Strauss PDEs 2e: Section Exercise 1 Page 1 of 6

Size: px
Start display at page:

Download "Strauss PDEs 2e: Section Exercise 1 Page 1 of 6"

Transcription

1 Strauss PDEs e: Setion.1 - Exerise 1 Page 1 of 6 Exerise 1 Solve u tt = u xx, u(x, 0) = e x, u t (x, 0) = sin x. Solution Solution by Operator Fatorization By fatoring the wave equation and making a substitution, we an write it as an equivalent system of unoupled first-order PDEs and solve it using the methods of the previous hapter. Start off by bringing all terms of the PDE to one side. u tt u xx = 0 Write the left side as an operator ating on u, L u. Now fator the operator. ( t x)u = 0 ( t x )( t + x )u = 0 If we let v = ( t + x )u, then what remains is ( t x )v = 0. That is, { ut + u x = v v t v x = 0. On the paths defined by =, x(ξ, 0) = ξ (1) the PDE on the bottom redues to an ODE, dv = 0. () That is, v = v(x, t) is onstant on the harateristis defined by (1). Integrating (), we find that v(ξ, t) = f(ξ), where f is an arbitrary funtion of the harateristi oordinate, ξ. Solving (1) by integration gives Solve now for ξ. Therefore, x = t + ξ ξ = x + t v(x, t) = f(x + t). We an hek that this is the solution of the bottom PDE. v t = f v x = f

2 Strauss PDEs e: Setion.1 - Exerise 1 Page of 6 v t v x = 0, so this is the orret solution. Now we use this solution to solve the PDE on the top. Our task is to solve u t + u x = f(x + t). On the paths defined by the PDE on top redues to an ODE, =, x(η, 0) = η (3) du = f(x + t). (4) That is, u = u(x, t) is onstant on the harateristis defined by (3). Solving (3) by integration, we find that Solve now for η. x = t + η. η = x t Now that we know x in terms of η, we an solve (4) for u. du = f(t + η) Integrate both sides now with respet to t. ˆ t u(η, t) = f(s + η) ds + g(η), where g is an arbitrary funtion of η. Now that the integration is done, hange bak to the original variables. ˆ t u(x, t) = f(s + x t) ds + g(x t) To solve the integral, use a substitution. Plug in s = t to get the upper limit of integration. w = s + x t dw = ds 1 dw = ds It beomes u(x, t) = ˆ x+t f(w) 1 dw + g(x t) u(x, t) = 1 F (x + t) + g(x t). Now that we have the general solution for u(x, t), we use the initial onditions to determine the unknown funtions, F and g. u(x, 0) = e x 1 F (x) + g(x) = ex u t (x, 0) = sin x 1 F (x) g (x) = sin x

3 Strauss PDEs e: Setion.1 - Exerise 1 Page 3 of 6 Multiply both sides of the top equation by and differentiate both sides with respet to x. Adding these two equations gives us 1 F (x) + g (x) = e x 1 F (x) g (x) = sin x F (x) = e x + sin x. Subtrating the two equations gives us Divide both sides by to isolate g. Solve for F and g by integrating both sides. g (x) = e x sin x. g (x) = 1 ex 1 sin x F (x) = e x os x g(x) = 1 ex + 1 os x What we solved for are atually F (w) and g(w), where w is any expression. Thus, F (x + t) = e x+t os(x + t) g(x t) = 1 ex t + 1 os(x t). Plugging these into u(x, t), we obtain the answer to the initial value problem. u(x, t) = 1 [ 1 [ex+t os(x + t)] + ex t + 1 ] os(x t) u(x, t) = 1 ( e x+t + e x t) + 1 [os(x t) os(x + t)] u(x, t) = 1 (ex osh t) + 1 ( sin x sin t) Therefore, u(x, t) = e x osh t + 1 sin x sin t.

