A Parameter Expansion Approach to Bayesian SEM Estimation

Size: px
Start display at page:

Download "A Parameter Expansion Approach to Bayesian SEM Estimation"

Transcription

1 A Parameter Expansion Approach to Bayesian SEM Estimation Ed Merkle and Yves Rosseel Utrecht University 24 June 2016 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 1 / 51

2 overview goal: Bayesian structural equation model methods that satisfy three properties: 1. easy model specification 2. extensible to novel situations 3. relatively fast strategy: develop general Bayesian SEM estimation methods that can be used with JAGS or Stan tie them to model specification/summarization methods in lavaan Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 2 / 51

3 cfa some Bayesian SEMs have received heavy consideration: x1 x2 visual x3 x4 x5 textual x6 x7 x8 speed x9 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 3 / 51

4 cfa equation measurement model: x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 ν 8 ν λ λ λ λ λ λ 9 visual textual speed + ɛ the covariance matrix associated with ɛ is diagonal: Var(ɛ) = Θ = diagonal Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 4 / 51

5 cfa equation structural model: visual textual speed = ζ the covariance matrix associated with ζ is unrestricted: Var(ζ) = Ψ = (unrestriced, symmetric) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 5 / 51

6 typical priors normal distribution for the parameters in ν, Λ and α inverse gamma distribution for the (diagonal) elements of Θ inverse Wishart distribution for the covariance matrix of the exogenous latent variables inverse gamma distribution for the (diagonal) elements of the covariance matrix of the endogenous latent variables Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 6 / 51

7 sem other models have received less consideration: y1 x1 x2 x3 y2 1 λ 5 y3 λ 6 dem60 ind60 λ 7 y4 y5 1 y6 λ 5 dem65 λ 6 y7 λ 7 y8 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 7 / 51

8 sem equation measurement model: x 1 x 2 x 3 y 1 y 2 y 3 y 4 y 5 y 6 y 7 = ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 ν 8 ν 9 ν λ λ λ λ λ λ λ 6 ind60 dem60 dem65 + ɛ y 8 ν λ 7 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 8 / 51

9 sem equation structural model: ind60 dem60 dem65 = b b 2 b ζ Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 9 / 51

10 sem equation non-diagonal theta matrix: Var(ɛ) = Θ = X X X X X X X X X X X X X X X X X X X X X X X Mplus may be the only major piece of software that can come close to dealing with this model from a Bayesian standpoint Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 10 / 51

11 parameter expansion SEM parameter expansion methods: sample from a working model that is easy translate sampled parameters to the desired inferential model problem: how to specify priors on the working model parameters that are meaningful in the inferential model? general parameter expansion approaches to Bayesian inference are described by Gelman (2004, 2006); applications to factor analysis models are described by Gosh and Dunson (2009) our approach is related to that of Palomo, Dunson, & Bollen (2007) but they do not address prior distribution specification Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 11 / 51

12 parameter expansion Palomo, Dunson, & Bollen (2007) specify this working model; D1 y1 x1 x2 x3 y2 1 D2 λ 5 y3 λ 6 dem60 ind60 D3 y4 λ 7 D4 y5 1 D5 y6 λ 5 λ 6 dem65 y7 λ 7 D6 y8 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 12 / 51

13 parameter expansion for each non-zero (residual) covariance in Θ, we create a phantom latent variable (D 1, D 2,...) the original residual vector ɛ is reparameterized as ɛ = Λ D D + ɛ D N(0, Ψ D ) ɛ N(0, Θ ) by carefully choosing the nonzero entries of Λ D, both Ψ D and Θ are diagonal the original covariance matrix Θ can be re-obtained via Θ = Λ D Ψ D Λ D + Θ Palomo, Dunson, & Bollen (2007) set the nonzero entries to 1 (not allowing for negative covariances) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 13 / 51

14 parameter expansion our approach: define working model parameters in such a way that we can set priors on inferential model parameters this involves separately specifying priors on correlation and variance parameters original formulation (inferential model): θ 11 θ 12 θ 22 X 1 X 2 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 14 / 51

15 parameter expansion working model: ψ D D θ 11 λ 1 λ 2 θ 22 X 1 X 2 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 15 / 51

