Bootstrap & Confidence/Prediction intervals

Size: px
Start display at page:

Download "Bootstrap & Confidence/Prediction intervals"

Transcription

1 Bootstrap & Confidence/Prediction intervals Olivier Roustant Mines Saint-Étienne 2017/11 Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 1 / 9

2 Framework Consider a model with an additive homoskedastic noise y i = g(x i ; β) + ε i i = 1,..., n with ε 1,..., ε n i.i.d. with a cdf F, and β is a vector of parameters. Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 2 / 9

3 Framework Consider a model with an additive homoskedastic noise y i = g(x i ; β) + ε i i = 1,..., n with ε 1,..., ε n i.i.d. with a cdf F, and β is a vector of parameters. Let ˆβ an estimator of β, and let x be a new site. We are interested in : The prediction mean at x : ŷ(x) = g(x; ˆβ) The prediction law at x, i.e. the law of ŷ(x) + ɛ, where ɛ F independent of the ε 1,..., ε n. Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 2 / 9

4 Confidence intervals The variability of ŷ(x) may provide a (random) confidence interval at level α of a (deterministic) statistic of interest t for g(x, β) : P(I t) = 1 α Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 3 / 9

5 Confidence intervals The variability of ŷ(x) may provide a (random) confidence interval at level α of a (deterministic) statistic of interest t for g(x, β) : Example (Gaussian linear model) P(I t) = 1 α g(x, ˆβ) ) = x ˆβ N (x β, σ 2 x (X X) 1 x This gives a 95% confidence interval of x β, the true prediction at x : I x ˆβ ± 2ˆσ x (X X) 1 x Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 3 / 9

6 Confidence intervals, bootstrap estimate Resample the data z i = (x i, y i ), i = 1,..., n (z b 1,..., z b n ), b = 1..., B Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 4 / 9

7 Confidence intervals, bootstrap estimate Resample the data z i = (x i, y i ), i = 1,..., n (z b 1,..., z b n ), b = 1..., B For each bootstrap sample (zi b ) 1 i n, refit the data ˆβ b Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 4 / 9

8 Confidence intervals, bootstrap estimate Resample the data z i = (x i, y i ), i = 1,..., n (z b 1,..., z b n ), b = 1..., B For each bootstrap sample (zi b ) 1 i n, refit the data ˆβ b Give a 95% confidence interval by computing the empirical quantiles at level 2.5% and 97.5% of g(x, ˆβ b ), b = 1,..., B Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 4 / 9

9 Prediction intervals The law of ŷ(x) + ɛ provides a (deterministic) prediction interval I at level α, which contains the (random) prediction with probability 1 α : P(ŷ(x) + ɛ I) = 1 α Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 5 / 9

10 Prediction intervals The law of ŷ(x) + ɛ provides a (deterministic) prediction interval I at level α, which contains the (random) prediction with probability 1 α : Example (Gaussian linear model) P(ŷ(x) + ɛ I) = 1 α ŷ(x) + ɛ = x ˆβ + ɛ N (x β, σ 2 (1 + x (X X) 1 x)) and I x β ± 2ˆσ 1 + x (X X) 1 x Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 5 / 9

11 Prediction intervals, bootstrap estimate Resample the data z i = (x i, y i ), i = 1,..., n (z b 1,..., z b n ), b = 1..., B For each bootstrap sample (zi b ) 1 i n, b Refit the data : ˆβ Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 6 / 9

12 Prediction intervals, bootstrap estimate Resample the data z i = (x i, y i ), i = 1,..., n (z b 1,..., z b n ), b = 1..., B For each bootstrap sample (zi b ) 1 i n, b Refit the data : ˆβ Sample ε b from the resampled residuals : ε b i = y i g(x i, ˆβ b ) Non-parametric bootstrap on the bootstrapped residuals Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 6 / 9

