Hierarchies. 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n )

Size: px
Start display at page:

Download "Hierarchies. 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n )"

Transcription

1 Hierarchies

2 Today 1. Some more familiarity with Hierarchies 2. Examples of some basic upper and lower bounds 3. Survey of recent results (possible material for future talks)

3 Hierarchies 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n ) x = x 1,, x n P = prob. distribution over S Want to approximate P by putting linear constraints on x i. Hierarchies try to capture some kind of local correlations

4 Sherali Adams Variable x S intended to model π i S x i x i 2 = x i, so x S = x S {i} if i S Take LP, multiply each constraint by Π i I x i Π j J 1 x j for all I J = S S t x S should satisfy additional constraints Applying this to constraint 1 >= 0 x 12 0 x 1 x 12 0 x 2 x x 1 x 2 + x 12 0 Same as: M S (x) PSD and M S (g l * x) PSD

5 Alternate Description x S,α α 0,1 S Non-negativity x S,α 0 Consistency: x 12, 00 + x 12, 01 = x 1, 0 = x 13, 00 + x 13, 01 Sum up to 1. Pf: x S,α = T S α 1 (0) 1 T x S α 1 1 T (inclusion-exclusion) Alternate view: Define a probability distribution D(S) on each subset S. D S and D T consistent on S T Sherali Adams solution local distributions D(S) that satisfy LP constraints. (will make more sense later)

6 Knapsack Single constraint: Max i p i x i s. t. i a i x i B Sherali Adams: Multiply by Π i I x i Π j J 1 x j for all I J = S S t a i = 1 B = 1.99 x x n 1.99 Can determine x i,j = 0. How? Yet LP has integrality gap about 2, even for linear rounds.

7 Knapsack Gap x x n 2 ε Consider solution x i = p = x S = 0 for 2 S αn 2 ε n 1+α 1 ε Claim: Solution valid for αn rounds of SA. Proof: 1) Valid distribution on S. 2) Constraints: Suffices to check multiplication with π i S 1 x i only i S x i 2 ε (1 x i ) i S

8 Max independent set x i + x j 1 for i, j E Recovers x ij = 0 for edges. (Does not seem to capture clique constraints like Lasserre will do?)

9 Max-cut Basic LP. x ij variables i, j V Max (i,j) E x ij x ij + x jk x ik x ij + x jk + x ki 2 Perhaps could add more valid inequalities E.g. For every set of 5 vertices, at most 6 edges in cut. [Kenyon-Mathieu, de la Vega 07] Gap ½ + ε after log Ω 1 n rounds. Idea: Construct consistent distribution D S on up to 2t +3 vertices (i.e. valid combination of cuts). But objective far from any cut. [Charikar Makarychev Makarychev 09] Even after n γ rounds

10 Lasserre Hierarchy x S variables as in Sherali Adams Multiply by Π i I x i Π j S\I (1 x j ) for all I S, S t Put the constraint that M t x is PSD (previously M S x PSD) Has the following nice implication

11 Recall: Y PSD iff y ij = < v i, v j > for some vectors v 1,, v n (Y = V V T, Cholesky decomposition) M t x matrix with entries are indexed by S,T: x S T So x S T = < v S, v T > Stated as follows: Linear constraints on x_s obtained from g l and from constraint 1>= 0 < v S, v S > = < v T, v T > if S S = T T V φ 2 = 1

12 Interesting consequence x i = < v i, v φ > = < v i, v i > In other words, v i v φ 2 2 = v φ 2 4 Could have also expressed things using x S,α x S,α = < v φ, v S,α > V S,α = ( 1) T T α 1 0 v α 1 1 T

13 Knapsack Let us look at the previous example Max x x n x x n 1.9 Lasserre objective: v i 2 i Claim: Objective 1 As previously x ij = 0. Now implies < v i, v j > = 0 Suppose objective = t >1. 2 Consider i v i tv 0

14 Max independent set One round of Lasserre implies clique inequalities i C x i 1 C: clique As previously x ij = 0. Now implies < v i, v j > = 0 So, i v φ, v i v i 2 1 (as v_i/ v_i orthonormal) But x i = < v i, v φ > = v i 2

15 Max-cut Goemans Williamson SDP get (first level of Lasserre)

16 Mixed Hierarchy Lasserre powerful, but Sherali adams also very useful. Dense max-cut Problems on bounded treewidth graphs Mixed k-hierarchy: Sherali Adams k levels But SDP only on level 1, i.e. X ij = < v i, v j >, x i = < v i, v φ >, 1 =< v φ, v φ > Raghavendra 08: Assuming UGC, best algorithm for any Max-k-CSP is one k-level mixed hierarchy. Idea: Any integrality gap instance can be converted to NP-Hardness proof.