4 Strauss PDEs e: Setion.1 - Exerise 1 Page 4 of 6 Solution by the Method of Charateristis Comparing this equation with the general form of a seond-order PDE, Au tt + Bu xt + Cu xx + Du t + Eu x + F u = G, we see that A = 1, B = 0, C =, D = 0, E = 0, F = 0, and G = 0. The harateristi equations of this PDE are given by = 1 ( B ± ) B A 4AC = 1 (± ) = or =. Note that the disriminant, B 4AC = 4, is greater than 0, whih means that the PDE is hyperboli. Therefore, the solutions to the ordinary differential equations are two real and distint families of harateristi urves in the xt-plane. Solving for the onstants of integration, x = t + C 1 or x = t + C. C 1 = x t = φ(x, t) C = x + t = ψ(x, t). Now we make the hange of variables, ξ = φ(x, t) = x t and η = ψ(x, t) = x + t, so that the PDE takes the simplest form. With these new variables the PDE beomes where, using the hain rule, A u ξξ + B u ξη + C u ηη + D u ξ + E u η + F u = G, A = Aξ t + Bξ t ξ x + Cξ x B = Aξ t η t + B(ξ t η x + ξ x η t ) + Cξ x η x C = Aη t + Bη t η x + Cη x D = Aξ tt + Bξ xt + Cξ xx + Dξ t + Eξ x E = Aη tt + Bη xt + Cη xx + Dη t + Eη x F = F G = G. Plugging in the numbers and derivatives to these formulas, we find that A = 0, B = 4, C = 0, D = 0, E = 0, F = 0, and G = 0. Thus, the PDE simplifies to Solving for u ξη gives 4 u ξη = 0. u ξη = 0. This is known as the first anonial form of the wave equation. We an solve it by integrating both sides with respet to η and then integrating both sides again with respet to ξ. u ξ = f(ξ),

5 Strauss PDEs e: Setion.1 - Exerise 1 Page 5 of 6 where f is an arbitrary funtion of ξ. u(ξ, η) = F (ξ) + G(η), where F and G are arbitrary funtions of ξ and η, respetively. Now hange bak to the original variables with the substitutions, ξ = x t and η = x + t, to get the general solution of the wave equation. u(x, t) = F (x t) + G(x + t) We determine these unknown funtions by using the initial onditions. u(x, 0) = e x F (x) + G(x) = e x u t (x, 0) = sin x F (x) + G (x) = sin x Multiply both sides of the top equation by and differentiate both sides with respet to x. Adding these two equations gives us Subtrating the two equations gives us Divide both sides by to isolate F and G. Solve for F and G by integrating both sides. F (x) + G (x) = e x F (x) + G (x) = sin x G (x) = e x + sin x. F (x) = e x sin x. F (x) = 1 ex 1 sin x G (x) = 1 ex + 1 sin x F (x) = 1 ex + 1 os x G(x) = 1 ex 1 os x What we solved for are atually F (w) and G(w), where w is any expression. Thus, F (x + t) = 1 ex+t + 1 os(x + t) G(x t) = 1 ex t 1 os(x t). Plugging these into u(x, t), we obtain the answer to the initial value problem. u(x, t) = 1 ex+t + 1 os(x + t) + 1 ex t 1 os(x t) u(x, t) = 1 ( e x+t + e x t) + 1 [os(x t) os(x + t)]

6 Strauss PDEs e: Setion.1 - Exerise 1 Page 6 of 6 u(x, t) = 1 (ex osh t) + 1 ( sin x sin t) Therefore, u(x, t) = e x osh t + 1 sin x sin t. This is the same answer that we obtained with operator fatorization. We an hek that this is the solution to the wave equation. u t = e x sinh t + sin x os t u tt = e x osh t sin x sin t u x = e x osh t + 1 os x sin t u xx = e x osh t 1 sin x sin t u tt = u xx, so this is the solution to the wave equation. Now hek the initial onditions. u(x, 0) = e x = e x u t (x, 0) = e x 0 + sin x 1 = sin x To learn about anonial forms and the method of harateristis for seond-order PDEs, read hapter 4 of Debnath s Linear Partial Differential Equations for Sientists and Engineers, 4th Edition.

