Eg (Mar 212) 21(1): 1-36 DOI: 1.17/s11518-12-5189-y ISSN: 14-3756 (Paper) 1861-9576 (Olie) CN11-2983/N MANY-SERVER QUEUES WITH CUSTOMER ABANDONMENT: A SURVEY OF DIFFUSION AND FLUID APPROXIMATIONS

More information

Prediction of Rockfall Trajectories

Prediction of Rockfall Trajectories 9 85 65 6 55 5 45 5 5 5 3 35 4 45 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Predicio of Rockfall Trajecories Predicio of Rockfall Trajecories Framework Basic feaures of compuer codes Example of rajecory

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

IMPROVED VEHICLE PARAMETER ESTIMATION USING SENSOR FUSION BY KALMAN FILTERING

IMPROVED VEHICLE PARAMETER ESTIMATION USING SENSOR FUSION BY KALMAN FILTERING XIX IMEKO World Cogress Fudameal ad pplied Merology Sepember 6, 009, Lisbo, Porugal IMPROVED VEHICLE PRMETER ESTIMTION USING SENSOR FUSION Y KLMN FILTERING Eri Seimez, Rage Emardso, Per Jarlemar 3 SP Techical

More information

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12 Iroducio o sellar reacio raes Nuclear reacios geerae eergy creae ew isoopes ad elemes Noaio for sellar raes: p C 3 N C(p,) 3 N The heavier arge ucleus (Lab: arge) he ligher icomig projecile (Lab: beam)

More information

Linear Time Invariant Systems

Linear Time Invariant Systems 1 Liear Time Ivaria Sysems Oulie We will show ha he oupu equals he covoluio bewee he ipu ad he ui impulse respose: sysem for a discree-ime, for a coiuous-ime sysdem, y x h y x h 2 Discree Time LTI Sysems

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Lecture 15: Three-tank Mixing and Lead Poisoning

Lecture 15: Three-tank Mixing and Lead Poisoning Lecure 15: Three-ak Miig ad Lead Poisoig Eigevalues ad eigevecors will be used o fid he soluio of a sysem for ukow fucios ha saisfy differeial equaios The ukow fucios will be wrie as a 1 colum vecor [

More information

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

King Fahd University of Petroleum & Minerals Computer Engineering g Dept Kig Fahd Uiversiy of Peroleum & Mierals Compuer Egieerig g Dep COE 4 Daa ad Compuer Commuicaios erm Dr. shraf S. Hasa Mahmoud Rm -4 Ex. 74 Email: ashraf@kfupm.edu.sa 9/8/ Dr. shraf S. Hasa Mahmoud Lecure

More information

9. Point mode plotting with more than two images 2 hours

9. Point mode plotting with more than two images 2 hours Lecure 9 - - // Cocep Hell/feiffer Februar 9. oi mode ploig wih more ha wo images hours aim: iersecio of more ha wo ras wih orieaed images Theor: Applicaio co lieari equaio 9.. Spaial Resecio ad Iersecio

More information

Adaptive sampling based on the motion

Adaptive sampling based on the motion Adaive samlig based o he moio Soglao, Whoi-Yul Kim School of Elecrical ad Comuer Egieerig Hayag Uiversiy Seoul, Korea 33 79 Email: sliao@visio.hayag.ac.kr wykim@hayag.ac.kr Absrac Moio based adaive samlig

More information

Efficient Sequential Monte Carlo With Multiple Proposals and Control Variates

Efficient Sequential Monte Carlo With Multiple Proposals and Control Variates Efficie Sequeial Moe Carlo Wih Muliple roposals ad Corol Variaes Weao LI, Rog CHE, ad Zhiqiag TA Sequeial Moe Carlo is a useful simulaio-based mehod for olie filerig of sae-space models. For cerai complex

More information

ECE 350 Matlab-Based Project #3

ECE 350 Matlab-Based Project #3 ECE 350 Malab-Based Projec #3 Due Dae: Nov. 26, 2008 Read he aached Malab uorial ad read he help files abou fucio i, subs, sem, bar, sum, aa2. he wrie a sigle Malab M file o complee he followig ask for

More information

Estimation in Gaussian Graphical Models using Tractable Subgraphs: A Walk-Sum Analysis

Estimation in Gaussian Graphical Models using Tractable Subgraphs: A Walk-Sum Analysis 1 Esimaio i Gaussia Graphical Models usig Tracable Subgraphs: A Walk-Sum Aalysis Veka Chadrasekara, Jaso K. Johso, Ala S. Willsky Absrac Graphical models provide a powerful formalism for saisical sigal

More information

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods joural of mulivariae aalysis 57, 175190 (1996) aricle o. 0028 Order Deermiaio for Mulivariae Auoregressive Processes Usig Resamplig Mehods Chaghua Che ad Richard A. Davis* Colorado Sae Uiversiy ad Peer

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

6/10/2014. Definition. Time series Data. Time series Graph. Components of time series. Time series Seasonal. Time series Trend

6/10/2014. Definition. Time series Data. Time series Graph. Components of time series. Time series Seasonal. Time series Trend 6//4 Defiiio Time series Daa A ime series Measures he same pheomeo a equal iervals of ime Time series Graph Compoes of ime series 5 5 5-5 7 Q 7 Q 7 Q 3 7 Q 4 8 Q 8 Q 8 Q 3 8 Q 4 9 Q 9 Q 9 Q 3 9 Q 4 Q Q

More information

MITPress NewMath.cls LAT E X Book Style Size: 7x9 September 27, :04am. Contents

MITPress NewMath.cls LAT E X Book Style Size: 7x9 September 27, :04am. Contents Coes 1 Temporal filers 1 1.1 Modelig sequeces 1 1.2 Temporal filers 3 1.2.1 Temporal Gaussia 5 1.2.2 Temporal derivaives 6 1.2.3 Spaioemporal Gabor filers 8 1.3 Velociy-ued filers 9 Bibliography 13 1

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

Random set tracking and entropy based control applied to distributed sensor networks

Random set tracking and entropy based control applied to distributed sensor networks Radom se rackig ad eropy based corol applied o disribued sesor eworks David Sei, James Wikoskie, Sephe Theophais, Waler Kukliski The MITRE Corporaio, 202 Bedford Road, Burligo, MA 0730 ABSTRACT This paper

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEAR APPROXIMATION OF THE BASELINE RBC MODEL FEBRUARY, 202 Iroducio For f(, y, z ), mulivariable Taylor liear epasio aroud (, yz, ) f (, y, z) f(, y, z) + f (, y, z)( ) + f (, y, z)( y y) + f (, y, z)(

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Mutual Information Based Resource Management Applied to Road Constrained Target Tracking ABSTRACT

Mutual Information Based Resource Management Applied to Road Constrained Target Tracking ABSTRACT Muual Iformaio Based Resource Maageme Applied o Road Cosraied Targe Trackig David ei, eve Theophais, Waler Kukliski, James Wikoskie, ad Mike Oero The MITRE Corporaio M/ E5 Burligo Road Bedford, MA 73-4

More information

Local Influence Diagnostics of Replicated Data with Measurement Errors

Local Influence Diagnostics of Replicated Data with Measurement Errors ISSN 76-7659 Eglad UK Joural of Iformaio ad Compuig Sciece Vol. No. 8 pp.7-8 Local Ifluece Diagosics of Replicaed Daa wih Measureme Errors Jigig Lu Hairog Li Chuzheg Cao School of Mahemaics ad Saisics

More information