17 Partial Survey How to use the power of hierarchies. How to show that they do not help. Progress on long-standing questions. 1. Sparsest Cut Find S, s.t. min E[S,V\S]/( S V\S ) LP does not give better than log n min x e e E s.t. x ij = 1 and x ij + x jk x ik ARV: Using SDPs (2 nd level hierarchy) get log n Natural formulation + triangle inequalities 2 x ij = v i v j (embedding l_2 square metrics into l_1) (known integrality gaps still far from this)

18 Coloring 3-colorable graphs Using n 0.5 colors (Wigderson) n 0.4 [Blum 91] (blum coloring tools) n 0.25 [Karger Motwani Sudan] n 3/14 [Blum Karger] Sequence of improvements Use ARV structure on space of solutions Recent improvement on Blum coloring tools (Thorup Kawarabayashi 12) Current best around n Belief: n ε approximation using O 1 ε rounds of Lasserre Recently Arora-Ge show... Ratios for special classes Use Local-Global Correlation ideas recently developed.

19 Dense k-subgraph improved best known bound n 1/4 Use Sherali Adams Cannot beat n 1/4 using SA (SODA 12) Strong Lasserre lower bounds: n ε rounds but n γ hardness Unique Games: Local-global correlations Performance of Lasserre rounding related to spectrum of graph. General Techniques: Decomposition Lemma in context of Knapsack Directed Steiner Tree [Rothvoss]

20 How to show lower bounds. Nice techniques developed SA: Max-cut: any local constraint involves at most 2t+3 vertices. If x_s obtained from actual distribution on cuts on V[S] no constraint can be violated. Goal: Design distributions s.t. locally good, but globally bad. LS: (1,x) N(P) if protection matrix Y s.t. (Y 0 Y i )/(1 x i ) P and Y i x i Y 0 = (1, x), Y ii = x i, P x N t (P) if terms above in t-1 th level. Design a lower bound can be viewed as a game against adversary.

linear programming and approximate constraint satisfaction

linear programming and approximate constraint satisfaction linear programming and approximate constraint satisfaction Siu On Chan MSR New England James R. Lee University of Washington Prasad Raghavendra UC Berkeley David Steurer Cornell results MAIN THEOREM: Any

More information

Introduction to LP and SDP Hierarchies

Introduction to LP and SDP Hierarchies Introduction to LP and SDP Hierarchies Madhur Tulsiani Princeton University Local Constraints in Approximation Algorithms Linear Programming (LP) or Semidefinite Programming (SDP) based approximation algorithms

More information

Integrality Gaps for Sherali Adams Relaxations

Integrality Gaps for Sherali Adams Relaxations Integrality Gaps for Sherali Adams Relaxations Moses Charikar Princeton University Konstantin Makarychev IBM T.J. Watson Research Center Yury Makarychev Microsoft Research Abstract We prove strong lower

More information

Lift-and-Project Techniques and SDP Hierarchies

Lift-and-Project Techniques and SDP Hierarchies MFO seminar on Semidefinite Programming May 30, 2010 Typical combinatorial optimization problem: max c T x s.t. Ax b, x {0, 1} n P := {x R n Ax b} P I := conv(k {0, 1} n ) LP relaxation Integral polytope

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover

A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover Grant Schoenebeck Luca Trevisan Madhur Tulsiani Abstract We study semidefinite programming relaxations of Vertex Cover arising

More information

Approximating Sparsest Cut in Graphs of Bounded Treewidth

Approximating Sparsest Cut in Graphs of Bounded Treewidth Approximating Sparsest Cut in Graphs of Bounded Treewidth Eden Chlamtac 1, Robert Krauthgamer 1, and Prasad Raghavendra 2 1 Weizmann Institute of Science, Rehovot, Israel. {eden.chlamtac,robert.krauthgamer}@weizmann.ac.il

More information

Tight Integrality Gaps for Lovasz-Schrijver LP Relaxations of Vertex Cover and Max Cut

Tight Integrality Gaps for Lovasz-Schrijver LP Relaxations of Vertex Cover and Max Cut Tight Integrality Gaps for Lovasz-Schrijver LP Relaxations of Vertex Cover and Max Cut Grant Schoenebeck Luca Trevisan Madhur Tulsiani Abstract We study linear programming relaxations of Vertex Cover and

