Primary Objectives. Content Standards (CCSS) Mathematical Practices (CCMP) Materials. Before Beginning

Size: px
Start display at page:

Download "Primary Objectives. Content Standards (CCSS) Mathematical Practices (CCMP) Materials. Before Beginning"

Transcription

1 THE FALL OF JAVERT Could Inspector Javert have survived the fall? Mathalicious 2013 lesson guide At the end of the popular musical Les Misérables, a dejected Inspector Javert throws himself off a bridge and into the River Seine. As he falls, he sings and sings and sings. According to the song, he falls for a full eight seconds! In this lesson students use quadratic functions and information about how objects fall (i.e. gravity) to determine how high Javert s bridge must have been. Then, they use linear functions to figure out how fast he was traveling when he hit the water, and whether we can believe anything that Broadway says er, sings. Primary Objectives Model the motion of a falling object with a quadratic function Use the duration of Javert s fall to determine how far he fell Develop a (linear) model for speed vs. time Determine Javert s speed when he hit the water, and discuss whether or not he could have survived Content Standards (CCSS) Mathematical Practices (CCMP) Materials Algebra Functions CED.1 BF.1a, IF.6, IF.7a MP.3, MP.4 Student handout LCD projector Computer speakers Before Beginning Students should be able to distinguish between linear functions (e.g. y = 2x + 4) and non- linear functions (e.g. y = x 2 ). They should also have experience graphing linear functions.

2 2 Preview & Guiding Questions Students listen to a song from the musical Les Misérables in which the French police officer Javert commits suicide by jumping off a Parisian bridge. As he falls, he sings one final note. Have students estimate the length of this note; the answer is around eight seconds. Next, students need to realize that eight seconds is a long time to fall. You can try to give them a feel for what s reasonable by asking them how long they think it would take to fall a certain distance, or how far they think they would fall in a certain amount of time. Once they believe that eight seconds seems fairly long, ask them what this must mean about the bridge Javert fell from. The answer: it must be really tall. But just how tall, exactly? This is where the main lesson begins. Note: In case you (or your students) wonder why Javert jumped off the bridge in the first place, when the show opens, Javert is a jailor and enemy of the prisoner Jean Valjean. After serving 19 years for stealing bread, Valjean is released. Many years later, during the Paris Uprising, revolutionaries sentence Javert to death and Jean Valjean offers to take him outside and shoot him. But instead, Jean Valjean fires his gun into the air and tells Javert to flee. Javert, however, is unwilling to live in the debt of a thief, and so he finds a bridge and takes his life. Around how long is Javert s final note? Does it seem like Javert fell for a long time, or a short amount of time? How long do you think you could hold a note if you fell one foot? Ten feet? How long do you think you d fall in one second? Two seconds? How tall do you think the bridge must have been? Act One In Act One, students watch an animation of three objects falling and graph the data. They use this to predict the distances fallen after 4 and 5 seconds, and they use their reasoning to determine the height of Inspector Javert s bridge. The big takeaway here is that the distances objects fall can be modeled with quadratic functions. Using this model, students discover that in order for Javert to have sung for eight seconds as he fell, the bridge must have been around 1024 feet high, which is absurd. (To put this in perspective, the height of the Eiffel Tower is 1063 feet, while the height of the Golden Gate Bridge in San Francisco is only 220 feet.) Act Two In Act One students focused on distance as a function of time, d(t). In Act Two they ll look at speed as a function of time, s(t). While this is often taught in physics classes and can involve calculus, we can actually begin to explore speed using basic algebra. And that s exactly what students will do here. By looking at how far an object falls each second, students will compute average speeds over one- second intervals, and will compare these results to the continuous speed function s(t) = 32t (measured in feet per second). They can then use this equation to calculate Javert s speed when he hit the water and make a determination about whether or not the fall could ve actually taken his life.