16 parameterization: ψ D = 1 λ 1 = ρ 12 θ 11 λ 2 = sign(ρ 12 ) ρ 12 θ 22 θ11 = θ 11 ρ 12 θ 11 θ22 = θ 22 ρ 12 θ 22 priors: θ 11 IG(, ) θ 22 IG(, ) ρ 12 Beta ( 1,1) (, ) these priors are related to those used by Muthén and Asparouhov (2012), based on results from Barnard, McCulloch and Meng (2000) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 16 / 51

17 blavaan this approach is implemented in R package blavaan model specification via lavaan syntax automatic translation to JAGS Bayes-specific model summaries and statistics Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 17 / 51

18 blavaan most of blavaan is similar to lavaan; new features: easy, flexible specification of prior distributions for individual model parameters, or for classes of parameters intuitive specification of priors for covariance parameters: separately for correlation and for precisions (or variances or standard deviations) ability to save JAGS code and data for study or extension use of novel statistics through other R packages Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 18 / 51

19 political democracy y1 x1 x2 x3 y2 1 λ 5 y3 λ 6 dem60 ind60 λ 7 y4 y5 1 y6 λ 5 dem65 λ 6 y7 λ 7 y8 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 19 / 51

20 political democracy model <- # latent variable definitions ind60 = x1 + x2 + x3 dem60 = y1 + a*y2 + b*y3 + c*y4 dem65 = y5 + a*y6 + b*y7 + c*y8 # regressions dem60 ind60 dem65 ind60 + dem60 # residual correlations y1 y5 y2 y4 + y6 y3 y7 y4 y8 y6 y8 fit <- bsem(model, data = PoliticalDemocracy) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 20 / 51

21 political democracy (more options) model <- # latent variable definitions ind60 = x1 + x2 + x3 dem60 = y1 + a*y2 + b*y3 + c*y4 dem65 = y5 + a*y6 + b*y7 + c*y8 # regressions dem60 ind60 dem65 ind60 + prior("dnorm(0.8,.1)")*dem60 # residual correlations y1 y5 y2 y4 + y6 y3 y7 y4 y8 y6 y8 fit <- bsem(model, data = PoliticalDemocracy, jagcontrol = list(method = "rjparallel"), dp = dpriors(nu = "dnorm(5,1e-2)", itheta = "dlnorm(1,.1)[sd]"), n.chains = 4, burnin = 5000, sample = 5000, jagfile = TRUE) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 21 / 51

22 rjags Loading required package: lavaan This is lavaan lavaan is BETA software! Please report any bugs. This is blavaan blavaan is more BETA than lavaan! Compiling rjags model... Calling the simulation using the rjags method... Adapting the model for 1000 iterations % Burning in the model for 4000 iterations... ************************************************** 100% Running the model for iterations... ************************************************** 100% Simulation complete Calculating summary statistics... Calculating the Gelman-Rubin statistic for 48 variables... Note: Unable to calculate the multivariate psrf Finished running the simulation Computing posterior predictives... Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 22 / 51

23 convergence the potential scale reduction factors and effective sample size statistics are available via summary(fit, psrf=true, neff=true) warning is given when one PSRF exceeds 1.2 (suggesting using longer chains) large discrepancy between the effective sample size and the simulation sample size indicates poor mixing runjags provides many plots eg, traceplots (for the first four parameters) can be obtained for each chain, using the plot(fit, pars=1:4, plot.type="trace") command other options: plot.type: a character vector of plots to produce, from trace, density, ecdf, histogram, autocorr, crosscorr, key or all. These are all based on the equivalent plots from the lattice package with some modifications. Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 23 / 51

24 traceplot (lambda[2,1]) 3 chains lambda[2,1] Iteration Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 24 / 51

25 autocorrelation (lambda[2,1]) Autocorrelation of lambda[2,1] Lag Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 25 / 51

26 summary(fit) blavaan (0.1-4) results of samples after 5000 adapt+burnin iterations Number of observations 75 Number of missing patterns 1 Statistic MargLogLik PPP Value Parameter Estimates: Information Standard Errors MCMC MCMC Latent Variables: Post.Mean Post.SD HPD.025 HPD.975 PSRF Prior ind60 = x x dnorm(0,1e-2) x dnorm(0,1e-2) dem60 = y y2 (a) dnorm(0,1e-2) y3 (b) dnorm(0,1e-2) y4 (c) dnorm(0,1e-2) dem65 = Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 26 / 51