More information

Partitioning Algorithms that Combine Spectral and Flow Methods

Partitioning Algorithms that Combine Spectral and Flow Methods CS369M: Algorithms for Modern Massive Data Set Analysis Lecture 15-11/11/2009 Partitioning Algorithms that Combine Spectral and Flow Methods Lecturer: Michael Mahoney Scribes: Kshipra Bhawalkar and Deyan

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 We present the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre

More information

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs 1 Cambridge, July 2013 1 Joint work with Franklin Djeumou Fomeni and Adam N. Letchford Outline 1. Introduction 2. Literature Review

More information

Unique Games Conjecture & Polynomial Optimization. David Steurer

Unique Games Conjecture & Polynomial Optimization. David Steurer Unique Games Conjecture & Polynomial Optimization David Steurer Newton Institute, Cambridge, July 2013 overview Proof Complexity Approximability Polynomial Optimization Quantum Information computational

More information

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell Lower bounds on the size of semidefinite relaxations David Steurer Cornell James R. Lee Washington Prasad Raghavendra Berkeley Institute for Advanced Study, November 2015 overview of results unconditional

More information

Optimal Sherali-Adams Gaps from Pairwise Independence

Optimal Sherali-Adams Gaps from Pairwise Independence Optimal Sherali-Adams Gaps from Pairwise Independence Konstantinos Georgiou Avner Magen Madhur Tulsiani {cgeorg,avner}@cs.toronto.edu, madhurt@cs.berkeley.edu Abstract This work considers the problem of

More information

Lecture : Lovász Theta Body. Introduction to hierarchies.

Lecture : Lovász Theta Body. Introduction to hierarchies. Strong Relaations for Discrete Optimization Problems 20-27/05/6 Lecture : Lovász Theta Body. Introduction to hierarchies. Lecturer: Yuri Faenza Scribes: Yuri Faenza Recall: stable sets and perfect graphs

More information

Sherali-Adams relaxations of the matching polytope

Sherali-Adams relaxations of the matching polytope Sherali-Adams relaxations of the matching polytope Claire Mathieu Alistair Sinclair November 17, 2008 Abstract We study the Sherali-Adams lift-and-project hierarchy of linear programming relaxations of

More information

Approximating Sparsest Cut in Graphs of Bounded Treewidth

Approximating Sparsest Cut in Graphs of Bounded Treewidth Approximating Sparsest Cut in Graphs of Bounded Treewidth Eden Chlamtac Weizmann Institute Robert Krauthgamer Weizmann Institute Prasad Raghavendra Microsoft Research New England Abstract We give the first

More information

Cuts for mixed 0-1 conic programs

Cuts for mixed 0-1 conic programs Cuts for mixed 0-1 conic programs G. Iyengar 1 M. T. Cezik 2 1 IEOR Department Columbia University, New York. 2 GERAD Université de Montréal, Montréal TU-Chemnitz Workshop on Integer Programming and Continuous

More information

Improved Hardness of Approximating Chromatic Number

Improved Hardness of Approximating Chromatic Number Improved Hardness of Approximating Chromatic Number Sangxia Huang KTH Royal Institute of Technology Stockholm, Sweden sangxia@csc.kth.se April 13, 2013 Abstract We prove that for sufficiently large K,

More information

A better approximation ratio for the Vertex Cover problem

A better approximation ratio for the Vertex Cover problem A better approximation ratio for the Vertex Cover problem George Karakostas Dept. of Computing and Software McMaster University October 5, 004 Abstract We reduce the approximation factor for Vertex Cover

More information

Limitations of Linear and Semidefinite Programs by Grant Robert Schoenebeck

Limitations of Linear and Semidefinite Programs by Grant Robert Schoenebeck Limitations of Linear and Semidefinite Programs by Grant Robert Schoenebeck A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science

More information

Approximation Algorithms for the k-set Packing Problem

Approximation Algorithms for the k-set Packing Problem Approximation Algorithms for the k-set Packing Problem Marek Cygan Institute of Informatics University of Warsaw 20th October 2016, Warszawa Marek Cygan Approximation Algorithms for the k-set Packing Problem

More information

Improving Integrality Gaps via Chvátal-Gomory Rounding

Improving Integrality Gaps via Chvátal-Gomory Rounding Improving Integrality Gaps via Chvátal-Gomory Rounding Mohit Singh Kunal Talwar June 23, 2010 Abstract In this work, we study the strength of the Chvátal-Gomory cut generating procedure for several hard