3 3 Acte Une: Le Misérable 1 You can predict how far a body a basketball, anvil, etc. will fall over time. Ignoring air resistance, after one second a body will have fallen 16 feet; after two seconds, 64 feet; after three seconds, 144 feet. Plot the data below. How far will a body have fallen after four seconds? Five seconds? Distance (ft) ] 400 ] Method 1: Time 0 s 1 s 2 s 3 s 4 s 5 s Distance 0 ft 16 ft 64 ft 144 ft 256 ft 400 ft ] 1 st difference nd difference ] 16 ] Time (s) Method 2: 0, 16, 64, and 144 are all perfect squares: 0 2, 4 2, 8 2, and Continuing this pattern, the next two distances should be 16 2 = 256 ft after 4 seconds, and 20 2 = 400 ft after 5 seconds. As you can see, a falling object will fall farther and farther with each second. This means that it isn t falling at a constant rate. This should naturally lead students to wonder, How much farther is it falling each second? This is a great question, and is an important first step in figuring out how far an object will fall after any amount of time. To answer it, students might first figure out how far an object travels during each one- second interval 16 feet during the first second, 48 feet during the second second (no pun intended), and so on. From here, you can ask them how much farther an object travels each second. The goal is to get students to realize that the distance an object travels each second keeps increasing by 32 feet (from 16 to 48 feet between the first and second seconds, then from 48 to 80 feet between the second and third). Students can continue this pattern to plot the other points. Note: some may notice that all the distances are perfect squares, and continue the pattern based on this fact. Does an object travel the same distance during each one- second interval? Since the change in distance is not constant, what does this mean about the function? Can it be linear? How far does the object travel during each one- second interval? How much farther does the object travel during each one- second interval? Do you notice anything about the types of numbers that show up as distances? Continuing your pattern, what will happens after four seconds? Five? Why isn t the distance an object falls in a second the same from one second to the next? (Gravity is always pulling the object down, and when you pull on something in the direction it s moving, it will move faster.) In most situations, do you think all objects really fall at the same rate? (No. Because of air resistance, some objects (e.g. a feather) will typically fall more slowly than others (e.g. a piano).)

4 4 2 Write an equation to predict how far an object will have fallen after t seconds. After 1 second, an object has fallen 4 2 feet. After 2 seconds, 8 2 feet. 3 seconds: 12 2 feet. To get the distance, we can multiply the time by 4, then square the product. In other words, let t = time object has fallen in seconds, d = distance in feet. Then d = (4t) 2, d = 16t 2. If students haven t yet realized it, now s the time to make sure they see that the distances they ve plotted are all perfect squares. It will make coming up with the equation much easier. Once they see this pattern, have them rewrite the distances as squares (16 = 4 2, 64 = 8 2, 144 = 12 2 ). The rule for finding distance then becomes much clearer: to find the distance an object has fallen, we take the time, multiply it by four, and square the result. Students need to be careful with the order of operations when writing down their functions. Some may write down the equation d = 4t 2 instead of d = (4t) 2. After coming up with their equations, be sure that they check their work by comparing values from their table to values that come out of their equation. What do you notice about the total distances traveled after each second: 0 ft, 16 ft, 64 ft, 144 ft? What are the distances if you write them as squares? What s a rule that takes 1 to 4 2, 2 to 8 2, 3 to 12 2, etc.? Based on your rule, how far will an object have traveled after t seconds? Does your equation give you the correct distances for t = 0, 1, 2, 3, 4, and 5? What s the difference between 4t 2 and (4t) 2? Can you write an equation to predict how long it will take an object to fall a distance d? (t = d/4.) If you double the length of time an object falls, what happens to the distance it travels? (It quadruples. If d = 16t 2 and we double t, then 16(2t) 2 = 16(4t 2 ) = 64t 2 = 4d.) How long would an object have fallen after a minute, and do you think this is reasonable? (Based on the equation, the object will have fallen 57,600 feet, or over 10 miles. This seems pretty far even airplanes don t fly that high into the sky, and it would take more than a minute to fall from one! The issue here is that we ve ignored air resistance, which will cause an object to fall more slowly than our model suggests.)