27 y y6 (a) y7 (b) y8 (c) Regressions: Post.Mean Post.SD HPD.025 HPD.975 PSRF Prior dem60 ind dnorm(0,1e-2) dem65 ind dnorm(0,1e-2) dem dnorm(0,1e-2) Covariances: Post.Mean Post.SD HPD.025 HPD.975 PSRF Prior y1 y dbeta(1,1) y2 y dbeta(1,1) y dbeta(1,1) y3 y dbeta(1,1) y4 y dbeta(1,1) y6 y dbeta(1,1) Intercepts: Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 27 / 51

28 Post.Mean Post.SD HPD.025 HPD.975 PSRF Prior x dnorm(0,1e-3) x dnorm(0,1e-3) x dnorm(0,1e-3) y dnorm(0,1e-3) y dnorm(0,1e-3) y dnorm(0,1e-3) y dnorm(0,1e-3) y dnorm(0,1e-3) y dnorm(0,1e-3) y dnorm(0,1e-3) y dnorm(0,1e-3) ind dem dem Variances: Post.Mean Post.SD HPD.025 HPD.975 PSRF Prior x dgamma(1,.5) x dgamma(1,.5) x dgamma(1,.5) y dgamma(1,.5) y dgamma(1,.5) y dgamma(1,.5) y dgamma(1,.5) y dgamma(1,.5) y dgamma(1,.5) y dgamma(1,.5) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 28 / 51

29 y dgamma(1,.5) ind dgamma(1,.5) dem dgamma(1,.5) dem dgamma(1,.5) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 29 / 51

30 lavaan extractor functions parameter estimates parameterestimates(fit, ci = FALSE) lhs op rhs label est se 1 ind60 = x ind60 = x ind60 = x dem60 = y dem60 = y2 a estimated parameter values coef(fit) ind60= x2 ind60= x3 a b c a b c dem60 ind60 dem65 ind dem65 dem60 y1 y5 y2 y4 y2 y6 y3 y y4 y8 y6 y8 x1 x1 x2 x2 x3 x Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 30 / 51

31 priors the default priors can be seen via dpriors() nu alpha lambda beta "dnorm(0,1e-3)" "dnorm(0,1e-2)" "dnorm(0,1e-2)" "dnorm(0,1e-2)" itheta ipsi rho ibpsi "dgamma(1,.5)" "dgamma(1,.5)" "dbeta(1,1)" "dwish(iden,3)" note: these prior distributions correspond to JAGS parameterizations (similar to R, but not the same); JAGS uses precisions instead of variances/standard deviations the prior()* modifier can be used in the model syntax to pass custom priors for this parameter to JAGS note: for covariances, this must be a prior for the correlation; the distribution should have support on (0,1), and blavaan will automatically translate the prior to an equivalent distribution with support on (-1,1) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 31 / 51

32 Bayesian model evaluation fitmeasures(fit) npar logl ppp bic dic p_dic waic p_waic looic p_loo margloglik blavaan computes its own loglikelihood after model estimation (and does not rely on JAGS) posterior predictive p-value (ppp) (should be closer to 1) Deviance Information Criterion (DIC) Widely Applicable Information Criterion (WAIC) leave-one-out cross-validation statistic (loo) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 32 / 51

33 Bayes Factor two types of approximations: the Laplace approximation, obtained via BF() (experimental) the Savage-Dickey approximation, obtained via summary(fit, bf=true) one-parameter-at-a-time Bayes factors comparing a model with that parameter fixed to 0 vs a model with that parameter free it assumes the posterior is normal Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 33 / 51

