ENGG 1203 Tutorial. Solution. Op Amps 7 Mar Learning Objectives. Determine V o in the following circuit. Assume that the op-amp is ideal.

Size: px
Start display at page:

Download "ENGG 1203 Tutorial. Solution. Op Amps 7 Mar Learning Objectives. Determine V o in the following circuit. Assume that the op-amp is ideal."

Transcription

1 ENGG 03 Tutorial Q Op Amps 7 Mar Learning Objectives Analyze circuits with ideal operational amplifiers News HW Mid term Revision tutorial ( Mar :30-6:0, CBA) Ack.: MIT OCW 6.0 Determine V o in the following circuit. Assume that the op-amp is ideal. Solution Q Since V - = V +, V - = V. So there must be /A flowing left through the two 6 ohm resistors. There must be a corresponding / A flowing to the left through the ohm resistor. V o is then the sum of V - = V and the V across the ohm resistor. Determine the current I x when V = V and V = V. Determine the voltage V A when V = V and V = V. Determine a general expression for V A in terms of V and V. 3

2 Solution Q3 When V = V and V = V, I x = A When V = V and V = V, V A = V A general expression for V A : 3 - Use a single op-amp and resistors to make a circuit that is equivalent to the following circuit. = V n 6 Q Q Use the ideal op-amp model (V + = V - ) to determine an expression for the output current I o in terms of the input voltage V i and resistors R and R. Determine R so that V o = (V V ). v i +v x v i +v x v x 7 8

3 Solution Q6 No current in +ve or -ve inputs: Ideal op-amp: A proportional controller that regulates the current through a motor by setting the motor voltage V C to V C = K(I d I o ) K is the gain (ohms) I d is the desired motor current I o is the actual current through the motor. 9 0 Solution Q7 Consider the circuit inside the dotted rectangle. Determine V as a function of I o. V + = / x I o = V - V - = 00/( ) x V V = / x I o x 00 The shaft angle of the output pot tracks that of the input pot If the person turn the left potentiometer (the input pot), then the motor will turn the right potentiometer (the output pot) Determine the gain K and desired motor current I d. KCL at -ve input to right op-amp:

4 Solution Solution Pot resistances depends on shaft angle Lower part of the pot is αr Upper part is ( α)r, where R = 000Ω. α is from 0 (most counterclockwise position) to (most clockwise position) If α i >α o, then the voltage to the motor (V M+ V M ) is positive, and the motor turns clockwise (so as to increase α o ) i.e., positive motor voltage clockwise rotation. Determine an expression for V M+ in terms of α i, R, and V S. The output of the voltage divider is The op-amp provides a gain of, so V M+ = V +. 3 The following circuit produces a voltage V o that depends on the position of the input pot. Determine an expression for the voltage V o in terms of α i, R, R, R, and V S. The following circuit produces a voltage V o that depends on the positions of both pots. Determine an expression for V o in terms of α i, α o, R, and V S. The positive input to the op-amp is connected to pot so that The positive input to the op-amp is connected to a voltage divider with equal resistors so The output pot is on the output of the op-amp, so The input pot is on the output of the op-amp, so In an ideal op-amp, V + = V so In an ideal op-amp, V + = V so 6

5 Assume that we are provided with a circuit whose output is α i /α o volts. We want to design a motor controller of the following form so that the motor shaft angle (which is proportional to α o ) will track the input pot angle (which is proportional to α i ). Assume that R = R 3 = R = 000Ω and V C = 0. Is it possible to choose R so that α o tracks α i? If yes, enter an acceptable value for R. Assume that R = R 3 = R = 000Ω and V C = 0 If R 3 = R then the right motor input is V. If α i = α o then the gain of the left op-amp circuit must be so that the motor voltage is 0. The gain is R + R /R, so R must be 000Ω Assume that R = R 3 = R = 000Ω and V C = V If R 3 = R then the right motor input is V. If α i = α o then V + = V = for the right op-amp. We need the left motor input to be V. But if the left motor input is V and V C = V then V must also be V, which leads to a contradiction. Q8 You have to design a hammer machine (i.e. using a hammer to hit a platform to see how strong the participants are). The design goal is to generate an output voltage (V o ) which is proportional to the force (F) applied on the hammer, i.e. V o = m x F + C, with m > 0 and C > 0. (a) You found a force-sensitive resistor (FSR) from the catalog, which can be modeled by RFSR = 0kΩ F You then design a circuit as a potential divider. Will this circuit correctly implement? No, because V o is not linearly proportional to F. 9 0