5 5 3 In Les Misérables, the officer Javert is searching for his former prisoner, Valjean, during an uprising in early 19 th century Paris. After failing to capture Valjean, he stands on the edge of a bridge and jumps into the river below. a. Listen to Javert sing as he falls. Based on the length of his note, how high must the bridge have been, and does this seem reasonable? b. Estimate the height of a bridge in 19 th century Paris. Based on this, how long should Javert s fall have taken? Javert falls for around 8 seconds. This means the bridge must have been 16(8) 2 = 1,024 feet tall. A building story is around 10 feet. A 1,024 ft bridge would be taller than a 100- story skyscraper. This doesn t seem reasonable. Based on Google Images ( bridge in Paris ), a more realistic height is probably around feet. 30 feet 40 feet 30 = 16t 2 40 = 16t = t = t t 1.58 t Here, students can immediately use their equation to figure out how far Javert fell during his eight- second fall. However, students may have a hard time interpreting their answer just how far is 1,024 feet, anyway? There are a few ways to help contextualize this height. For example, a building story is typically 10 feet, which means that Javert would have had to jump from the equivalent of a 100- story building. To make the absurdity of their answer even more apparent, remind them that Les Misérables takes place during the early 19 th Century, well before the era of the skyscraper. In fact, for an eight- second fall to be reasonable, Javert would have had to jump of a bridge as tall as the Eiffel Tower! (It s around 1,063 feet tall.) This is clearly ridiculous. There s no way Javert could have jumped from such an extreme height. To close out Act One, students will come up with a more reasonable height (either using examples provided or by conducting their own research). In the end, Javert must only have fallen for a fraction of the time required by his final note. Still, though even if Javert had fallen for a full eight seconds, could he have survived? Or was this plan to take his life bound to fail? Students will turn their attention towards this question in Act Two! If we know how long Javert fell, why do we also know how far he fell? Around how tall is a building story? Based on this, does the bridge s height seem reasonable? Do you think it s reasonable that there was a foot bridge in Paris during the 19 th Century?! Does anyone know how tall the Eiffel Tower is? Anybody want to take a guess? How tall do you think a typical bridge in 19 th century France might have been? Based on your estimated bridge height, how long would Javert s fall have lasted? If Javert fell for eight seconds, do you think he could ve survived? Why or why not? When calculating the time, why do we take the positive square root and ignore the negative square root? (This model only works for nonnegative values of t, since Javert begins to fall at t = 0. Before that, he isn t falling, and so our model won t describe his motion.) Would air resistance increase or decrease the duration of his fall? (Increase, since the air would be pushing up against him and the downward force of gravity. However, even accounting for air resistance, it s unlikely that his fall would ve lasted anywhere near 8 seconds.)

6 6 Acte Deux: La Vitesse 4 We already know how far an object falls, and we measure distance in feet. Now let s explore how this distance changes over time. Here, we ll measure speed in feet per second. Use the table below to calculate how fast an object falls over each one- second interval and graph your results. Then, does your graph seem reasonable? Why or why not? Time 0 s 1 s 2 s 3 s 4 s 5 s Distance 0 ft 16 ft 64 ft 144 ft 256 ft 400 ft Speed Over Interval 16 ft over 1 st s 48 ft over 2 nd s 80 ft over 3 rd s 112 ft over 4 th s 144 ft over 5 th s Speed (ft/s) Time (s) This graph (in blue) doesn t seem reasonable. It suggests that when we drop an object, its speed is 16 ft/s. But after one second its speed suddenly (wham!) becomes 48 ft/s. This would look really strange. Could Javert have survived? To answer this, we need to know how hard he must ve hit the water, i.e. his speed. To start, students calculate speeds over each one- second interval. This may seem like a good idea, but their graph will be a step function, which doesn t make sense. For example, the graph suggests that a falling object s speed immediately triples after one second! Of course, this isn t what happens as objects fall, their speeds increase smoothly. Once students realize that their graph is lacking, they ll be ready to explore a more accurate model. Note: students graph the green line in the next question. For now, they will only consider the blue step function. How far does an object fall in the 1 st second? What is its speed over the interval, & how will the graph look? How far does an object fall in the 2 nd second? What is its speed over that interval? Based on the graph, what happens to an object s speed after one second? Does this make sense? From your own experiences, what do you think the graph of speed vs. time should look like, and why? What does your graph represent? (The average speed of a falling object over one- second intervals.) If this model were right, how would a falling object move? (Its motion would be really jerky, not smooth.)