34 cross-loadings Muthen and Asparouhov (2012) describe the use of cross-loadings in Bayesian structural equation models instead of fixing many loadings to zero, we place high-precision prior distributions on the loadings that would be fixed to zero example using the classic Holzinger & Swineford (1939) model: HS.model <- visual = x1 + prior("dnorm(0,.1)")*x2 + prior("dnorm(0,.1)")*x3 + x4 + x5 + x6 + x7 + x8 + x9 textual = x4 + prior("dnorm(0,.1)")*x5 + prior("dnorm(0,.1)")*x6 + x1 + x2 + x3 + x7 + x8 + x9 speed = x7 + prior("dnorm(0,.1)")*x8 + prior("dnorm(0,.1)")*x9 + x1 + x2 + x3 + x4 + x5 + x6 fit <- bcfa(hs.model, data = HolzingerSwineford1939, group = "school", dp = dpriors(lambda = "dnorm(0,100)")) regular loadings: var = 10; cross-loadings: var = 0.01 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 34 / 51

35 future some plans: discrete data increased sampling efficiency (reducing autocorrelation) Stan export novel models (new distributions, etc) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 35 / 51

36 Thank you! (questions?) merklee/blavaan/ Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 36 / 51

37 JAGS code (somewhat beautified) model { for(i in 1:N) { # ov y for(j in 1:11) { y[i,j] dnorm(mu[i,j],invthetstar[j,g[i]]) } # mu mu[i, 1] <- nu[ 1,g[i]] + lambda[ 1,g[i]]*eta[i,1] mu[i, 2] <- nu[ 2,g[i]] + lambda[ 2,g[i]]*eta[i,1] mu[i, 3] <- nu[ 3,g[i]] + lambda[ 3,g[i]]*eta[i,1] mu[i, 4] <- nu[ 4,g[i]] + lambda[ 4,g[i]]*eta[i,2] + lambda[12,g[i]]*eta[i,4] mu[i, 5] <- nu[ 5,g[i]] + lambda[ 5,g[i]]*eta[i,2] + lambda[14,g[i]]*eta[i,5] + lambda[16,g[i]]*eta[i,6] mu[i, 6] <- nu[ 6,g[i]] + lambda[ 6,g[i]]*eta[i,2] + lambda[18,g[i]]*eta[i,7] mu[i, 7] <- nu[ 7,g[i]] + lambda[ 7,g[i]]*eta[i,2] + lambda[15,g[i]]*eta[i,5] + lambda[20,g[i]]*eta[i,8] mu[i, 8] <- nu[ 8,g[i]] + lambda[ 8,g[i]]*eta[i,3] + lambda[13,g[i]]*eta[i,4] mu[i, 9] <- nu[ 9,g[i]] + lambda[ 9,g[i]]*eta[i,3] + lambda[17,g[i]]*eta[i,6] + lambda[22,g[i]]*eta[i,9] mu[i,10] <- nu[10,g[i]] + lambda[10,g[i]]*eta[i,3] + lambda[19,g[i]]*eta[i,7] mu[i,11] <- nu[11,g[i]] + lambda[11,g[i]]*eta[i,3] + lambda[21,g[i]]*eta[i,8] + lambda[23,g[i]]*eta[i,9] Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 37 / 51

38 # lvs eta[i,1] dnorm(mu.eta[i,1], invpsistar[1,g[i]]) eta[i,2] dnorm(mu.eta[i,2], invpsistar[2,g[i]]) eta[i,3] dnorm(mu.eta[i,3], invpsistar[3,g[i]]) eta[i,4] dnorm(mu.eta[i,4], invpsistar[4,g[i]]) eta[i,5] dnorm(mu.eta[i,5], invpsistar[5,g[i]]) eta[i,6] dnorm(mu.eta[i,6], invpsistar[6,g[i]]) eta[i,7] dnorm(mu.eta[i,7], invpsistar[7,g[i]]) eta[i,8] dnorm(mu.eta[i,8], invpsistar[8,g[i]]) eta[i,9] dnorm(mu.eta[i,9], invpsistar[9,g[i]]) mu.eta[i,1] <- alpha[1,g[i]] mu.eta[i,2] <- alpha[2,g[i]] + beta[1,g[i]]*eta[i,1] mu.eta[i,3] <- alpha[3,g[i]] + beta[2,g[i]]*eta[i,1] + beta[3,g[i]]*eta[i,2] mu.eta[i,4] <- 0 mu.eta[i,5] <- 0 mu.eta[i,6] <- 0 mu.eta[i,7] <- 0 mu.eta[i,8] <- 0 mu.eta[i,9] <- 0 } Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 38 / 51