13 Prediction intervals, bootstrap estimate Resample the data z i = (x i, y i ), i = 1,..., n (z b 1,..., z b n ), b = 1..., B For each bootstrap sample (zi b ) 1 i n, b Refit the data : ˆβ Sample ε b from the resampled residuals : ε b i = y i g(x i, ˆβ b ) Non-parametric bootstrap on the bootstrapped residuals Give a 95% prediction interval by computing the empirical quantiles at level 2.5% and 97.5% of g(x, ˆβ b ) + ε b, b = 1,..., B Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 6 / 9

14 Prediction intervals, bootstrap estimate - Normal approximation If the residuals ε 1,..., ε n are assumed N (0, σ 2 ), one can sample ε b from N (0, (σ b ) 2 ), where σ b is the s.d. of (ε b i ) 1 i n. Parametric bootstrap on the bootstrapped residuals Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 7 / 9

15 Prediction intervals, bootstrap estimate - Normal approximation If the residuals ε 1,..., ε n are assumed N (0, σ 2 ), one can sample ε b from N (0, (σ b ) 2 ), where σ b is the s.d. of (ε b i ) 1 i n. Parametric bootstrap on the bootstrapped residuals If, in addition, the law of g(x, ˆβ) is assumed to be Gaussian, one can simply estimate the variances of g(x, ˆβ) and ε separately ˆσ 2 g(x,.) = 1 B 1 B b=1 ( ) 2 g(x, ˆβ b ) g(x,.) ˆσ ε 2 = 1 n 1 and compute the prediction intervals as g(x,.) ± 2 ˆσ g(x,.) 2 + ˆσ2 ε n i=1 ɛ 2 i Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 7 / 9

16 References References Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 8 / 9

17 References For more details, in particular about bias induced by bootstrap, one can read : ESL T. Hastie, R. Tibshirani and J. Friedman (2009), The Elements of Statistical Learning, Springer, 2nd edition, print 10. Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 9 / 9

BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1

BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1 BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1 Shaobo Li University of Cincinnati 1 Partially based on Hastie, et al. (2009) ESL, and James, et al. (2013)

More information

Advanced Statistics II: Non Parametric Tests

Advanced Statistics II: Non Parametric Tests Advanced Statistics II: Non Parametric Tests Aurélien Garivier ParisTech February 27, 2011 Outline Fitting a distribution Rank Tests for the comparison of two samples Two unrelated samples: Mann-Whitney

More information

Derivative-based global sensitivity measures for interactions

Derivative-based global sensitivity measures for interactions Derivative-based global sensitivity measures for interactions Olivier Roustant École Nationale Supérieure des Mines de Saint-Étienne Joint work with J. Fruth, B. Iooss and S. Kuhnt SAMO 13 Olivier Roustant

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Output Analysis for Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Output Analysis

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part VI: Cross-validation Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD) 453 Modern

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

interval forecasting

interval forecasting Interval Forecasting Based on Chapter 7 of the Time Series Forecasting by Chatfield Econometric Forecasting, January 2008 Outline 1 2 3 4 5 Terminology Interval Forecasts Density Forecast Fan Chart Most

More information

Étude de classes de noyaux adaptées à la simplification et à l interprétation des modèles d approximation.

Étude de classes de noyaux adaptées à la simplification et à l interprétation des modèles d approximation. Étude de classes de noyaux adaptées à la simplification et à l interprétation des modèles d approximation. Soutenance de thèse de N. Durrande Ecole des Mines de St-Etienne, 9 november 2011 Directeurs Laurent

More information

EECS E6690: Statistical Learning for Biological and Information Systems Lecture1: Introduction

EECS E6690: Statistical Learning for Biological and Information Systems Lecture1: Introduction EECS E6690: Statistical Learning for Biological and Information Systems Lecture1: Introduction Prof. Predrag R. Jelenković Time: Tuesday 4:10-6:40pm 1127 Seeley W. Mudd Building Dept. of Electrical Engineering

More information

Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter Model Assessment and Selection. CN700/March 4, 2008.

Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter Model Assessment and Selection. CN700/March 4, 2008. Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter 7.1-7.9 Model Assessment and Selection CN700/March 4, 2008 Satyavarta sat@cns.bu.edu Auditory Neuroscience Laboratory, Department

More information

The assumptions are needed to give us... valid standard errors valid confidence intervals valid hypothesis tests and p-values

The assumptions are needed to give us... valid standard errors valid confidence intervals valid hypothesis tests and p-values Statistical Consulting Topics The Bootstrap... The bootstrap is a computer-based method for assigning measures of accuracy to statistical estimates. (Efron and Tibshrani, 1998.) What do we do when our

More information

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego Model-free prediction intervals for regression and autoregression Dimitris N. Politis University of California, San Diego To explain or to predict? Models are indispensable for exploring/utilizing relationships

More information

Post-exam 2 practice questions 18.05, Spring 2014

Post-exam 2 practice questions 18.05, Spring 2014 Post-exam 2 practice questions 18.05, Spring 2014 Note: This is a set of practice problems for the material that came after exam 2. In preparing for the final you should use the previous review materials,

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Lecture 30. DATA 8 Summer Regression Inference

Lecture 30. DATA 8 Summer Regression Inference DATA 8 Summer 2018 Lecture 30 Regression Inference Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu) Contributions by Fahad Kamran (fhdkmrn@berkeley.edu) and

More information

Model Selection, Estimation, and Bootstrap Smoothing. Bradley Efron Stanford University

Model Selection, Estimation, and Bootstrap Smoothing. Bradley Efron Stanford University Model Selection, Estimation, and Bootstrap Smoothing Bradley Efron Stanford University Estimation After Model Selection Usually: (a) look at data (b) choose model (linear, quad, cubic...?) (c) fit estimates

More information

36. Multisample U-statistics and jointly distributed U-statistics Lehmann 6.1

36. Multisample U-statistics and jointly distributed U-statistics Lehmann 6.1 36. Multisample U-statistics jointly distributed U-statistics Lehmann 6.1 In this topic, we generalize the idea of U-statistics in two different directions. First, we consider single U-statistics for situations

More information

Hypothesis Testing with the Bootstrap. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods

Hypothesis Testing with the Bootstrap. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Hypothesis Testing with the Bootstrap Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Bootstrap Hypothesis Testing A bootstrap hypothesis test starts with a test statistic

More information

Linear Regression and Discrimination

Linear Regression and Discrimination Linear Regression and Discrimination Kernel-based Learning Methods Christian Igel Institut für Neuroinformatik Ruhr-Universität Bochum, Germany http://www.neuroinformatik.rub.de July 16, 2009 Christian

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Machine Learning. Ensemble Methods. Manfred Huber

Machine Learning. Ensemble Methods. Manfred Huber Machine Learning Ensemble Methods Manfred Huber 2015 1 Bias, Variance, Noise Classification errors have different sources Choice of hypothesis space and algorithm Training set Noise in the data The expected

More information

Bias-Variance Decomposition. Mohammad Emtiyaz Khan EPFL Oct 6, 2015

Bias-Variance Decomposition. Mohammad Emtiyaz Khan EPFL Oct 6, 2015 Bias-Variance Decomposition Mohammad Emtiyaz Khan EPFL Oct 6, 2015 Mohammad Emtiyaz Khan 2015 Motivation In ridge regression, we observe a typical behaviour for train and test errors with respect to model

More information

8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7]

8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7] 8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7] While cross-validation allows one to find the weight penalty parameters which would give the model good generalization capability, the separation of

More information

Sequential approaches to reliability estimation and optimization based on kriging

Sequential approaches to reliability estimation and optimization based on kriging Sequential approaches to reliability estimation and optimization based on kriging Rodolphe Le Riche1,2 and Olivier Roustant2 1 CNRS ; 2 Ecole des Mines de Saint-Etienne JSO 2012, ONERA Palaiseau 1 Intro

More information

Regression III Lecture 1: Preliminary

Regression III Lecture 1: Preliminary Regression III Lecture 1: Preliminary Dave Armstrong University of Western Ontario Department of Political Science Department of Statistics and Actuarial Science (by courtesy) e: dave.armstrong@uwo.ca

More information

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 3 Linear Regression II 02.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