7 7 5 The speed of a falling body can be modeled by the equation s(t) = 32t. Draw this on the axes above. a. How is this graph different than the first one, and what does it tell us about how a body really falls? At 1 second, the ball is falling at a rate of 32 ft/s. At 2 seconds, it s falling at a rate of 64 ft/s. What this means is that the ball is falling faster and faster as time goes on, i.e. it s speeding up. The fact that the graph is a straight line means the speed is changing at a constant rate. Each second the speed increases by an additional 32 ft/s. b. Based on the song, how fast was Javert traveling when he hit the water? Could he have survived? In the song, Javert falls for 8 seconds. This implies a speed of 32(8) = 256 feet per second, or: 256 ft 921,600 ft mi = 1 s 1 h h 175 mph is really fast, so Javert probably wouldn t have survived this fall. (Then again, the bridge probably wasn t 1024 ft high in the first place!) Speed equation in hand, students are now ready to explore a more accurate model for Javert s fall. If students are comfortable with linear functions, they can graph the equation directly. Otherwise, they can plot points for example, after one second, the speed of a falling object must be 32 ft/s, so the point (1, 32) must be on the graph. Once their graph is complete they ll see that it s a straight line. In other words, speed is a linear function of time; every second that passes, the speed increases by a constant 32 feet per second. Roughly speaking, as time passes, the object falls faster as faster. Note: the line they graph should intersect the midpoint of each step in their step function from the previous question. If you re looking to challenge your students, you can ask them why these intersections appear at the midpoints. Returning to Javert, students may have trouble contextualizing the speed they come up with, since the units are in feet per second. To address this, students might want to convert this to miles per hour. They can also think in terms of models they may have used in Act One. For instance, if 10 feet represent a story, then when Javert hit the water, he would ve been traveling at a rate of around 25 stories per second. Regardless of how they think about it, the answer is the same: there s no way Javert could have survived. Sacrebleu! Based on the equation, what s the object s speed after one second? Two seconds? What does it mean that the graph of speed is a straight line? Do you think 256 feet per second is fast? Why or why not? Do you think Javert could have survived? Why or why not? Why does the speed equation pass through the midpoint of each step? (These are points where the speed is equal to the average speed on one of the one- second intervals. For example, when t = 1/2, the object s speed is 16 ft/s, which is also the average speed of the object during the first second of its fall.) What do you think is the tallest bridge someone could fall from and survive? (Answers will vary, but certainly anything over 100 feet seems to be pushing it. At that height it would take around 2.5 seconds to fall, and you d land with a speed of 80 ft/s, or around 54.5 miles per hour.) What does it mean to accelerate, and what s the acceleration of a falling object? (Acceleration measures how quickly an object s velocity increases. For falling objects, we see that the velocity increases by 32 ft/s, so the acceleration is 32 ft/s per second! That 32 in the speed equation is telling us about the acceleration.) In reality, do you think speed is actually linear? (No, because of air resistance. Eventually a falling object will reach a terminal velocity at that point, it will stop accelerating and will fall at a constant speed.)

Gravity - What Goes Up, Must Come Down

Gravity - What Goes Up, Must Come Down Gravity - What Goes Up, Must Come Down Source: Sci-ber Text with the Utah State Office of Education http://www.uen.org/core/science/sciber/trb3/downloads/literacy4.pdf Jump up in the air and you will fall

More information

Experiment 1 Look Out Below!!

Experiment 1 Look Out Below!! Velocity Velocity Velocity is how fast something is going and in what direction it is going. Direction is what separates the term velocity from speed. If we were talking about a car, we could say that

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch 4)

Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch 4) July-15-14 10:39 AM Chapter 2 Kinematics in One Dimension Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch

More information

of 8 28/11/ :25

of 8 28/11/ :25 Paul's Online Math Notes Home Content Chapter/Section Downloads Misc Links Site Help Contact Me Differential Equations (Notes) / First Order DE`s / Modeling with First Order DE's [Notes] Differential Equations

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

. State the important connection between the coefficients of the given trinomials and the values you found for r.

. State the important connection between the coefficients of the given trinomials and the values you found for r. Motivational Problems on Quadratics 1 1. Factor the following perfect-square trinomials : (a) x 1x 36 (b) x 14x 49 (c) x 0x 100 As suggested, these should all look like either ( x r) or ( x r). State the

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

Physics Test 3: Motion in One Dimension page 1

Physics Test 3: Motion in One Dimension page 1 Name Physics Test 3: Motion in One Dimension page 1 Multiple Choice Read each question and choose the best answer by putting the corresponding letter in the blank to the left. 1. Which of the following

More information

Physics Motion Math. (Read objectives on screen.)

Physics Motion Math. (Read objectives on screen.) Physics 302 - Motion Math (Read objectives on screen.) Welcome back. When we ended the last program, your teacher gave you some motion graphs to interpret. For each section, you were to describe the motion

More information

In this activity, we explore the application of differential equations to the real world as applied to projectile motion.

In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Applications of Calculus: Projectile Motion ID: XXXX Name Class In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Open the file CalcActXX_Projectile_Motion_EN.tns

More information

SUPERCHARGED SCIENCE. Unit 2: Motion.

SUPERCHARGED SCIENCE. Unit 2: Motion. SUPERCHARGED SCIENCE Unit 2: Motion www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-12 hours, depending on how many activities you do! We re going to study

More information

Unit 2: Quadratic Functions and Modeling. Lesson 3: Graphing Quadratics. Learning Targets: Important Quadratic Functions Key Terms.