More information

arxiv: v1 [cs.ds] 6 Oct 2011

arxiv: v1 [cs.ds] 6 Oct 2011 Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph Aditya Bhaskara Moses Charikar Venkatesan Guruswami Aravindan Vijayaraghavan Yuan Zhou arxiv:1110.1360v1 [cs.ds] 6 Oct 2011

More information

CSC Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method

CSC Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method CSC2411 - Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method Notes taken by Stefan Mathe April 28, 2007 Summary: Throughout the course, we have seen the importance

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 16th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2013 and

More information

Approximation & Complexity

Approximation & Complexity Summer school on semidefinite optimization Approximation & Complexity David Steurer Cornell University Part 1 September 6, 2012 Overview Part 1 Unique Games Conjecture & Basic SDP Part 2 SDP Hierarchies:

More information

Integrality Gaps of Linear and Semi-definite Programming Relaxations for Knapsack

Integrality Gaps of Linear and Semi-definite Programming Relaxations for Knapsack Integrality Gaps of Linear and Semi-definite Programming Relaxations for Knapsack Anna R. Karlin Claire Mathieu C. Thach Nguyen Abstract Recent years have seen an explosion of interest in lift and project

More information

Lecture 5. Max-cut, Expansion and Grothendieck s Inequality

Lecture 5. Max-cut, Expansion and Grothendieck s Inequality CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017 Lecture 5. Max-cut, Expansion and Grothendieck s Inequality Professor Moses Charikar Scribes: Kiran Shiragur Overview Here we derive

More information

Positive Semi-definite programing and applications for approximation

Positive Semi-definite programing and applications for approximation Combinatorial Optimization 1 Positive Semi-definite programing and applications for approximation Guy Kortsarz Combinatorial Optimization 2 Positive Sem-Definite (PSD) matrices, a definition Note that

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Notice that lemma 4 has nothing to do with 3-colorability. To obtain a better result for 3-colorable graphs, we need the following observation.

Notice that lemma 4 has nothing to do with 3-colorability. To obtain a better result for 3-colorable graphs, we need the following observation. COMPSCI 632: Approximation Algorithms November 1, 2017 Lecturer: Debmalya Panigrahi Lecture 18 Scribe: Feng Gui 1 Overview In this lecture, we examine graph coloring algorithms. We first briefly discuss

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS. Albert Atserias Universitat Politècnica de Catalunya Barcelona

MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS. Albert Atserias Universitat Politècnica de Catalunya Barcelona MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS Albert Atserias Universitat Politècnica de Catalunya Barcelona Part I CONVEX POLYTOPES Convex polytopes as linear inequalities Polytope: P = {x R n : Ax b}

More information

How hard is it to find a good solution?

How hard is it to find a good solution? How hard is it to find a good solution? Simons Institute Open Lecture November 4, 2013 Research Area: Complexity Theory Given a computational problem, find an efficient algorithm that solves it. Goal of

More information

Unique Games and Small Set Expansion

Unique Games and Small Set Expansion Proof, beliefs, and algorithms through the lens of sum-of-squares 1 Unique Games and Small Set Expansion The Unique Games Conjecture (UGC) (Khot [2002]) states that for every ɛ > 0 there is some finite

More information

CMPUT 675: Approximation Algorithms Fall 2014

CMPUT 675: Approximation Algorithms Fall 2014 CMPUT 675: Approximation Algorithms Fall 204 Lecture 25 (Nov 3 & 5): Group Steiner Tree Lecturer: Zachary Friggstad Scribe: Zachary Friggstad 25. Group Steiner Tree In this problem, we are given a graph

More information

Approximating maximum satisfiable subsystems of linear equations of bounded width

Approximating maximum satisfiable subsystems of linear equations of bounded width Approximating maximum satisfiable subsystems of linear equations of bounded width Zeev Nutov The Open University of Israel Daniel Reichman The Open University of Israel Abstract We consider the problem

More information

arxiv: v2 [cs.ds] 11 Jun 2012

arxiv: v2 [cs.ds] 11 Jun 2012 Directed Steiner Tree and the Lasserre Hierarchy Thomas Rothvoß arxiv:1111.5473v2 [cs.ds] 11 Jun 2012 M.I.T. rothvoss@math.mit.edu June 13, 2012 Abstract The goal for the DIRECTED STEINER TREE problem