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u Strauss PDEs e: Setion 3.4 - Exerise 3 Page 1 of 13 Exerise 3 Solve u tt = u xx + os x, u(x, ) = sin x, u t (x, ) = 1 + x. Solution Solution by Operator Fatorization Bring u xx to the other side. Write

More information

LINEAR SECOND-ORDER EQUATIONS

LINEAR SECOND-ORDER EQUATIONS LINEAR SECON-ORER EQUATIONS Classification In two independent variables x and y, the general form is Au xx + 2Bu xy + Cu yy + u x + Eu y + Fu + G = 0. The coefficients are continuous functions of (x, y)

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Math 124A October 11, 2011

Math 124A October 11, 2011 Math 14A October 11, 11 Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This corresponds to a string of infinite length. Although

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS. Fourth Edition, February by Tadeusz STYŠ. University of Botswana

LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS. Fourth Edition, February by Tadeusz STYŠ. University of Botswana i LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS Fourth Edition, February 2011 by Tadeusz STYŠ University of Botswana ii Contents 1 Solution of Partial Differential Equations 1 1.1 The General Solution

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

Math 220A - Fall 2002 Homework 8 Solutions

Math 220A - Fall 2002 Homework 8 Solutions Math A - Fall Homework 8 Solutions 1. Consider u tt u = x R 3, t > u(x, ) = φ(x) u t (x, ) = ψ(x). Suppose φ, ψ are supported in the annular region a < x < b. (a) Find the time T 1 > suh that u(x, t) is

More information

Mathematical Methods - Lecture 9

Mathematical Methods - Lecture 9 Mathematical Methods - Lecture 9 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

Hyperbolic PDEs. Chapter 6

Hyperbolic PDEs. Chapter 6 Chapter 6 Hyperbolic PDEs In this chapter we will prove existence, uniqueness, and continuous dependence of solutions to hyperbolic PDEs in a variety of domains. To get a feel for what we might expect,

More information

MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20

MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20 MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20 MA 201 (2016), PDE 2 / 20 Vibrating string and the wave equation Consider a stretched string of length

More information

Partial Differential Equations, Winter 2015

Partial Differential Equations, Winter 2015 Partial Differential Equations, Winter 215 Homework #2 Due: Thursday, February 12th, 215 1. (Chapter 2.1) Solve u xx + u xt 2u tt =, u(x, ) = φ(x), u t (x, ) = ψ(x). Hint: Factor the operator as we did

More information

First order Partial Differential equations

First order Partial Differential equations First order Partial Differential equations 0.1 Introduction Definition 0.1.1 A Partial Deferential equation is called linear if the dependent variable and all its derivatives have degree one and not multiple

More information

Classification of Second order PDEs

Classification of Second order PDEs Chapter 3 Classification of Second order PDEs This chapter deals with a finer classification of second order quasilinear PDEs, as compared to Chapter 1. In Section 3.1, we present a formal procedure to

More information

Extra Problems and Examples

Extra Problems and Examples Extra Problems and Examples Steven Bellenot October 11, 2007 1 Separation of Variables Find the solution u(x, y) to the following equations by separating variables. 1. u x + u y = 0 2. u x u y = 0 answer:

More information

5CCM211A & 6CCM211B Partial Differential Equations and Complex Variables

5CCM211A & 6CCM211B Partial Differential Equations and Complex Variables 5CCM211A & 6CCM211B Partial Differential Equations and Complex Variables These are slightly edited lecture notes by Simon Scott 1 Preliminary ideas on PDEs Partial differential equations (PDEs are fundamental

More information

Chapter 2: Solution of First order ODE

Chapter 2: Solution of First order ODE 0 Chapter : Solution of irst order ODE Se. Separable Equations The differential equation of the form that is is alled separable if f = h g; In order to solve it perform the following steps: Rewrite the

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4.

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4. . The solution is ( 2 e x+ct + e x ct) + 2c x+ct x ct sin(s)dx ( e x+ct + e x ct) + ( cos(x + ct) + cos(x ct)) 2 2c 2. To solve the PDE u xx 3u xt 4u tt =, you can first fact the differential operat to

More information

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION Journal of Mathematial Sienes: Advanes and Appliations Volume 3, 05, Pages -3 EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION JIAN YANG, XIAOJUAN LU and SHENGQIANG TANG

More information

Beams on Elastic Foundation

Beams on Elastic Foundation Professor Terje Haukaas University of British Columbia, Vanouver www.inrisk.ub.a Beams on Elasti Foundation Beams on elasti foundation, suh as that in Figure 1, appear in building foundations, floating