Unit 2: Quadratic Functions and Modeling. Lesson 3: Graphing Quadratics. Learning Targets: Important Quadratic Functions Key Terms. Unit 2: Quadratic Functions and Modeling Lesson 3: Graphing Quadratics Learning Targets: - Students can identify the axis of symmetry of a function. - Students can find the vertex of a quadratic - Students

More information

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14 PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14 GENERAL INFO The goal of this lab is to determine the speed of sound in air, by making measurements and taking into consideration the

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Squaring and Unsquaring

Squaring and Unsquaring PROBLEM STRINGS LESSON 8.1 Squaring and Unsquaring At a Glance (6 6)* ( 6 6)* (1 1)* ( 1 1)* = 64 17 = 64 + 15 = 64 ( + 3) = 49 ( 7) = 5 ( + ) + 1= 8 *optional problems Objectives The goal of this string

More information

1. The length of an object in inches, as a function of its length in feet. 2. The length of an object in feet, as a function of its length in inches

1. The length of an object in inches, as a function of its length in feet. 2. The length of an object in feet, as a function of its length in inches 2.2 20 Functions Algebra is about relations. If we know how two quantities are related, then information about one quantity gives us information about the other. For instance, if we know the relationship

More information

Conservation of Momentum

Conservation of Momentum Learning Goals Conservation of Momentum After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations for 2-dimensional

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. 4-6 Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form ax 2 + bx + c = 0. Quadratic Formula The solutions of

More information

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24 Forces and Movement Book pg 23 25, 39-40 Syllabus 1.15-1.18, 1.24 Reflect What is the relationship between mass, force and acceleration? Learning Outcomes 1. Demonstrate an understanding of the effects

More information

The force of gravity holds us on Earth and helps objects in space stay

The force of gravity holds us on Earth and helps objects in space stay 96 R E A D I N G The force of gravity holds us on Earth and helps objects in space stay in orbit. The planets in the Solar System could not continue to orbit the Sun without the force of gravity. Astronauts

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Projectile Motion. v a = -9.8 m/s 2. Good practice problems in book: 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.

Projectile Motion. v a = -9.8 m/s 2. Good practice problems in book: 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3. v a = -9.8 m/s 2 A projectile is anything experiencing free-fall, particularly in two dimensions. 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.55 Projectile Motion Good practice problems

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 7 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

MiSP FORCE AND GRAVITY Teacher Guide, L1 L3. Introduction

MiSP FORCE AND GRAVITY Teacher Guide, L1 L3. Introduction MiSP FORCE AND GRAVITY Teacher Guide, L1 L3 Introduction This unit uses BASE jumping and skydiving to illustrate Newton s three laws of motion and to explore the concept of gravity. The activities are

More information

Unit 5: Energy (Part 2)

Unit 5: Energy (Part 2) SUPERCHARGED SCIENCE Unit 5: Energy (Part 2) www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! We covered

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 What is a linear equation? It sounds fancy, but linear equation means the same thing as a line. In other words, it s an equation

More information

Water tank. Fortunately there are a couple of objectors. Why is it straight? Shouldn t it be a curve?

Water tank. Fortunately there are a couple of objectors. Why is it straight? Shouldn t it be a curve? Water tank (a) A cylindrical tank contains 800 ml of water. At t=0 (minutes) a hole is punched in the bottom, and water begins to flow out. It takes exactly 100 seconds for the tank to empty. Draw the

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

Physic 602 Conservation of Momentum. (Read objectives on screen.)

Physic 602 Conservation of Momentum. (Read objectives on screen.) Physic 602 Conservation of Momentum (Read objectives on screen.) Good. You re back. We re just about ready to start this lab on conservation of momentum during collisions and explosions. In the lab, we

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

COLLEGE ALGEBRA. Solving Equations and Inequalities. Paul Dawkins

COLLEGE ALGEBRA. Solving Equations and Inequalities. Paul Dawkins COLLEGE ALGEBRA Solving Equations and Inequalities Paul Dawkins Table of Contents Preface... ii Solving Equations and Inequalities... 3 Introduction... 3 s and Sets... 4 Linear Equations... 8 Application

More information

Solving with Absolute Value

Solving with Absolute Value Solving with Absolute Value Who knew two little lines could cause so much trouble? Ask someone to solve the equation 3x 2 = 7 and they ll say No problem! Add just two little lines, and ask them to solve

More information

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Module 8: The Cosmos in Motion. UNC-TFA H.S. Astronomy Collaboration, Copyright 2011