6 (b) Find the gain of the following circuit: At the two op-amp inputs, V - = V + = V i. Since V i is related to V o through the two resistors such that V o R = (R 3 + R ), R Vo = + R 3 Vi (c) Design (by using the non-inverting amplifier circuit) a circuit such that the output voltage (V o ) is directly proportional to the input force (F). Replace R by the FSR. We then have R F R V V V F V 3 3 i o = + i = + i V o is a linear function of F. R F R V V V F V 3 3 i o = + i = + i R F R V V V F V 3 3 i o = + i = + i (d) The system requires that when the force F = 0 N, V o = V; when F = 0 N, V o = V. Construct the circuit designed in (c) using only one FSR, one op-amp, one V power supply, and k ohm resis. When F = 0N, V o = V i = V. We can use R = k ohm and R = k ohm. k ohm resistors can be made by two k ohm resistors in series. When F = 0N, R3 = 0 + R3 = kω (e) Using the above circuit, what is the value of V o when someone hits the hammer too hard, generating a force of 00 N? V (f) Suggest modification(s) such that the max. allowable force to the circuit is 60 N. Change R 3 to /3 k ohm. This can be done by parallel composition of three k ohm resistors.

7 (Appendix) Q9 Solution Fill in the values of R and R required to satisfy the equations in the left column of the following table. The values must be non-negative (i.e., in the range [0, ]) R R V o = V - V V o = V - V V o = V - V 3 rd : Negative R i.e. Impossible R R V o =V -V 0kΩ 0kΩ V o =V -V 0kΩ 0kΩ V o =V -V Impossible Impossible 6 (Appendix) Q0 (Appendix) Q What is V o? V o = 0 V o = V V V 3 V 3 + V V 3 + V Students Kim, Pat, Jody, Chris, and Leon are trying to design a controller for a display of three robotic mice in the Rube Goldberg Machine, using a 0V power supply and three motors. The first is supposed to spin as fast as possible (in one direction only), the second at half of the speed of the first, and the third at half of the speed of the second. Assume the motors have a resistance of approximately Ω and that rotational speed is proportional to voltage. For each design, indicate the voltage across each of the motors. 7 8

8 Solution (Jody s Design) Solution (Chris s Design) P.D. of motor = 0V P.D. of motor = 0.0V P.D. of motor 3 = 0V Wrong design P.D. of motor = 0V P.D. of motor = 0.V P.D. of motor 3 = 0V Wrong design 0 0. Eq. R. (Red): K+~ K Eq. R. (Blue): K//K// ~ 0 Eq. R. (Red): 00K+~ 00K Eq. R. (Blue): K//00K// ~ Solution (Pat s Design) Solution (Kim s Design) P.D. of motor = 0V P.D. of motor = V P.D. of motor = 0V P.D. of motor = V P.D. of motor 3 = V Wrong design P.D. of motor 3 =.V Correct design 0 0 Eq. R. : K // K = /3K Eq. R. : 00 // 00K = ~

9 Solution (Leon s Design) P.D. of motor = 0V P.D. of motor 3 =.V P.D. of motor = V Correct design

ENGG 1203 Tutorial. Op Amps 10 Oct Learning Objectives. News. Ack.: MIT OCW Analyze circuits with ideal operational amplifiers