39 # Priors/constraints nu[1,1] dnorm(0,1e-3) lambda[1,1] <- 1 nu[2,1] dnorm(0,1e-3) lambda[2,1] dnorm(0,1e-2) nu[3,1] dnorm(0,1e-3) lambda[3,1] dnorm(0,1e-2) nu[4,1] dnorm(0,1e-3) lambda[4,1] <- 1 lambda[12,1] <- sqrt(abs(rho[1,1])*theta[4,1]) nu[5,1] dnorm(0,1e-3) lambda[5,1] dnorm(0,1e-2) lambda[14,1] <- sqrt(abs(rho[2,1])*theta[5,1]) lambda[16,1] <- sqrt(abs(rho[3,1])*theta[5,1]) nu[6,1] dnorm(0,1e-3) lambda[6,1] dnorm(0,1e-2) lambda[18,1] <- sqrt(abs(rho[4,1])*theta[6,1]) nu[7,1] dnorm(0,1e-3) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 39 / 51

40 lambda[7,1] dnorm(0,1e-2) lambda[15,1] <- (-1 + 2*step(rho[2,1]))*sqrt(abs(rho[2,1])*theta[7,1]) lambda[20,1] <- sqrt(abs(rho[5,1])*theta[7,1]) nu[8,1] dnorm(0,1e-3) lambda[8,1] <- 1 lambda[13,1] <- (-1 + 2*step(rho[1,1]))*sqrt(abs(rho[1,1])*theta[8,1]) nu[9,1] dnorm(0,1e-3) lambda[9,1] <- lambda[5,1] lambda[17,1] <- (-1 + 2*step(rho[3,1]))*sqrt(abs(rho[3,1])*theta[9,1]) lambda[22,1] <- sqrt(abs(rho[6,1])*theta[9,1]) nu[10,1] dnorm(0,1e-3) lambda[10,1] <- lambda[6,1] lambda[19,1] <- (-1 + 2*step(rho[4,1]))*sqrt(abs(rho[4,1])*theta[10,1]) nu[11,1] dnorm(0,1e-3) lambda[11,1] <- lambda[7,1] lambda[21,1] <- (-1 + 2*step(rho[5,1]))*sqrt(abs(rho[5,1])*theta[11,1]) lambda[23,1] <- (-1 + 2*step(rho[6,1]))*sqrt(abs(rho[6,1])*theta[11,1]) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 40 / 51

41 alpha[1,1] <- 0 alpha[2,1] <- 0 beta[1,1] dnorm(0,1e-2) alpha[3,1] <- 0 beta[2,1] dnorm(0,1e-2) beta[3,1] dnorm(0,1e-2) invtheta[1,1] dgamma(1,.5) invtheta[2,1] dgamma(1,.5) invtheta[3,1] dgamma(1,.5) invtheta[4,1] dgamma(1,.5) invtheta[5,1] dgamma(1,.5) invtheta[6,1] dgamma(1,.5) invtheta[7,1] dgamma(1,.5) invtheta[8,1] dgamma(1,.5) invtheta[9,1] dgamma(1,.5) invtheta[10,1] dgamma(1,.5) invtheta[11,1] dgamma(1,.5) for(j in 1:11) { for(k in 1:1) { theta[j,k] <- 1/invtheta[j,k] } } Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 41 / 51

42 invpsi[1,1] dgamma(1,.5) invpsi[2,1] dgamma(1,.5) invpsi[3,1] dgamma(1,.5) invpsi[4,1] <- 1 invpsi[5,1] <- 1 invpsi[6,1] <- 1 invpsi[7,1] <- 1 invpsi[8,1] <- 1 invpsi[9,1] <- 1 for(j in 1:9) { for(k in 1:1) { psi[j,k] <- 1/invpsi[j,k] } } # correlations/covariances rho[1,1] < *rstar[1,1] rstar[1,1] dbeta(1,1) rho[2,1] < *rstar[2,1] rstar[2,1] dbeta(1,1) rho[3,1] < *rstar[3,1] rstar[3,1] dbeta(1,1) rho[4,1] < *rstar[4,1] rstar[4,1] dbeta(1,1) rho[5,1] < *rstar[5,1] rstar[5,1] dbeta(1,1) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 42 / 51