PDEEC Machine Learning 2016/17

PDEEC Machine Learning 2016/17 PDEEC Machine Learning 2016/17 Lecture - Model assessment, selection and Ensemble Jaime S. Cardoso jaime.cardoso@inesctec.pt INESC TEC and Faculdade Engenharia, Universidade do Porto Nov. 07, 2017 1 /

More information

Bootstrap prediction intervals for factor models

Bootstrap prediction intervals for factor models Bootstrap prediction intervals for factor models Sílvia Gonçalves and Benoit Perron Département de sciences économiques, CIREQ and CIRAO, Université de Montréal April, 3 Abstract We propose bootstrap prediction

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Homework 2: Simple Linear Regression

Homework 2: Simple Linear Regression STAT 4385 Applied Regression Analysis Homework : Simple Linear Regression (Simple Linear Regression) Thirty (n = 30) College graduates who have recently entered the job market. For each student, the CGPA

More information

A Resampling Method on Pivotal Estimating Functions

A Resampling Method on Pivotal Estimating Functions A Resampling Method on Pivotal Estimating Functions Kun Nie Biostat 277,Winter 2004 March 17, 2004 Outline Introduction A General Resampling Method Examples - Quantile Regression -Rank Regression -Simulation

More information

Statistics for Engineers Lecture 9 Linear Regression

Statistics for Engineers Lecture 9 Linear Regression Statistics for Engineers Lecture 9 Linear Regression Chong Ma Department of Statistics University of South Carolina chongm@email.sc.edu April 17, 2017 Chong Ma (Statistics, USC) STAT 509 Spring 2017 April

More information

University of California San Diego and Stanford University and

University of California San Diego and Stanford University and First International Workshop on Functional and Operatorial Statistics. Toulouse, June 19-21, 2008 K-sample Subsampling Dimitris N. olitis andjoseph.romano University of California San Diego and Stanford

More information

A better way to bootstrap pairs

A better way to bootstrap pairs A better way to bootstrap pairs Emmanuel Flachaire GREQAM - Université de la Méditerranée CORE - Université Catholique de Louvain April 999 Abstract In this paper we are interested in heteroskedastic regression

More information

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data Simulation Alberto Ceselli MSc in Computer Science Univ. of Milan Part 4 - Statistical Analysis of Simulated Data A. Ceselli Simulation P.4 Analysis of Sim. data 1 / 15 Statistical analysis of simulated

More information

STAT Section 2.1: Basic Inference. Basic Definitions

STAT Section 2.1: Basic Inference. Basic Definitions STAT 518 --- Section 2.1: Basic Inference Basic Definitions Population: The collection of all the individuals of interest. This collection may be or even. Sample: A collection of elements of the population.

More information

STAT 4385 Topic 03: Simple Linear Regression

STAT 4385 Topic 03: Simple Linear Regression STAT 4385 Topic 03: Simple Linear Regression Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2017 Outline The Set-Up Exploratory Data Analysis

More information

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods Chapter 4 Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods 4.1 Introduction It is now explicable that ridge regression estimator (here we take ordinary ridge estimator (ORE)

More information

Uncertainty quantification and visualization for functional random variables

Uncertainty quantification and visualization for functional random variables Uncertainty quantification and visualization for functional random variables MascotNum Workshop 2014 S. Nanty 1,3 C. Helbert 2 A. Marrel 1 N. Pérot 1 C. Prieur 3 1 CEA, DEN/DER/SESI/LSMR, F-13108, Saint-Paul-lez-Durance,

More information

Chapter 10. U-statistics Statistical Functionals and V-Statistics

Chapter 10. U-statistics Statistical Functionals and V-Statistics Chapter 10 U-statistics When one is willing to assume the existence of a simple random sample X 1,..., X n, U- statistics generalize common notions of unbiased estimation such as the sample mean and the

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 370 Regression models are used to study the relationship of a response variable and one or more predictors. The response is also called the dependent variable, and the predictors