ENGG 1203 Tutorial. Op Amps 10 Oct Learning Objectives. News. Ack.: MIT OCW Analyze circuits with ideal operational amplifiers ENGG 1203 Tutorial Op Amps 10 Oct Learning Objectives Analyze circuits with ideal operational amplifiers News Mid term Revision tutorial Ack.: MIT OCW 6.01 1 Q1 This circuit is controlled by the charge

More information

1 Circuits (20 points)

1 Circuits (20 points) 6.01 Midterm Exam 2 Spring 09 2 1 Circuits (20 points) Consider the following circuit where the resistance R is in the range 0 R. I 1 3 Ω 1Ω V 1 6 V + + R 5 V Part a. Determine I 1 if R = 0Ω. I 1 = 2 A

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

DC motor / generator. Jeffrey A. Meunier

DC motor / generator. Jeffrey A. Meunier DC motor / generator Jeffrey A. Meunier jeffm@engr.uconn.edu Electric motor An electric motor is used to convert electrical energy into mechanical energy. Electric motor An electric motor is used to convert

More information

Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0. This homework is due August 29th, 2016, at Noon.

Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0. This homework is due August 29th, 2016, at Noon. EECS 16B Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0 This homework is due August 29th, 2016, at Noon. 1. Homework process and study group (a) Who else

More information

Ohm's Law and Resistance

Ohm's Law and Resistance Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

meas (1) calc calc I meas 100% (2) Diff I meas

meas (1) calc calc I meas 100% (2) Diff I meas Lab Experiment No. Ohm s Law I. Introduction In this lab exercise, you will learn how to connect the to network elements, how to generate a VI plot, the verification of Ohm s law, and the calculation of

More information

Simultaneous equations for circuit analysis

Simultaneous equations for circuit analysis Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

ENGG 1203 Tutorial. Quick Checking. Solution. A FSM design for a Vending machine (Revisited) Vending Machine. Vending machine may get three inputs

ENGG 1203 Tutorial. Quick Checking. Solution. A FSM design for a Vending machine (Revisited) Vending Machine. Vending machine may get three inputs ENGG 1 Tutorial Quick Checking Sequential Logic (II) and Electrical Circuit (I) Feb Learning Objectives Design a finite state machine Analysis circuits through circuit laws (Ohm s Law, KCL and KL) News

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013 University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled

More information

ENGG 1203 Tutorial_05. Use of Multimeter. Lab 5 : SYSTEM. Office hours : Chow Yei Ching, CB-LG205 Thu, Fri; 15:30-17:30

ENGG 1203 Tutorial_05. Use of Multimeter. Lab 5 : SYSTEM. Office hours : Chow Yei Ching, CB-LG205 Thu, Fri; 15:30-17:30 ENGG 1203 Tutorial_05 Office hours : Chow Yei Ching, CB-LG205 Thu, Fri; 15:30-17:30 HW : -25%/day at least after 4 days, sample answer posted for study Lab 5 : Use of Multimeter The value showing is maximum

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )

resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( ) DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify

More information

Experiment #6. Thevenin Equivalent Circuits and Power Transfer

Experiment #6. Thevenin Equivalent Circuits and Power Transfer Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory

More information

INTRODUCTION TO ELECTRONICS

INTRODUCTION TO ELECTRONICS INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways

More information

20.2 Design Example: Countdown Timer

20.2 Design Example: Countdown Timer EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 0 0.1 Design Procedure Now that we ve analyzed many circuits, we are ready to focus on designing interesting circuits to

More information

Active loads in amplifier circuits

Active loads in amplifier circuits Active loads in amplifier circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

DC CIRCUIT ANALYSIS. Loop Equations

DC CIRCUIT ANALYSIS. Loop Equations All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent

More information

Module 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes

Module 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes Module 1, Add on math lesson Simultaneous Equations 45 minutes eacher Purpose of this lesson his lesson is designed to be incorporated into Module 1, core lesson 4, in which students learn about potential

More information

STEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2

STEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2 Production Series Circuits Page 2 Copyright 2017 Series Parallel Circuits + + SERIES CIRCUIT PARALLEL CIRCUIT Page 3 Copyright 2017 Trick to Remember Ohm s Law V V=I*R R = V I I R I = V R Page 4 Copyright

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Prelim Revision. Questions and Answers. Electricity

Prelim Revision. Questions and Answers. Electricity Prelim Revision Questions and Answers Electricity SECTION A Answer questions on the answer sheet 8. Specimen Paper The diagram shows an 8V supply connected to two lamps. The supply has negligible internal

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

P1: Basics - Things you now know that you didn t know you knew (25 pts)

P1: Basics - Things you now know that you didn t know you knew (25 pts) P1: Basics - Things you now know that you didn t know you knew (25 pts) a) Birds routinely land and relax on power lines which carry tens of thousands of volts of electricity. Explain why these birds do

More information

ENGG 1203 Tutorial_9 - Review. Boolean Algebra. Simplifying Logic Circuits. Combinational Logic. 1. Combinational & Sequential Logic

ENGG 1203 Tutorial_9 - Review. Boolean Algebra. Simplifying Logic Circuits. Combinational Logic. 1. Combinational & Sequential Logic ENGG 1203 Tutorial_9 - Review Boolean Algebra 1. Combinational & Sequential Logic 2. Computer Systems 3. Electronic Circuits 4. Signals, Systems, and Control Remark : Multiple Choice Questions : ** Check

More information

What to Add Next time you update?

What to Add Next time you update? What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (active elements) and energy-takers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The

More information

Design Engineering MEng EXAMINATIONS 2016

Design Engineering MEng EXAMINATIONS 2016 IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.2: Circuits & Electronics Problem Set # Solution Exercise. The three resistors form a series connection.

More information

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal

More information

Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2. Exam location: 145 Dwinelle, last SID# 2

Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2. Exam location: 145 Dwinelle, last SID# 2 EECS 16A Designing Information Devices and Systems I Spring 2016 Elad Alon, Babak Ayazifar Midterm 2 Exam location: 145 Dwinelle, last SID# 2 PRINT your student ID: PRINT AND SIGN your name:, (last) (first)

More information

The Approximating Impedance

The Approximating Impedance Georgia Institute of Technology School of Electrical and Computer Engineering ECE 4435 Op Amp Design Laboratory Fall 005 DesignProject,Part A White Noise and Pink Noise Generator The following explains

More information

Simple Resistive Circuits

Simple Resistive Circuits German Jordanian University (GJU) Electrical Circuits Laboratory Section 3 Experiment Simple Resistive Circuits Post lab Report Mahmood Hisham Shubbak 7 / / 8 Objectives: To learn how to use the Unitr@in

More information

Electric Power a learn.sparkfun.com tutorial

Electric Power a learn.sparkfun.com tutorial Electric Power a learn.sparkfun.com tutorial Available online at: http://sfe.io/t72 Contents With Great Power... What is Electric Power? Wattage Calculating Power Power Ratings Resources and Going Further

More information

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13 RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer

More information

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai Chapter 07 Series-Parallel Circuits The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit

More information

Parallel Circuits. Chapter

Parallel Circuits. Chapter Chapter 5 Parallel Circuits Topics Covered in Chapter 5 5-1: The Applied Voltage V A Is the Same Across Parallel Branches 5-2: Each Branch I Equals V A / R 5-3: Kirchhoff s Current Law (KCL) 5-4: Resistance

More information

Fig. 1-1 Current Flow in a Resistive load

Fig. 1-1 Current Flow in a Resistive load 1 Electric Circuits: Current flow in a resistive load flows either from (-) to () which is labeled below as Electron flow or the Conventional flow from () to (-). We will use conventional flow in this