More information

Max Cut (1994; 1995; Goemans, Williamson)

Max Cut (1994; 1995; Goemans, Williamson) Max Cut (1994; 1995; Goemans, Williamson) Alantha Newman Max-Planck-Institut für Informatik http://www.mpi-inf.mpg.de/alantha 1 Index Terms Graph partitioning, Approximation algorithms. 2 Synonyms Maximum

More information

Lecture 20: Course summary and open problems. 1 Tools, theorems and related subjects

Lecture 20: Course summary and open problems. 1 Tools, theorems and related subjects CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 20: Course summary and open problems Dec. 7, 2005 Lecturer: Ryan O Donnell Scribe: Ioannis Giotis Topics we discuss in this

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

Subsampling Semidefinite Programs and Max-Cut on the Sphere

Subsampling Semidefinite Programs and Max-Cut on the Sphere Electronic Colloquium on Computational Complexity, Report No. 129 (2009) Subsampling Semidefinite Programs and Max-Cut on the Sphere Boaz Barak Moritz Hardt Thomas Holenstein David Steurer November 29,

More information

SDP gaps for 2-to-1 and other Label-Cover variants

SDP gaps for 2-to-1 and other Label-Cover variants SDP gaps for -to-1 and other Label-Cover variants Venkatesan Guruswami 1, Subhash Khot, Ryan O Donnell 1, Preyas Popat, Madhur Tulsiani 3, and Yi Wu 1 1 Computer Science Department Carnegie Mellon University

More information

On the efficient approximability of constraint satisfaction problems

On the efficient approximability of constraint satisfaction problems On the efficient approximability of constraint satisfaction problems July 13, 2007 My world Max-CSP Efficient computation. P Polynomial time BPP Probabilistic Polynomial time (still efficient) NP Non-deterministic

More information

Downloaded 05/14/13 to Redistribution subject to SIAM license or copyright; see

Downloaded 05/14/13 to Redistribution subject to SIAM license or copyright; see SIAM J. COMPUT. Vol. 39, No. 8, pp. 3553 3570 c 2010 Society for Industrial and Applied Mathematics INTEGRALITY GAPS OF 2 o(1) FOR VERTEX COVER SDPs IN THE LOVÁSZ SCHRIJVER HIERARCHY KONSTANTINOS GEORGIOU,

More information

Approximate Hypergraph Coloring. 1 Introduction. Noga Alon 1 Pierre Kelsen 2 Sanjeev Mahajan 3 Hariharan Ramesh 4

Approximate Hypergraph Coloring. 1 Introduction. Noga Alon 1 Pierre Kelsen 2 Sanjeev Mahajan 3 Hariharan Ramesh 4 Approximate Hypergraph Coloring Noga Alon 1 Pierre Kelsen 2 Sanjeev Mahajan Hariharan Ramesh 4 Abstract A coloring of a hypergraph is a mapping of vertices to colors such that no hyperedge is monochromatic.

More information

arxiv:cs/ v1 [cs.cc] 7 Sep 2006

arxiv:cs/ v1 [cs.cc] 7 Sep 2006 Approximation Algorithms for the Bipartite Multi-cut problem arxiv:cs/0609031v1 [cs.cc] 7 Sep 2006 Sreyash Kenkre Sundar Vishwanathan Department Of Computer Science & Engineering, IIT Bombay, Powai-00076,

More information

Hypergraph Matching by Linear and Semidefinite Programming. Yves Brise, ETH Zürich, Based on 2010 paper by Chan and Lau

Hypergraph Matching by Linear and Semidefinite Programming. Yves Brise, ETH Zürich, Based on 2010 paper by Chan and Lau Hypergraph Matching by Linear and Semidefinite Programming Yves Brise, ETH Zürich, 20110329 Based on 2010 paper by Chan and Lau Introduction Vertex set V : V = n Set of hyperedges E Hypergraph matching:

More information

Integrality gaps of semidefinite programs for Vertex Cover and relations to l 1 embeddability of negative type metrics

Integrality gaps of semidefinite programs for Vertex Cover and relations to l 1 embeddability of negative type metrics Integrality gaps of semidefinite programs for Vertex Cover and relations to l 1 embeddability of negative type metrics Hamed Hatami, Avner Magen, and Evangelos Markakis Department of Computer Science,

More information

Complexity Classes V. More PCPs. Eric Rachlin

Complexity Classes V. More PCPs. Eric Rachlin Complexity Classes V More PCPs Eric Rachlin 1 Recall from last time Nondeterminism is equivalent to having access to a certificate. If a valid certificate exists, the machine accepts. We see that problems