43 rho[6,1] < *rstar[6,1] rstar[6,1] dbeta(1,1) # variances & covariances invthetstar[1,1] <- 1/(theta[1,1]) invthetstar[2,1] <- 1/(theta[2,1]) invthetstar[3,1] <- 1/(theta[3,1]) invthetstar[4,1] <- 1/(theta[4,1] - (lambda[12,1]ˆ2/invpsi[4,1])) invthetstar[5,1] <- 1/(theta[5,1] - (lambda[14,1]ˆ2/invpsi[5,1]) - (lambda[16,1]ˆ2/invpsi[6,1])) invthetstar[6,1] <- 1/(theta[6,1] - (lambda[18,1]ˆ2/invpsi[7,1])) invthetstar[7,1] <- 1/(theta[7,1] - (lambda[15,1]ˆ2/invpsi[5,1]) - (lambda[20,1]ˆ2/invpsi[8,1])) invthetstar[8,1] <- 1/(theta[8,1] - (lambda[13,1]ˆ2/invpsi[4,1])) invthetstar[9,1] <- 1/(theta[9,1] - (lambda[17,1]ˆ2/invpsi[6,1]) - (lambda[22,1]ˆ2/invpsi[9,1])) invthetstar[10,1] <- 1/(theta[10,1] - (lambda[19,1]ˆ2/invpsi[7,1])) invthetstar[11,1] <- 1/(theta[11,1] - (lambda[21,1]ˆ2/invpsi[8,1]) - (lambda[23,1]ˆ2/invpsi[9,1])) invpsistar[1,1] <- 1/(psi[1,1]) invpsistar[2,1] <- 1/(psi[2,1]) invpsistar[3,1] <- 1/(psi[3,1]) invpsistar[4,1] <- 1/(psi[4,1]) invpsistar[5,1] <- 1/(psi[5,1]) invpsistar[6,1] <- 1/(psi[6,1]) invpsistar[7,1] <- 1/(psi[7,1]) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 43 / 51

44 invpsistar[8,1] <- 1/(psi[8,1]) invpsistar[9,1] <- 1/(psi[9,1]) cov[1,1] <- psi[4,1]*lambda[12,1]*lambda[13,1] cov[2,1] <- psi[5,1]*lambda[14,1]*lambda[15,1] cov[3,1] <- psi[6,1]*lambda[16,1]*lambda[17,1] cov[4,1] <- psi[7,1]*lambda[18,1]*lambda[19,1] cov[5,1] <- psi[8,1]*lambda[20,1]*lambda[21,1] cov[6,1] <- psi[9,1]*lambda[22,1]*lambda[23,1] } # End of model Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 44 / 51

45 some elements in jagtrans $coefvec jlabel plabel prior 1 lambda[2,1].p2. dnorm(0,1e-2) 2 lambda[3,1].p3. dnorm(0,1e-2) 3 lambda[5,1].p5. dnorm(0,1e-2) 4 lambda[6,1].p6. dnorm(0,1e-2) 5 lambda[7,1].p7. dnorm(0,1e-2) 6 lambda[9,1].p9. 7 lambda[10,1].p10. 8 lambda[11,1].p11. 9 beta[1,1].p12. dnorm(0,1e-2) 10 beta[2,1].p13. dnorm(0,1e-2) 11 beta[3,1].p14. dnorm(0,1e-2) 12 cov[1,1].p15.@rho[1,1] dbeta(1,1) 13 cov[2,1].p16.@rho[2,1] dbeta(1,1) 14 cov[3,1].p17.@rho[3,1] dbeta(1,1) 15 cov[4,1].p18.@rho[4,1] dbeta(1,1) 16 cov[5,1].p19.@rho[5,1] dbeta(1,1) 17 cov[6,1].p20.@rho[6,1] dbeta(1,1) 18 theta[1,1].p21. dgamma(1,.5) 19 theta[2,1].p22. dgamma(1,.5) 20 theta[3,1].p23. dgamma(1,.5) 21 theta[4,1].p24. dgamma(1,.5) 22 theta[5,1].p25. dgamma(1,.5) 23 theta[6,1].p26. dgamma(1,.5) 24 theta[7,1].p27. dgamma(1,.5) Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 45 / 51