More information

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider Node-Voltage Analysis 3 Network Analysis

More information

6.01 Final Exam Spring 2011

6.01 Final Exam Spring 2011 Name: Section: Enter all answers in the boxes provided. Clearly written work will be graded for partial credit. During the exam you may refer to any printed materials use a calculator You may not use a

More information

California University of Pennsylvania. Department of Applied Engineering & Technology. Electrical / Computer Engineering Technology

California University of Pennsylvania. Department of Applied Engineering & Technology. Electrical / Computer Engineering Technology California University of Pennsylvania Department of Applied Engineering & Technology Electrical / Computer Engineering Technology EET 215: Introduction to Instrumentations Lab No.7 Temperature Measurement

More information

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.

More information

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below EXAMPLE 2 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

Series/Parallel Circuit Simplification: Kirchoff, Thevenin & Norton

Series/Parallel Circuit Simplification: Kirchoff, Thevenin & Norton Series/Parallel Circuit Simplification: Kirchoff, Thevenin & Norton Session 1d of Basic Electricity A Fairfield University E-Course Powered by LearnLinc Basic Electricity Two Parts Electron Flow and Resistance

More information

Designing Information Devices and Systems I Fall 2017 Midterm 2. Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ

Designing Information Devices and Systems I Fall 2017 Midterm 2. Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ EECS 16A Designing Information Devices and Systems I Fall 2017 Midterm 2 Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ PINT your student ID: PINT AND SIGN your name:, (last name) (first name) (signature)

More information

mywbut.com Mesh Analysis

mywbut.com Mesh Analysis Mesh Analysis 1 Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide more general and powerful circuit analysis tool based on Kirchhoff s voltage law (KVL) only.

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

Relating Voltage, Current and Resistance

Relating Voltage, Current and Resistance Relating Voltage, Current and Resistance Using Ohm s Law in a simple circuit. A Simple Circuit Consists of:! A voltage source often a battery! A load such as a bulb! Conductors arranged to complete a circuit

More information

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS. 8 Electrical Engineering RIB-R T7 Session 08-9 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)

More information

Electric Circuits. June 12, 2013

Electric Circuits. June 12, 2013 Electric Circuits June 12, 2013 Definitions Coulomb is the SI unit for an electric charge. The symbol is "C". Electric Current ( I ) is the flow of electrons per unit time. It is measured in coulombs per

More information

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5 ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January

More information

PICK UP: Papers & Calc. TURN IN: - (orange sheet if you did not yesterday) DO NOW: On a half-sheet, draw the schematic for the following circuit.

PICK UP: Papers & Calc. TURN IN: - (orange sheet if you did not yesterday) DO NOW: On a half-sheet, draw the schematic for the following circuit. PICK UP: Papers & Calc HW: U7-9 (green) Next Test: QUIZ TOMORROW Exam 7 on 3/28 TURN IN: - (orange sheet if you did not yesterday) DO NOW: On a half-sheet, draw the schematic for the following circuit.

More information

Resistor. l A. Factors affecting the resistance are 1. Cross-sectional area, A 2. Length, l 3. Resistivity, ρ

Resistor. l A. Factors affecting the resistance are 1. Cross-sectional area, A 2. Length, l 3. Resistivity, ρ Chapter 2 Basic Laws. Ohm s Law 2. Branches, loops and nodes definition 3. Kirchhoff s Law 4. Series resistors circuit and voltage division. 5. Equivalent parallel circuit and current division. 6. Wye-Delta

More information

ECE2210 Final given: Spring 08

ECE2210 Final given: Spring 08 ECE Final given: Spring 0. Note: feel free to show answers & work right on the schematic 1. (1 pts) The ammeter, A, reads 30 ma. a) The power dissipated by R is 0.7 W, what is the value of R. Assume that