More information

Why Do Statisticians Treat Predictors as Fixed? A Conspiracy Theory

Why Do Statisticians Treat Predictors as Fixed? A Conspiracy Theory Why Do Statisticians Treat Predictors as Fixed? A Conspiracy Theory Andreas Buja joint with the PoSI Group: Richard Berk, Lawrence Brown, Linda Zhao, Kai Zhang Ed George, Mikhail Traskin, Emil Pitkin,

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models Jingyi Jessica Li Department of Statistics University of California, Los

More information

MS&E 226. In-Class Midterm Examination Solutions Small Data October 20, 2015

MS&E 226. In-Class Midterm Examination Solutions Small Data October 20, 2015 MS&E 226 In-Class Midterm Examination Solutions Small Data October 20, 2015 PROBLEM 1. Alice uses ordinary least squares to fit a linear regression model on a dataset containing outcome data Y and covariates

More information

Simple Linear Regression for the Climate Data

Simple Linear Regression for the Climate Data Prediction Prediction Interval Temperature 0.2 0.0 0.2 0.4 0.6 0.8 320 340 360 380 CO 2 Simple Linear Regression for the Climate Data What do we do with the data? y i = Temperature of i th Year x i =CO

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

On the Accuracy of Bootstrap Confidence Intervals for Efficiency Levels in Stochastic Frontier Models with Panel Data

On the Accuracy of Bootstrap Confidence Intervals for Efficiency Levels in Stochastic Frontier Models with Panel Data On the Accuracy of Bootstrap Confidence Intervals for Efficiency Levels in Stochastic Frontier Models with Panel Data Myungsup Kim University of North Texas Yangseon Kim East-West Center Peter Schmidt

More information

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11 Econometrics A Keio University, Faculty of Economics Simple linear model (2) Simon Clinet (Keio University) Econometrics A October 16, 2018 1 / 11 Estimation of the noise variance σ 2 In practice σ 2 too

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. β 0, β 1 Q = n (Y i (β 0 + β 1 X i )) 2 i=1 Minimize this by maximizing

More information

Probabilistic Regression Using Basis Function Models

Probabilistic Regression Using Basis Function Models Probabilistic Regression Using Basis Function Models Gregory Z. Grudic Department of Computer Science University of Colorado, Boulder grudic@cs.colorado.edu Abstract Our goal is to accurately estimate

More information

Improving Weighted Least Squares Inference

Improving Weighted Least Squares Inference University of Zurich Department of Economics Working Paper Series ISSN 664-704 (print ISSN 664-705X (online Working Paper No. 232 Improving Weighted Least Squares Inference Cyrus J. DiCiccio, Joseph P.

More information

Machine Learning. A. Supervised Learning A.1. Linear Regression. Lars Schmidt-Thieme

Machine Learning. A. Supervised Learning A.1. Linear Regression. Lars Schmidt-Thieme Machine Learning A. Supervised Learning A.1. Linear Regression Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Characterizing Forecast Uncertainty Prediction Intervals. The estimated AR (and VAR) models generate point forecasts of y t+s, y ˆ

Characterizing Forecast Uncertainty Prediction Intervals. The estimated AR (and VAR) models generate point forecasts of y t+s, y ˆ Characterizing Forecast Uncertainty Prediction Intervals The estimated AR (and VAR) models generate point forecasts of y t+s, y ˆ t + s, t. Under our assumptions the point forecasts are asymtotically unbiased

More information

Frequentist Accuracy of Bayesian Estimates

Frequentist Accuracy of Bayesian Estimates Frequentist Accuracy of Bayesian Estimates Bradley Efron Stanford University RSS Journal Webinar Objective Bayesian Inference Probability family F = {f µ (x), µ Ω} Parameter of interest: θ = t(µ) Prior

More information

The Nonparametric Bootstrap

The Nonparametric Bootstrap The Nonparametric Bootstrap The nonparametric bootstrap may involve inferences about a parameter, but we use a nonparametric procedure in approximating the parametric distribution using the ECDF. We use

More information

Lecture 13: Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf

Lecture 13: Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf Lecture 13: 2011 Bootstrap ) R n x n, θ P)) = τ n ˆθn θ P) Example: ˆθn = X n, τ n = n, θ = EX = µ P) ˆθ = min X n, τ n = n, θ P) = sup{x : F x) 0} ) Define: J n P), the distribution of τ n ˆθ n θ P) under