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

An Introduction to Numerical Methods for Differential Equations. Janet Peterson

An Introduction to Numerical Methods for Differential Equations. Janet Peterson An Introduction to Numerical Methods for Differential Equations Janet Peterson Fall 2015 2 Chapter 1 Introduction Differential equations arise in many disciplines such as engineering, mathematics, sciences

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 8. In order to do so, we ll solve for the Green s function G(x, t) in the corresponding PDE,

Strauss PDEs 2e: Section Exercise 2 Page 1 of 8. In order to do so, we ll solve for the Green s function G(x, t) in the corresponding PDE, Strauss PDEs 2e: Section 2.4 - Eercise 2 Page of 8 Eercise 2 Do the same for φ() = for > and φ() = 3 for

More information

Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone

Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 9, Number 2, pp. 227 237 (2014) http://campus.mst.edu/adsa Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone

More information

Reading: P1-P20 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering)

Reading: P1-P20 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering) Chapter 1. Partial Differential Equations Reading: P1-P0 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering) Before even looking

More information

Generalized evolutionary equations and their invariant solutions

Generalized evolutionary equations and their invariant solutions Generalized evolutionary equations and their invariant solutions Rodica Cimpoiasu, Radu Constantinescu University of Craiova, 13 A.I.Cuza Street, 200585 Craiova, Dolj, Romania Abstract The paper appplies

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 6. Solve the completely inhomogeneous diffusion problem on the half-line

Strauss PDEs 2e: Section Exercise 2 Page 1 of 6. Solve the completely inhomogeneous diffusion problem on the half-line Strauss PDEs 2e: Section 3.3 - Exercise 2 Page of 6 Exercise 2 Solve the completely inhomogeneous diffusion problem on the half-line v t kv xx = f(x, t) for < x

More information

PARTIAL DIFFERENTIAL EQUATIONS MA 3132 LECTURE NOTES

PARTIAL DIFFERENTIAL EQUATIONS MA 3132 LECTURE NOTES PARTIAL DIFFERENTIAL EQUATIONS MA 313 LECTURE NOTES B. Neta Department of Mathematics Naval Postgraduate School Code MA/Nd Monterey, California 93943 October 1, c 1996 - Professor Beny Neta 1 Contents

More information

The second-order 1D wave equation

The second-order 1D wave equation C The second-order D wave equation C. Homogeneous wave equation with constant speed The simplest form of the second-order wave equation is given by: x 2 = Like the first-order wave equation, it responds

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

Math 5440 Problem Set 6 Solutions

Math 5440 Problem Set 6 Solutions Math 544 Math 544 Problem Set 6 Solutions Aaron Fogelson Fall, 5 : (Logan,.6 # ) Solve the following problem using Laplace transforms. u tt c u xx g, x >, t >, u(, t), t >, u(x, ), u t (x, ), x >. The

More information

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02 1 MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions December 6 2017 Wednesday 10:40-12:30 SA-Z02 QUESTIONS: Solve any four of the following five problems [25]1. Solve the initial and

More information

Relative Maxima and Minima sections 4.3

Relative Maxima and Minima sections 4.3 Relative Maxima and Minima setions 4.3 Definition. By a ritial point of a funtion f we mean a point x 0 in the domain at whih either the derivative is zero or it does not exists. So, geometrially, one

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, x < 1, 1 + x, 1 < x < 0, ψ(x) = 1 x, 0 < x < 1, 0, x > 1, so that it verifies ψ 0, ψ(x) = 0 if x 1 and ψ(x)dx = 1. Consider (ψ j )

More information

Summer 2017 MATH Solution to Exercise 5

Summer 2017 MATH Solution to Exercise 5 Summer 07 MATH00 Solution to Exercise 5. Find the partial derivatives of the following functions: (a (xy 5z/( + x, (b x/ x + y, (c arctan y/x, (d log((t + 3 + ts, (e sin(xy z 3, (f x α, x = (x,, x n. (a

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 12 Saarland University 15. Dezember 2014 c Daria Apushkinskaya (UdS) PDE and BVP lecture 12 15. Dezember 2014 1 / 24 Purpose of Lesson To introduce

More information

First-Order Ordinary Differntial Equations: Classification and Linear Equations. David Levermore Department of Mathematics University of Maryland

First-Order Ordinary Differntial Equations: Classification and Linear Equations. David Levermore Department of Mathematics University of Maryland First-Order Ordinary Differntial Equations: Classification and Linear Equations David Levermore Department of Mathematics University of Maryland 1 February 2009 These notes cover some of the material that

More information

The shape of a hanging chain. a project in the calculus of variations

The shape of a hanging chain. a project in the calculus of variations The shape of a hanging hain a projet in the alulus of variations April 15, 218 2 Contents 1 Introdution 5 2 Analysis 7 2.1 Model............................... 7 2.2 Extremal graphs.........................