More information

Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs

Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs Massimo Lauria KTH Royal Institute of Technology (Stockholm) 1 st Computational Complexity Conference, 015 Portland! Joint work with Jakob Nordström

More information

Some Open Problems in Approximation Algorithms

Some Open Problems in Approximation Algorithms Some Open Problems in Approximation Algorithms David P. Williamson School of Operations Research and Information Engineering Cornell University November 2, 2010 Egerváry Research Group on Combinatorial

More information

CORC REPORT Approximate fixed-rank closures of covering problems

CORC REPORT Approximate fixed-rank closures of covering problems CORC REPORT 2003-01 Approximate fixed-rank closures of covering problems Daniel Bienstock and Mark Zuckerberg (Columbia University) January, 2003 version 2004-August-25 Abstract Consider a 0/1 integer

More information

Hierarchical Clustering via Spreading Metrics

Hierarchical Clustering via Spreading Metrics Journal of Machine Learning Research 18 2017) 1-35 Submitted 2/17; Revised 5/17; Published 8/17 Hierarchical Clustering via Spreading Metrics Aurko Roy College of Computing Georgia Institute of Technology

More information

Some Open Problems in Approximation Algorithms

Some Open Problems in Approximation Algorithms Some Open Problems in Approximation Algorithms David P. Williamson School of Operations Research and Information Engineering Cornell University February 28, 2011 University of Bonn Bonn, Germany David

More information

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Moses Charikar Konstantin Makarychev Yury Makarychev Princeton University Abstract In this paper we present approximation algorithms

More information

Information Theory + Polyhedral Combinatorics

Information Theory + Polyhedral Combinatorics Information Theory + Polyhedral Combinatorics Sebastian Pokutta Georgia Institute of Technology ISyE, ARC Joint work Gábor Braun Information Theory in Complexity Theory and Combinatorics Simons Institute

More information

arxiv: v15 [math.oc] 19 Oct 2016

arxiv: v15 [math.oc] 19 Oct 2016 LP formulations for mixed-integer polynomial optimization problems Daniel Bienstock and Gonzalo Muñoz, Columbia University, December 2014 arxiv:1501.00288v15 [math.oc] 19 Oct 2016 Abstract We present a

More information

Graph Sparsifiers: A Survey

Graph Sparsifiers: A Survey Graph Sparsifiers: A Survey Nick Harvey UBC Based on work by: Batson, Benczur, de Carli Silva, Fung, Hariharan, Harvey, Karger, Panigrahi, Sato, Spielman, Srivastava and Teng Approximating Dense Objects

More information

Part II Strong lift-and-project cutting planes. Vienna, January 2012

Part II Strong lift-and-project cutting planes. Vienna, January 2012 Part II Strong lift-and-project cutting planes Vienna, January 2012 The Lovász and Schrijver M(K, K) Operator Let K be a given linear system in 0 1 variables. for any pair of inequalities αx β 0 and α

More information

A simple LP relaxation for the Asymmetric Traveling Salesman Problem

A simple LP relaxation for the Asymmetric Traveling Salesman Problem A simple LP relaxation for the Asymmetric Traveling Salesman Problem Thành Nguyen Cornell University, Center for Applies Mathematics 657 Rhodes Hall, Ithaca, NY, 14853,USA thanh@cs.cornell.edu Abstract.

More information

1 The independent set problem

1 The independent set problem ORF 523 Lecture 11 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Tuesday, March 29, 2016 When in doubt on the accuracy of these notes, please cross chec with the instructor

More information

Label Cover Algorithms via the Log-Density Threshold

Label Cover Algorithms via the Log-Density Threshold Label Cover Algorithms via the Log-Density Threshold Jimmy Wu jimmyjwu@stanford.edu June 13, 2017 1 Introduction Since the discovery of the PCP Theorem and its implications for approximation algorithms,

More information

How to Play Unique Games against a Semi-Random Adversary

How to Play Unique Games against a Semi-Random Adversary How to Play Unique Games against a Semi-Random Adversary Study of Semi-Random Models of Unique Games Alexandra Kolla Microsoft Research Konstantin Makarychev IBM Research Yury Makarychev TTIC Abstract

More information

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix ORIE 6334 Spectral Graph Theory December, 06 Lecturer: David P. Williamson Lecture 7 Remix Scribe: Qinru Shi Note: This is an altered version of the lecture I actually gave, which followed the structure

More information

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V.