More information

Outline. Confidence intervals More parametric tests More bootstrap and randomization tests. Cohen Empirical Methods CS650

Outline. Confidence intervals More parametric tests More bootstrap and randomization tests. Cohen Empirical Methods CS650 Outline Confidence intervals More parametric tests More bootstrap and randomization tests Parameter Estimation Collect a sample to estimate the value of a population parameter. Example: estimate mean age

More information

STAT 830 Non-parametric Inference Basics

STAT 830 Non-parametric Inference Basics STAT 830 Non-parametric Inference Basics Richard Lockhart Simon Fraser University STAT 801=830 Fall 2012 Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics STAT 801=830

More information

Probability and Statistical Decision Theory

Probability and Statistical Decision Theory Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/ Probability and Statistical Decision Theory Many slides attributable to: Erik Sudderth (UCI) Prof. Mike Hughes

More information

UNIVERSITÄT POTSDAM Institut für Mathematik

UNIVERSITÄT POTSDAM Institut für Mathematik UNIVERSITÄT POTSDAM Institut für Mathematik Testing the Acceleration Function in Life Time Models Hannelore Liero Matthias Liero Mathematische Statistik und Wahrscheinlichkeitstheorie Universität Potsdam

More information

Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION

Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION INTRODUCTION Statistical disclosure control part of preparations for disseminating microdata. Data perturbation techniques: Methods assuring

More information

Higher-Order von Mises Expansions, Bagging and Assumption-Lean Inference

Higher-Order von Mises Expansions, Bagging and Assumption-Lean Inference Higher-Order von Mises Expansions, Bagging and Assumption-Lean Inference Andreas Buja joint with: Richard Berk, Lawrence Brown, Linda Zhao, Arun Kuchibhotla, Kai Zhang Werner Stützle, Ed George, Mikhail

More information

Interval Estimation for AR(1) and GARCH(1,1) Models

Interval Estimation for AR(1) and GARCH(1,1) Models for AR(1) and GARCH(1,1) Models School of Mathematics Georgia Institute of Technology 2010 This talk is based on the following papers: Ngai Hang Chan, Deyuan Li and (2010). Toward a Unified of Autoregressions.

More information

A brief introduction to mixed models

A brief introduction to mixed models A brief introduction to mixed models University of Gothenburg Gothenburg April 6, 2017 Outline An introduction to mixed models based on a few examples: Definition of standard mixed models. Parameter estimation.

More information

ECON 3150/4150, Spring term Lecture 7

ECON 3150/4150, Spring term Lecture 7 ECON 3150/4150, Spring term 2014. Lecture 7 The multivariate regression model (I) Ragnar Nymoen University of Oslo 4 February 2014 1 / 23 References to Lecture 7 and 8 SW Ch. 6 BN Kap 7.1-7.8 2 / 23 Omitted

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap Patrick Breheny December 6 Patrick Breheny BST 764: Applied Statistical Modeling 1/21 The empirical distribution function Suppose X F, where F (x) = Pr(X x) is a distribution function, and we wish to estimate

More information

Resampling and the Bootstrap

Resampling and the Bootstrap Resampling and the Bootstrap Axel Benner Biostatistics, German Cancer Research Center INF 280, D-69120 Heidelberg benner@dkfz.de Resampling and the Bootstrap 2 Topics Estimation and Statistical Testing

More information

Bayesian causal forests: dealing with regularization induced confounding and shrinking towards homogeneous effects

Bayesian causal forests: dealing with regularization induced confounding and shrinking towards homogeneous effects Bayesian causal forests: dealing with regularization induced confounding and shrinking towards homogeneous effects P. Richard Hahn, Jared Murray, and Carlos Carvalho July 29, 2018 Regularization induced

More information

Confidence Estimation Methods for Neural Networks: A Practical Comparison

Confidence Estimation Methods for Neural Networks: A Practical Comparison , 6-8 000, Confidence Estimation Methods for : A Practical Comparison G. Papadopoulos, P.J. Edwards, A.F. Murray Department of Electronics and Electrical Engineering, University of Edinburgh Abstract.