Module 8: The Cosmos in Motion. UNC-TFA H.S. Astronomy Collaboration, Copyright 2011 Objectives/Key Points Module 8: The Cosmos in Motion UNC-TFA H.S. Astronomy Collaboration, Copyright 2011 1. Differentiate between classical motions across space (peculiar velocities) and cosmological

More information

Do Now 10 Minutes Topic Free Fall

Do Now 10 Minutes Topic Free Fall Do Now 10 Minutes Topic Free Fall I will be passing out a pop quiz right now. You have ten minutes to complete the pop quiz. Homework Complete the Motion Graph Lab Turn in the Kinematic Equations Worksheet

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Think About. Unit 4 Lesson 1. Investigation. This Situation. Name:

Think About. Unit 4 Lesson 1. Investigation. This Situation. Name: Name: Think About This Situation Unit 4 Lesson 1 Investigation 1 The current distance record for Punkin Chunkin is over 4,000 feet. Such a flight would take the pumpkin very high in the air, as well. a

More information

Figure 1: Doing work on a block by pushing it across the floor.

Figure 1: Doing work on a block by pushing it across the floor. Work Let s imagine I have a block which I m pushing across the floor, shown in Figure 1. If I m moving the block at constant velocity, then I know that I have to apply a force to compensate the effects

More information

Physics 303 Motion of Falling Objects

Physics 303 Motion of Falling Objects Physics 303 Motion of Falling Objects Before we start today s lesson, we need to clear up some items from our last program. First of all, did you find out if Justin Time was speeding or not? It turns out

More information

Introduction. So, why did I even bother to write this?

Introduction. So, why did I even bother to write this? Introduction This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The review contains the occasional

More information

Driveway Races Acceleration

Driveway Races Acceleration Driveway Races Acceleration You may notice that when things move they rarely move at the same speed all the time. Especially when you drive, you can see right away that your speed is constantly changing.

More information

Systematic Uncertainty Max Bean John Jay College of Criminal Justice, Physics Program

Systematic Uncertainty Max Bean John Jay College of Criminal Justice, Physics Program Systematic Uncertainty Max Bean John Jay College of Criminal Justice, Physics Program When we perform an experiment, there are several reasons why the data we collect will tend to differ from the actual

More information

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1 Newton s Wagon Overview: The natural state of objects is to follow a straight line. In fact, Newton s First Law of Motion states that objects in motion will tend to stay in motion unless they are acted

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Guiding Questions Activity 6. What are your ideas about gravity?

Guiding Questions Activity 6. What are your ideas about gravity? Guiding Questions Activity 6 What are your ideas about gravity? Round? Flat? Begin this discussion by reminding students of the earlier work they did concerning how people viewed their world. Remind them

More information

PHY2048 Physics with Calculus I

PHY2048 Physics with Calculus I PHY2048 Physics with Calculus I Section 584761 Prof. Douglas H. Laurence Exam 1 (Chapters 2 6) February 14, 2018 Name: Solutions 1 Instructions: This exam is composed of 10 multiple choice questions and

More information

Relativity. Transcript.

Relativity. Transcript. Relativity Transcript http://quantumspotacademy.org/videos/relativity/ Time, light, mass, energy. These are some of the most fundamental properties in the universe and these are the properties that are

More information

Lesson 3: Graphs of Exponential Functions

Lesson 3: Graphs of Exponential Functions : Graphs of Exponential Functions Student Outcomes Students choose and interpret the scale on a graph to appropriately represent an exponential function. Students plot points representing the number of

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment Name: Email address (write legibly): AP Physics 1 Summer Assignment Packet 3 The assignments included here are to be brought to the first day of class to be submitted. They are: Problems from Conceptual

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Background If you are driving your car at a constant speed when you put it in neutral and turn off the engine, it does not maintain a constant speed. If you stop pushing an object

More information

TIME: 45 minutes. LESSON: Curious About Clouds GRADE: 1 st SUMMARY:

TIME: 45 minutes. LESSON: Curious About Clouds GRADE: 1 st SUMMARY: LESSON: Curious About Clouds GRADE: 1 st TIME: 45 minutes SUMMARY: Students will make observations about the weather and sky, listen to a story about weather and discuss it. Students will go outside and

More information

Looking Ahead to Chapter 10

Looking Ahead to Chapter 10 Looking Ahead to Chapter Focus In Chapter, you will learn about polynomials, including how to add, subtract, multiply, and divide polynomials. You will also learn about polynomial and rational functions.

More information

Lesson 4: Fast Earnie Lives Newton s Laws And So Do You!