More information

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat Electric Circuits I Nodal Analysis Dr. Firas Obeidat 1 Nodal Analysis Without Voltage Source Nodal analysis, which is based on a systematic application of Kirchhoff s current law (KCL). A node is defined

More information

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs BME/ISE 3511 Bioelectronics - Test Three Course Notes Fall 2016 Delta & Y Configurations, Principles of Superposition, esistor Voltage Divider Designs Use following techniques to solve for current through

More information

Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore

Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture No. # 08 Temperature Indicator Design Using Op-amp Today,

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2

More information

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers 6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:

More information

Homework 1 solutions

Homework 1 solutions Electric Circuits 1 Homework 1 solutions (Due date: 2014/3/3) This assignment covers Ch1 and Ch2 of the textbook. The full credit is 100 points. For each question, detailed derivation processes and accurate

More information

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 Paper Number(s): E1.1 IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART I: MEng, BEng and ACGI

More information

Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

More information

Figure 1. (a) An alternating current power supply provides a current that keeps switching direction.

Figure 1. (a) An alternating current power supply provides a current that keeps switching direction. 1 Figure 1 shows the output from the terminals of a power supply labelled d.c. (direct current). Voltage / V 6 4 2 0 2 0 5 10 15 20 25 Time/ms 30 35 40 45 50 Figure 1 (a) An alternating current power supply

More information

DC STEADY STATE CIRCUIT ANALYSIS

DC STEADY STATE CIRCUIT ANALYSIS DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=

More information

Problem Set 5 Solutions

Problem Set 5 Solutions University of California, Berkeley Spring 01 EE /0 Prof. A. Niknejad Problem Set 5 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different

More information

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

EE 321 Analog Electronics, Fall 2013 Homework #3 solution EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [

More information

Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1

Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1 Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers Kevin D. Donohue, University of Kentucky Simple circuits with single loops or node-pairs can result

More information

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering Basic Electricity ME 120 Lecture Notes Portland State University Mechanical and Materials Engineering Learning Objectives Successful completion of this module will enable students to Link the basic model

More information

The equation which links current, potential difference and resistance is:

The equation which links current, potential difference and resistance is: An electrical circuit is shown in the figure below. The current in the circuit is direct current. What is meant by direct current? Tick one box. Current that continuously changes direction. Current that

More information

Physics 212 Midterm 2 Form A

Physics 212 Midterm 2 Form A 1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

More information

Digital logic signals

Digital logic signals Digital logic signals This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Digital logic signals

Digital logic signals Digital logic signals This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

More information

Experiment 9 Equivalent Circuits

Experiment 9 Equivalent Circuits Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 361-04 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,

More information

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below. F 14 1250 QUIZ 1 SOLUTION EX: Find the numerical value of v 2 in the circuit below. Show all work. SOL'N: One method of solution is to use Kirchhoff's and Ohm's laws. The first step in this approach is

More information

6.01 Midterm 2 Spring 2011

6.01 Midterm 2 Spring 2011 Name: Solutions Section: These solutions do not apply for the conflict exam. Enter all answers in the boxes provided. Clearly written work will be graded for partial credit. During the exam you may: read

More information

Lecture # 2 Basic Circuit Laws

Lecture # 2 Basic Circuit Laws CPEN 206 Linear Circuits Lecture # 2 Basic Circuit Laws Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026907363 February 5, 206 Course TA David S. Tamakloe CPEN 206 Lecture 2 205_206 What is Electrical

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 Design Example Continued Continuing our analysis for countdown timer circuit. We know for a capacitor C: I = C dv

More information

From this analogy you can deduce some rules that you should keep in mind during all your electronics work:

From this analogy you can deduce some rules that you should keep in mind during all your electronics work: Resistors, Volt and Current Posted on April 4, 2008, by Ibrahim KAMAL, in General electronics, tagged In this article we will study the most basic component in electronics, the resistor and its interaction

More information