46 25 theta[8,1].p28. dgamma(1,.5) 26 theta[9,1].p29. dgamma(1,.5) 27 theta[10,1].p30. dgamma(1,.5) 28 theta[11,1].p31. dgamma(1,.5) 29 psi[1,1].p32. dgamma(1,.5) 30 psi[2,1].p33. dgamma(1,.5) 31 psi[3,1].p34. dgamma(1,.5) 32 nu[1,1].p35. dnorm(0,1e-3) 33 nu[2,1].p36. dnorm(0,1e-3) 34 nu[3,1].p37. dnorm(0,1e-3) 35 nu[4,1].p38. dnorm(0,1e-3) 36 nu[5,1].p39. dnorm(0,1e-3) 37 nu[6,1].p40. dnorm(0,1e-3) 38 nu[7,1].p41. dnorm(0,1e-3) 39 nu[8,1].p42. dnorm(0,1e-3) 40 nu[9,1].p43. dnorm(0,1e-3) 41 nu[10,1].p44. dnorm(0,1e-3) 42 nu[11,1].p45. dnorm(0,1e-3) 43 rho[1,1].p15. dbeta(1,1) 44 rho[2,1].p16. dbeta(1,1) 45 rho[3,1].p17. dbeta(1,1) 46 rho[4,1].p18. dbeta(1,1) 47 rho[5,1].p19. dbeta(1,1) 48 rho[6,1].p20. dbeta(1,1) $inits $inits$c1 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 46 / 51

47 $inits$c1$invtheta [,1] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] $inits$c1$invpsi [,1] [1,] [2,] [3,] [4,] NA [5,] NA [6,] NA [7,] NA [8,] NA [9,] NA $inits$c1$rstar [,1] Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 47 / 51

48 [1,] [2,] [3,] [4,] [5,] [6,] $inits$c1$nu [,1] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] $inits$c1$lambda [,1] [1,] NA [2,] [3,] [4,] NA [5,] Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 48 / 51

49 [6,] [7,] [8,] NA [9,] NA [10,] NA [11,] NA [12,] NA [13,] NA [14,] NA [15,] NA [16,] NA [17,] NA [18,] NA [19,] NA [20,] NA [21,] NA [22,] NA [23,] NA $inits$c1$beta [,1] [1,] [2,] [3,] $inits$c2 $inits$c2$invtheta Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 49 / 51

50 [,1] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] $inits$c3 $inits$c3$invtheta [,1] [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 50 / 51

51 [11,] $data$g [1] [39] $data$n [1] 75 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 51 / 51

arxiv: v2 [stat.co] 17 Nov 2016

arxiv: v2 [stat.co] 17 Nov 2016 blavaan: Bayesian Structural Equation Models via Parameter Expansion Edgar C. Merkle University of Missouri Yves Rosseel Ghent University Abstract arxiv:1511.05604v2 [stat.co] 17 Nov 2016 This article

More information

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

Empirical Validation of the Critical Thinking Assessment Test: A Bayesian CFA Approach

Empirical Validation of the Critical Thinking Assessment Test: A Bayesian CFA Approach Empirical Validation of the Critical Thinking Assessment Test: A Bayesian CFA Approach CHI HANG AU & ALLISON AMES, PH.D. 1 Acknowledgement Allison Ames, PhD Jeanne Horst, PhD 2 Overview Features of the

More information

Bayesian Analysis of Latent Variable Models using Mplus

Bayesian Analysis of Latent Variable Models using Mplus Bayesian Analysis of Latent Variable Models using Mplus Tihomir Asparouhov and Bengt Muthén Version 2 June 29, 2010 1 1 Introduction In this paper we describe some of the modeling possibilities that are

More information

36-463/663Multilevel and Hierarchical Models

36-463/663Multilevel and Hierarchical Models 36-463/663Multilevel and Hierarchical Models From Bayes to MCMC to MLMs Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Bayesian Statistics and MCMC Distribution of Skill Mastery in a Population