More information

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Analysis III (BAUG Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Question 1 et a 0,..., a n be constants. Consider the function. Show that a 0 = 1 0 φ(xdx. φ(x = a 0 + Since the integral

More information

2. Method of Characteristics

2. Method of Characteristics 2. Method of Characteristics In this section we explore the method of characteristics when applied to linear and nonlinear equations of order one and above. 2.1. Method of characteristics for first order

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Math 311, Partial Differential Equations, Winter 2015, Midterm

Math 311, Partial Differential Equations, Winter 2015, Midterm Score: Name: Math 3, Partial Differential Equations, Winter 205, Midterm Instructions. Write all solutions in the space provided, and use the back pages if you have to. 2. The test is out of 60. There

More information

Math 220A - Fall 2002 Homework 5 Solutions

Math 220A - Fall 2002 Homework 5 Solutions Math 0A - Fall 00 Homework 5 Solutions. Consider the initial-value problem for the hyperbolic equation u tt + u xt 0u xx 0 < x 0 u t (x, 0) ψ(x). Use energy methods to show that the domain of dependence

More information

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011 Direct Method of Construction of Conservation Laws for Nonlinear Differential Equations, its Relation with Noether s Theorem, Applications, and Symbolic Software Alexei F. Cheviakov University of Saskatchewan,

More information

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm.

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm. Applied Mathematics Masters Examination Fall 16, August 18, 1 4 pm. Each of the fifteen numbered questions is worth points. All questions will be graded, but your score for the examination will be the

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Lecture Notes Dr. Q. M. Zaigham Zia Assistant Professor Department of Mathematics COMSATS Institute of Information Technology Islamabad, Pakistan ii Contents 1 Lecture 01

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <. First order wave equations Transport equation is conservation law with J = cu, u t + cu x = 0, < x

More information

Differential Equations 8/24/2010

Differential Equations 8/24/2010 Differential Equations A Differential i Equation (DE) is an equation ontaining one or more derivatives of an unknown dependant d variable with respet to (wrt) one or more independent variables. Solution

More information

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

1. Differential Equations (ODE and PDE)

1. Differential Equations (ODE and PDE) 1. Differential Equations (ODE and PDE) 1.1. Ordinary Differential Equations (ODE) So far we have dealt with Ordinary Differential Equations (ODE): involve derivatives with respect to only one variable

More information

dy dy 2 dy d Y 2 dx dx Substituting these into the given differential equation d 2 Y dy 2Y = 2x + 3 ( ) ( 1 + 2b)= 3

dy dy 2 dy d Y 2 dx dx Substituting these into the given differential equation d 2 Y dy 2Y = 2x + 3 ( ) ( 1 + 2b)= 3 Solutions 14() 1 Coplete solutions to Eerise 14() 1. (a) Sine f()= 18 is a onstant so Y = C, differentiating this zero. Substituting for Y into Y = 18 C = 18, hene C = 9 The partiular integral Y = 9. (This

More information

1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n

1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n T : 99 9 \ E \ : \ 4 7 8 \ \ \ \ - \ \ T \ \ \ : \ 99 9 T : 99-9 9 E : 4 7 8 / T V 9 \ E \ \ : 4 \ 7 8 / T \ V \ 9 T - w - - V w w - T w w \ T \ \ \ w \ w \ - \ w \ \ w \ \ \ T \ w \ w \ w \ w \ \ w \

More information

12.7 Heat Equation: Modeling Very Long Bars.

12.7 Heat Equation: Modeling Very Long Bars. 568 CHAP. Partial Differential Equations (PDEs).7 Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms Our discussion of the heat equation () u t c u x in the last section

More information

MATH 220: MIDTERM OCTOBER 29, 2015

MATH 220: MIDTERM OCTOBER 29, 2015 MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems -3 and one of Problems 4 and 5. Write your solutions to problems and