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V. Dynamic Programming on Trees Example: Independent Set on T = (V, E) rooted at r V. For v V let T v denote the subtree rooted at v. Let f + (v) be the size of a maximum independent set for T v that contains

More information

Overview. 1 Introduction. 2 Preliminary Background. 3 Unique Game. 4 Unique Games Conjecture. 5 Inapproximability Results. 6 Unique Game Algorithms

Overview. 1 Introduction. 2 Preliminary Background. 3 Unique Game. 4 Unique Games Conjecture. 5 Inapproximability Results. 6 Unique Game Algorithms Overview 1 Introduction 2 Preliminary Background 3 Unique Game 4 Unique Games Conjecture 5 Inapproximability Results 6 Unique Game Algorithms 7 Conclusion Antonios Angelakis (NTUA) Theory of Computation

More information

Rounding Lasserre SDPs using column selection and spectrum-based approximation schemes for graph partitioning and Quadratic IPs

Rounding Lasserre SDPs using column selection and spectrum-based approximation schemes for graph partitioning and Quadratic IPs Rounding Lasserre SDPs using column selection and spectrum-based approximation schemes for graph partitioning and Quadratic IPs Venkatesan Guruswami guruswami@cmu.edu Computer Science Department, Carnegie

More information

Approximability of Constraint Satisfaction Problems

Approximability of Constraint Satisfaction Problems Approximability of Constraint Satisfaction Problems Venkatesan Guruswami Carnegie Mellon University October 2009 Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 1 / 1 Constraint Satisfaction

More information

Lecture 1: April 24, 2013

Lecture 1: April 24, 2013 TTIC/CMSC 31150 Mathematical Toolkit Spring 2013 Madhur Tulsiani Lecture 1: April 24, 2013 Scribe: Nikita Mishra 1 Applications of dimensionality reduction In this lecture we talk about various useful

More information

Sherali-Adams Relaxations of the Matching Polytope

Sherali-Adams Relaxations of the Matching Polytope Sherali-Adams Relaxations of the Matching Polytope Claire Mathieu Computer Science Department Brown University Providence, RI 091 claire@cs.brown.edu Alistair Sinclair Computer Science Division University

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 12 Luca Trevisan October 3, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 12 Luca Trevisan October 3, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analysis Handout 1 Luca Trevisan October 3, 017 Scribed by Maxim Rabinovich Lecture 1 In which we begin to prove that the SDP relaxation exactly recovers communities

More information

Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph

Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph Aditya Bhaskara Moses Charikar Venkatesan Guruswami Aravindan Vijayaraghavan Yuan Zhou July 12, 2011 Abstract The Densest k-subgraph

More information

A Union of Euclidean Spaces is Euclidean. Konstantin Makarychev, Northwestern Yury Makarychev, TTIC

A Union of Euclidean Spaces is Euclidean. Konstantin Makarychev, Northwestern Yury Makarychev, TTIC Union of Euclidean Spaces is Euclidean Konstantin Makarychev, Northwestern Yury Makarychev, TTIC MS Meeting, New York, May 7, 2017 Problem by ssaf Naor Suppose that metric space (X, d) is a union of two

More information

Applications of semidefinite programming in Algebraic Combinatorics

Applications of semidefinite programming in Algebraic Combinatorics Applications of semidefinite programming in Algebraic Combinatorics Tohoku University The 23rd RAMP Symposium October 24, 2011 We often want to 1 Bound the value of a numerical parameter of certain combinatorial

More information

Approximation Algorithms and Hardness of Approximation May 14, Lecture 22

Approximation Algorithms and Hardness of Approximation May 14, Lecture 22 Approximation Algorithms and Hardness of Approximation May 4, 03 Lecture Lecturer: Alantha Newman Scribes: Christos Kalaitzis The Unique Games Conjecture The topic of our next lectures will be the Unique

More information

Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds

Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds Kenya Ueno The Young Researcher Development Center and Graduate School of Informatics, Kyoto University kenya@kuis.kyoto-u.ac.jp Abstract.