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

A multiple testing procedure for input variable selection in neural networks

A multiple testing procedure for input variable selection in neural networks A multiple testing procedure for input variable selection in neural networks MicheleLaRoccaandCiraPerna Department of Economics and Statistics - University of Salerno Via Ponte Don Melillo, 84084, Fisciano

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Chapter 12: Multiple Linear Regression

Chapter 12: Multiple Linear Regression Chapter 12: Multiple Linear Regression Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 55 Introduction A regression model can be expressed as

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Supervised Learning: Regression I Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Some of the

More information

Defect Detection using Nonparametric Regression

Defect Detection using Nonparametric Regression Defect Detection using Nonparametric Regression Siana Halim Industrial Engineering Department-Petra Christian University Siwalankerto 121-131 Surabaya- Indonesia halim@petra.ac.id Abstract: To compare

More information

Block Bootstrap Prediction Intervals for Vector Autoregression

Block Bootstrap Prediction Intervals for Vector Autoregression Department of Economics Working Paper Block Bootstrap Prediction Intervals for Vector Autoregression Jing Li Miami University 2013 Working Paper # - 2013-04 Block Bootstrap Prediction Intervals for Vector

More information

Analysis of Fast Input Selection: Application in Time Series Prediction

Analysis of Fast Input Selection: Application in Time Series Prediction Analysis of Fast Input Selection: Application in Time Series Prediction Jarkko Tikka, Amaury Lendasse, and Jaakko Hollmén Helsinki University of Technology, Laboratory of Computer and Information Science,

More information

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator by Emmanuel Flachaire Eurequa, University Paris I Panthéon-Sorbonne December 2001 Abstract Recent results of Cribari-Neto and Zarkos

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part III: Parametric Bootstrap Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD)

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Bootstrap (Part 3) Christof Seiler. Stanford University, Spring 2016, Stats 205

Bootstrap (Part 3) Christof Seiler. Stanford University, Spring 2016, Stats 205 Bootstrap (Part 3) Christof Seiler Stanford University, Spring 2016, Stats 205 Overview So far we used three different bootstraps: Nonparametric bootstrap on the rows (e.g. regression, PCA with random

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Reliability of inference (1 of 2 lectures)

Reliability of inference (1 of 2 lectures) Reliability of inference (1 of 2 lectures) Ragnar Nymoen University of Oslo 5 March 2013 1 / 19 This lecture (#13 and 14): I The optimality of the OLS estimators and tests depend on the assumptions of

More information

STAT 511. Lecture : Simple linear regression Devore: Section Prof. Michael Levine. December 3, Levine STAT 511

STAT 511. Lecture : Simple linear regression Devore: Section Prof. Michael Levine. December 3, Levine STAT 511 STAT 511 Lecture : Simple linear regression Devore: Section 12.1-12.4 Prof. Michael Levine December 3, 2018 A simple linear regression investigates the relationship between the two variables that is not

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research

More information

A Non-parametric bootstrap for multilevel models

A Non-parametric bootstrap for multilevel models A Non-parametric bootstrap for multilevel models By James Carpenter London School of Hygiene and ropical Medicine Harvey Goldstein and Jon asbash Institute of Education 1. Introduction Bootstrapping is

More information

Econometrics. Andrés M. Alonso. Unit 1: Introduction: The regression model. Unit 2: Estimation principles. Unit 3: Hypothesis testing principles.

Econometrics. Andrés M. Alonso. Unit 1: Introduction: The regression model. Unit 2: Estimation principles. Unit 3: Hypothesis testing principles. Andrés M. Alonso andres.alonso@uc3m.es Unit 1: Introduction: The regression model. Unit 2: Estimation principles. Unit 3: Hypothesis testing principles. Unit 4: Heteroscedasticity in the regression model.

More information

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club 36-825 1 Introduction Jisu Kim and Veeranjaneyulu Sadhanala In this report

More information