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

The First Integral Method for Solving a System of Nonlinear Partial Differential Equations

The First Integral Method for Solving a System of Nonlinear Partial Differential Equations ISSN 179-889 (print), 179-897 (online) International Journal of Nonlinear Siene Vol.5(008) No.,pp.111-119 The First Integral Method for Solving a System of Nonlinear Partial Differential Equations Ahmed

More information

Numerical Integration of Linear and Nonlinear Wave Equations

Numerical Integration of Linear and Nonlinear Wave Equations University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, and Student Research Papers in Mathematics Mathematics, Department of 12-2004 Numerical Integration

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations.

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations. Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations. Alexey Shevyakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon,

More information

MA2331 Tutorial Sheet 5, Solutions December 2014 (Due 12 December 2014 in class) F = xyi+ 1 2 x2 j+k = φ (1)

MA2331 Tutorial Sheet 5, Solutions December 2014 (Due 12 December 2014 in class) F = xyi+ 1 2 x2 j+k = φ (1) MA2331 Tutorial Sheet 5, Solutions. 1 4 Deember 214 (Due 12 Deember 214 in lass) Questions 1. ompute the line integrals: (a) (dx xy + 1 2 dy x2 + dz) where is the line segment joining the origin and the

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6 Strauss PDEs 2e: Section 3 - Exercise Page of 6 Exercise Carefully derive the equation of a string in a medium in which the resistance is proportional to the velocity Solution There are two ways (among

More information

Homework 3 solutions Math 136 Gyu Eun Lee 2016 April 15. R = b a

Homework 3 solutions Math 136 Gyu Eun Lee 2016 April 15. R = b a Homework 3 solutions Math 136 Gyu Eun Lee 2016 April 15 A problem may have more than one valid method of solution. Here we present just one. Arbitrary functions are assumed to have whatever regularity

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Chater 6 Fundamental Theorem of Calulus 6. Definition (Nie funtions.) I will say that a real valued funtion f defined on an interval [a, b] is a nie funtion on [a, b], if f is ontinuous on [a, b] and integrable

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

There are five problems. Solve four of the five problems. Each problem is worth 25 points. A sheet of convenient formulae is provided.

There are five problems. Solve four of the five problems. Each problem is worth 25 points. A sheet of convenient formulae is provided. Preliminary Examination (Solutions): Partial Differential Equations, 1 AM - 1 PM, Jan. 18, 16, oom Discovery Learning Center (DLC) Bechtel Collaboratory. Student ID: There are five problems. Solve four

More information

Errata and changes for Lecture Note 1 (I would like to thank Tomasz Sulka for the following changes): ( ) ( ) lim = should be

Errata and changes for Lecture Note 1 (I would like to thank Tomasz Sulka for the following changes): ( ) ( ) lim = should be Errata and hanges for Leture Note (I would like to thank Tomasz Sulka for the following hanges): Page 5 of LN: f f ' lim should be g g' f f ' lim lim g g ' Page 8 of LN: the following words (in RED) have

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

Lecture two. January 17, 2019

Lecture two. January 17, 2019 Lecture two January 17, 2019 We will learn how to solve rst-order linear equations in this lecture. Example 1. 1) Find all solutions satisfy the equation u x (x, y) = 0. 2) Find the solution if we know

More information

New Symmetries and Particular Solutions for 2D Black-Scholes Model

New Symmetries and Particular Solutions for 2D Black-Scholes Model New Symmetries and Particular Solutions for D Black-Scholes Model R. Cimpoiasu University of Craiova, 3 A.I.Cuza, 00585 Craiova, ROMANIA R. Constantinescu University of Craiova, 3 A.I.Cuza, 00585 Craiova,

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Math 225B: Differential Geometry, Homework 6

Math 225B: Differential Geometry, Homework 6 ath 225B: Differential Geometry, Homework 6 Ian Coley February 13, 214 Problem 8.7. Let ω be a 1-form on a manifol. Suppose that ω = for every lose urve in. Show that ω is exat. We laim that this onition

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 Dr. E. Jacobs The main texts for this course are Calculus by James Stewart and Fundamentals of Differential Equations by Nagle, Saff

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

Decidability of integer multiplication and ordinal addition. Two applications of the Feferman-Vaught theory

Decidability of integer multiplication and ordinal addition. Two applications of the Feferman-Vaught theory Decidability of integer multiplication and ordinal addition Two applications of the Feferman-Vaught theory Ting Zhang Stanford University Stanford February 2003 Logic Seminar 1 The motivation There are

More information

Pseudo Spheres. A Sample of Electronic Lecture Notes in Mathematics. Eberhard Malkowsky.