More information

Lecture 2: November 9

Lecture 2: November 9 Semidefinite programming and computational aspects of entanglement IHP Fall 017 Lecturer: Aram Harrow Lecture : November 9 Scribe: Anand (Notes available at http://webmitedu/aram/www/teaching/sdphtml)

More information

On the Optimality of Some Semidefinite Programming-Based. Approximation Algorithms under the Unique Games Conjecture. A Thesis presented

On the Optimality of Some Semidefinite Programming-Based. Approximation Algorithms under the Unique Games Conjecture. A Thesis presented On the Optimality of Some Semidefinite Programming-Based Approximation Algorithms under the Unique Games Conjecture A Thesis presented by Seth Robert Flaxman to Computer Science in partial fulfillment

More information

Graph Partitioning and Semi-definite Programming Hierarchies

Graph Partitioning and Semi-definite Programming Hierarchies Graph Partitioning and Semi-definite Programming Hierarchies Ali Kemal Sinop CMU-CS-12-121 May 15, 2012 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Venkatesan

More information

ACO Comprehensive Exam 19 March Graph Theory

ACO Comprehensive Exam 19 March Graph Theory 1. Graph Theory Let G be a connected simple graph that is not a cycle and is not complete. Prove that there exist distinct non-adjacent vertices u, v V (G) such that the graph obtained from G by deleting

More information

Optimization Exercise Set n.5 :

Optimization Exercise Set n.5 : Optimization Exercise Set n.5 : Prepared by S. Coniglio translated by O. Jabali 2016/2017 1 5.1 Airport location In air transportation, usually there is not a direct connection between every pair of airports.

More information

8 Approximation Algorithms and Max-Cut

8 Approximation Algorithms and Max-Cut 8 Approximation Algorithms and Max-Cut 8. The Max-Cut problem Unless the widely believed P N P conjecture is false, there is no polynomial algorithm that can solve all instances of an NP-hard problem.

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

arxiv: v1 [cs.ds] 29 Aug 2015

arxiv: v1 [cs.ds] 29 Aug 2015 APPROXIMATING (UNWEIGHTED) TREE AUGMENTATION VIA LIFT-AND-PROJECT, PART I: STEMLESS TAP JOSEPH CHERIYAN AND ZHIHAN GAO arxiv:1508.07504v1 [cs.ds] 9 Aug 015 Abstract. In Part I, we study a special case

More information

Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007

Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007 CS880: Approximations Algorithms Scribe: Tom Watson Lecturer: Shuchi Chawla Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007 In the last lecture, we described an O(log k log D)-approximation

More information

A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE

A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE Boaz Barak Sam Hopkins Jon Kelner Pravesh Kothari Ankur Moitra Aaron Potechin on the market! PLANTED CLIQUE ("DISTINGUISHING") Input: graph

More information

Local Constraints in Combinatorial Optimization. Madhur Tulsiani

Local Constraints in Combinatorial Optimization. Madhur Tulsiani Local Constraints in Combinatorial Optimization by Madhur Tulsiani A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the

More information

Basic Properties of Metric and Normed Spaces

Basic Properties of Metric and Normed Spaces Basic Properties of Metric and Normed Spaces Computational and Metric Geometry Instructor: Yury Makarychev The second part of this course is about metric geometry. We will study metric spaces, low distortion

More information

Optimization of Submodular Functions Tutorial - lecture I

Optimization of Submodular Functions Tutorial - lecture I Optimization of Submodular Functions Tutorial - lecture I Jan Vondrák 1 1 IBM Almaden Research Center San Jose, CA Jan Vondrák (IBM Almaden) Submodular Optimization Tutorial 1 / 1 Lecture I: outline 1

More information

On the Rank of Cutting-Plane Proof Systems

On the Rank of Cutting-Plane Proof Systems On the Rank of Cutting-Plane Proof Systems Sebastian Pokutta 1 and Andreas S. Schulz 2 1 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA. Email:

More information

Random Lifts of Graphs

Random Lifts of Graphs 27th Brazilian Math Colloquium, July 09 Plan of this talk A brief introduction to the probabilistic method. A quick review of expander graphs and their spectrum. Lifts, random lifts and their properties.

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Lecture 4: January 26

Lecture 4: January 26 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Javier Pena Lecture 4: January 26 Scribes: Vipul Singh, Shinjini Kundu, Chia-Yin Tsai Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games

CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games Scribe: Zeyu Guo In the first lecture, we saw three equivalent variants of the classical PCP theorems in terms of CSP, proof checking,

More information

Partitioning Metric Spaces

Partitioning Metric Spaces Partitioning Metric Spaces Computational and Metric Geometry Instructor: Yury Makarychev 1 Multiway Cut Problem 1.1 Preliminaries Definition 1.1. We are given a graph G = (V, E) and a set of terminals

More information