Lesson 4: Fast Earnie Lives Newton s Laws And So Do You! Page 1 Lesson 4: Fast Earnie Lives Newton s Laws And So Do You! Physical Science: Forces and Motion Fast Earnie, and racecar drivers in general, have a need for speed, but without Newton s Laws none of

More information

2 P a g e. Essential Questions:

2 P a g e. Essential Questions: NC Math 1 Unit 5 Quadratic Functions Main Concepts Study Guide & Vocabulary Classifying, Adding, & Subtracting Polynomials Multiplying Polynomials Factoring Polynomials Review of Multiplying and Factoring

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Calculus Honors and Introduction to Calculus

Calculus Honors and Introduction to Calculus Calculus Honors and Introduction to Calculus Name: This summer packet is for students entering Calculus Honors or Introduction to Calculus in the Fall of 015. The material represents concepts and skills

More information

11.3 Solving Radical Equations

11.3 Solving Radical Equations Locker LESSON 11. Solving Radical Equations Common Core Math Standards The student is expected to: A-REI. Solve simple rational and radical equations in one variable, and give examples showing how extraneous

More information

graphs, Equations, and inequalities 2

graphs, Equations, and inequalities 2 graphs, Equations, and inequalities You might think that New York or Los Angeles or Chicago has the busiest airport in the U.S., but actually it s Hartsfield-Jackson Airport in Atlanta, Georgia. In 010,

More information

3.6 Motion in Two Dimensions Projectile Motion 3.7 Projectile Motion Solving September Problems.notebook

3.6 Motion in Two Dimensions Projectile Motion 3.7 Projectile Motion Solving September Problems.notebook Projectile motion is an extension to two dimensions of free fall motion. Section 3.6 A projectile is an object that moves in two dimensions under the influence of gravity and nothing else. As long as we

More information

Conceptual Explanations: Simultaneous Equations Distance, rate, and time

Conceptual Explanations: Simultaneous Equations Distance, rate, and time Conceptual Explanations: Simultaneous Equations Distance, rate, and time If you travel 30 miles per hour for 4 hours, how far do you go? A little common sense will tell you that the answer is 120 miles.

More information

Chapter: Basic Physics-Motion

Chapter: Basic Physics-Motion Chapter: Basic Physics-Motion The Big Idea Speed represents how quickly an object is moving through space. Velocity is speed with a direction, making it a vector quantity. If an object s velocity changes

More information

Newton s 2 nd Law of Motion. Physics 3 rd /4th 6wks Updated as of 12/17/15

Newton s 2 nd Law of Motion. Physics 3 rd /4th 6wks Updated as of 12/17/15 Newton s 2 nd Law of Motion Physics 3 rd /4th 6wks Updated as of 12/17/15 Newton s 2 nd Law: Football Correlation Newton s 2 nd Law of Motion What is the difference between tossing a ball and throwing

More information

Lesson 1.2 Position Time Graphs

Lesson 1.2 Position Time Graphs Lesson 1.2 Position Time Graphs Be able to explain the motion represented in a position time graph Be able to calculate the avg. vel, x, and t for portions of a position time graph. Be able to draw a position

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... 7 Introduction... 7 Integer Exponents... 8 Rational Exponents...5 Radicals... Polynomials...30 Factoring Polynomials...36

More information

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve:

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve: NAME: Chapters 12, 13 & 14: Universal Gravitation Text: Chapter 12 Chapter 13 Think and Explain: Think and Explain: Think and Solve: Think and Solve: Chapter 13 Think and Explain: Think and Solve: Vocabulary:

More information

Math 096--Quadratic Formula page 1

Math 096--Quadratic Formula page 1 Math 096--Quadratic Formula page 1 A Quadratic Formula. Use the quadratic formula to solve quadratic equations ax + bx + c = 0 when the equations can t be factored. To use the quadratic formula, the equation

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Magnetism and Gravity

Magnetism and Gravity Imagine that you had two superpowers. Both powers allow you to move things without touching them. You can even move things located on the other side of a wall! One power is the ability to pull anything

More information

Solve Systems of Equations Algebraically

Solve Systems of Equations Algebraically Part 1: Introduction Solve Systems of Equations Algebraically Develop Skills and Strategies CCSS 8.EE.C.8b You know that solutions to systems of linear equations can be shown in graphs. Now you will learn

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

Chapter 3 Homework Packet. Conceptual Questions

Chapter 3 Homework Packet. Conceptual Questions Chapter 3 Homework Packet Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) mass B) area C) distance D) velocity A vector quantity has both magnitude and direction.