Pseudo Spheres. A Sample of Electronic Lecture Notes in Mathematics. Eberhard Malkowsky. Pseudo Spheres A Sample of Eletroni Leture Notes in Mathematis Eberhard Malkowsky Mathematishes Institut Justus Liebig Universität Gießen Arndtstraße D-3539 Gießen Germany /o Shool of Informatis Computing

More information

12.6 Polar Coordinates

12.6 Polar Coordinates 1.6 Polar Coordinates Consider Poisson s equation on the unit disk. ( 1 r u ) + 1 u r r r r = f(r, θ) θ with 0 r 1, and 0 θ π. We approximate the equation by ( 1 u i+1j u ij r i+ 1 r r i u ij u i 1j r

More information

Ordinary Differential Equation Theory

Ordinary Differential Equation Theory Part I Ordinary Differential Equation Theory 1 Introductory Theory An n th order ODE for y = y(t) has the form Usually it can be written F (t, y, y,.., y (n) ) = y (n) = f(t, y, y,.., y (n 1) ) (Implicit

More information

HUYGENS PRINCIPLE FOR THE DIRICHLET BOUNDARY VALUE PROBLEM FOR THE WAVE EQUATION

HUYGENS PRINCIPLE FOR THE DIRICHLET BOUNDARY VALUE PROBLEM FOR THE WAVE EQUATION Scientiae Mathematicae Japonicae Online, e-24, 419 426 419 HUYGENS PRINCIPLE FOR THE DIRICHLET BOUNDARY VALUE PROBLEM FOR THE WAVE EQUATION KOICHI YURA Received June 16, 24 Abstract. We prove Huygens principle

More information

PDE (Math 4163) Spring 2016

PDE (Math 4163) Spring 2016 PDE (Math 4163) Spring 2016 Some historical notes. PDE arose in the context of the development of models in the physics of continuous media, e.g. vibrating strings, elasticity, the Newtonian gravitational

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

Dirac s equation We construct relativistically covariant equation that takes into account also the spin. The kinetic energy operator is

Dirac s equation We construct relativistically covariant equation that takes into account also the spin. The kinetic energy operator is Dira s equation We onstrut relativistially ovariant equation that takes into aount also the spin The kineti energy operator is H KE p Previously we derived for Pauli spin matries the relation so we an

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

(1) u (t) = f(t, u(t)), 0 t a.

(1) u (t) = f(t, u(t)), 0 t a. I. Introduction 1. Ordinary Differential Equations. In most introductions to ordinary differential equations one learns a variety of methods for certain classes of equations, but the issues of existence

More information

Routh-Hurwitz Lecture Routh-Hurwitz Stability test

Routh-Hurwitz Lecture Routh-Hurwitz Stability test ECE 35 Routh-Hurwitz Leture Routh-Hurwitz Staility test AStolp /3/6, //9, /6/ Denominator of transfer funtion or signal: s n s n s n 3 s n 3 a s a Usually of the Closed-loop transfer funtion denominator

More information

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation Lecture 12 Lecture 12 MA 201, PDE (2016) 1 / 24 Formal Solution of

More information

Most results in this section are stated without proof.

Most results in this section are stated without proof. Leture 8 Level 4 v2 he Expliit formula. Most results in this setion are stated without proof. Reall that we have shown that ζ (s has only one pole, a simple one at s =. It has trivial zeros at the negative

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

0.3.4 Burgers Equation and Nonlinear Wave

0.3.4 Burgers Equation and Nonlinear Wave 16 CONTENTS Solution to step (discontinuity) initial condition u(x, 0) = ul if X < 0 u r if X > 0, (80) u(x, t) = u L + (u L u R ) ( 1 1 π X 4νt e Y 2 dy ) (81) 0.3.4 Burgers Equation and Nonlinear Wave

More information