More information

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab b Lab 3 Acceleration Physics 211 Lab What You Need To Know: The Physics In the previous lab you learned that the velocity of an object can be determined by finding the slope of the object s position vs.

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

1.5 Look Out Below! A Solidify Understanding Task

1.5 Look Out Below! A Solidify Understanding Task 22 1.5 Look Out Below A Solidify Understanding Task What happens when you drop a ball? It falls to the ground. That question sounds as silly as Why did the chicken cross the road? (To get to the other

More information

LAB 3 - VELOCITY AND ACCELERATION

LAB 3 - VELOCITY AND ACCELERATION Name Date Partners L03-1 LAB 3 - VELOCITY AND ACCELERATION OBJECTIVES A cheetah can accelerate from 0 to 50 miles per hour in 6.4 seconds. Encyclopedia of the Animal World A Jaguar can accelerate from

More information

Chapter 2. Motion in One Dimension. AIT AP Physics C

Chapter 2. Motion in One Dimension. AIT AP Physics C Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

LAB 3: VELOCITY AND ACCELERATION

LAB 3: VELOCITY AND ACCELERATION Lab 3 - Velocity & Acceleration 25 Name Date Partners LAB 3: VELOCITY AND ACCELERATION A cheetah can accelerate from to 5 miles per hour in 6.4 seconds. A Jaguar can accelerate from to 5 miles per hour

More information

Creating and Exploring Circles

Creating and Exploring Circles Creating and Exploring Circles 1. Close your compass, take a plain sheet of paper and use the compass point to make a tiny hole (point) in what you consider to be the very centre of the paper. The centre

More information

Casting Physics Simplified Part Two. Frames of Reference

Casting Physics Simplified Part Two. Frames of Reference Casting Physics Simplified Part Two Part one of this paper discussed physics that applies to linear motion, i.e., motion in a straight line. This section of the paper will expand these concepts to angular

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Differential Equations

Differential Equations This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Lesson 24: Modeling with Quadratic Functions

Lesson 24: Modeling with Quadratic Functions Student Outcomes Students create a quadratic function from a data set based on a contextual situation, sketch its graph, and interpret both the function and the graph in context. They answer questions

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Types of Motion Translational Motion Circular Motion Projectile Motion Rotational Motion Natural Motion Objects have a proper place Objects seek their natural place External forces

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

Finite Mathematics : A Business Approach

Finite Mathematics : A Business Approach Finite Mathematics : A Business Approach Dr. Brian Travers and Prof. James Lampes Second Edition Cover Art by Stephanie Oxenford Additional Editing by John Gambino Contents What You Should Already Know

More information

Chapter 9: Roots and Irrational Numbers

Chapter 9: Roots and Irrational Numbers Chapter 9: Roots and Irrational Numbers Index: A: Square Roots B: Irrational Numbers C: Square Root Functions & Shifting D: Finding Zeros by Completing the Square E: The Quadratic Formula F: Quadratic

More information

CALCULUS III. Paul Dawkins

CALCULUS III. Paul Dawkins CALCULUS III Paul Dawkins Table of Contents Preface... iii Outline... iv Three Dimensional Space... Introduction... The -D Coordinate System... Equations of Lines... 9 Equations of Planes... 5 Quadric

More information

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself.

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself. IDS 102 Intensity of Light and Heat When talking about a light source, most people are more comfortable with the word brightness than they are with the word intensity. Scientists generally prefer the word

More information

Mechanics. Flight Lessons 1: Basic Flight. Position, starting with 2 dimensions

Mechanics. Flight Lessons 1: Basic Flight. Position, starting with 2 dimensions Position, starting with 2 dimensions Mechanics We can measure our position forward with positive numbers and backwards with negative numbers. The bike is at 0. Speed (Average) If we take two odometer readings,

More information

Student Exploration: Free-Fall Laboratory

Student Exploration: Free-Fall Laboratory Name: Date: Student Exploration: Free-Fall Laboratory Vocabulary: acceleration, air resistance, free fall, instantaneous velocity, terminal velocity, velocity, vacuum Prior Knowledge Questions (Do these

More information

(L-4) Free fall, review

(L-4) Free fall, review (L-4) Free fall, review If we neglect air resistance, all objects, regardless of their mass, fall to earth with the same acceleration g 10 m/s 2 This means that if they start at the same height, they will

More information

Lesson 6-1: Relations and Functions

Lesson 6-1: Relations and Functions I ll bet you think numbers are pretty boring, don t you? I ll bet you think numbers have no life. For instance, numbers don t have relationships do they? And if you had no relationships, life would be

More information