More information

Running head: BSEM: SENSITIVITY TO THE PRIOR 1. Prior Sensitivity Analysis in Default Bayesian Structural Equation Modeling

Running head: BSEM: SENSITIVITY TO THE PRIOR 1. Prior Sensitivity Analysis in Default Bayesian Structural Equation Modeling Running head: BSEM: SENSITIVITY TO THE PRIOR 1 Prior Sensitivity Analysis in Default Bayesian Structural Equation Modeling Sara van Erp, Joris Mulder & Daniel L. Oberski Tilburg University, The Netherlands

More information

WinBUGS : part 2. Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert. Gabriele, living with rheumatoid arthritis

WinBUGS : part 2. Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert. Gabriele, living with rheumatoid arthritis WinBUGS : part 2 Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert Gabriele, living with rheumatoid arthritis Agenda 2! Hierarchical model: linear regression example! R2WinBUGS Linear Regression

More information

BUGS Bayesian inference Using Gibbs Sampling

BUGS Bayesian inference Using Gibbs Sampling BUGS Bayesian inference Using Gibbs Sampling Glen DePalma Department of Statistics May 30, 2013 www.stat.purdue.edu/~gdepalma 1 / 20 Bayesian Philosophy I [Pearl] turned Bayesian in 1971, as soon as I

More information

SEM 2: Structural Equation Modeling

SEM 2: Structural Equation Modeling SEM 2: Structural Equation Modeling Week 2 - Causality and equivalent models Sacha Epskamp 15-05-2018 Covariance Algebra Let Var(x) indicate the variance of x and Cov(x, y) indicate the covariance between

More information

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model Regression: Part II Linear Regression y~n X, 2 X Y Data Model β, σ 2 Process Model Β 0,V β s 1,s 2 Parameter Model Assumptions of Linear Model Homoskedasticity No error in X variables Error in Y variables

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Plausible Values for Latent Variables Using Mplus

Plausible Values for Latent Variables Using Mplus Plausible Values for Latent Variables Using Mplus Tihomir Asparouhov and Bengt Muthén August 21, 2010 1 1 Introduction Plausible values are imputed values for latent variables. All latent variables can

More information

lavaan note: equality constraints

lavaan note: equality constraints lavaan note: equality constraints Yves Rosseel April 4, 2015 1 Introduction in version 0.5-17 (and lower), there were two types of equality constraints in lavaan: 1. simple equality constraints (usually

More information

Robust Bayesian Regression

Robust Bayesian Regression Readings: Hoff Chapter 9, West JRSSB 1984, Fúquene, Pérez & Pericchi 2015 Duke University November 17, 2016 Body Fat Data: Intervals w/ All Data Response % Body Fat and Predictor Waist Circumference 95%

More information

Application of Plausible Values of Latent Variables to Analyzing BSI-18 Factors. Jichuan Wang, Ph.D

Application of Plausible Values of Latent Variables to Analyzing BSI-18 Factors. Jichuan Wang, Ph.D Application of Plausible Values of Latent Variables to Analyzing BSI-18 Factors Jichuan Wang, Ph.D Children s National Health System The George Washington University School of Medicine Washington, DC 1

More information

Bayesian Mixture Modeling

Bayesian Mixture Modeling University of California, Merced July 21, 2014 Mplus Users Meeting, Utrecht Organization of the Talk Organization s modeling estimation framework Motivating examples duce the basic LCA model Illustrated

More information

XXV ENCONTRO BRASILEIRO DE ECONOMETRIA Porto Seguro - BA, 2003 REVISITING DISTRIBUTED LAG MODELS THROUGH A BAYESIAN PERSPECTIVE

XXV ENCONTRO BRASILEIRO DE ECONOMETRIA Porto Seguro - BA, 2003 REVISITING DISTRIBUTED LAG MODELS THROUGH A BAYESIAN PERSPECTIVE XXV ENCONTRO BRASILEIRO DE ECONOMETRIA Porto Seguro - BA, 2003 REVISITING DISTRIBUTED LAG MODELS THROUGH A BAYESIAN PERSPECTIVE Romy R. Ravines, Alexandra M. Schmidt and Helio S. Migon 1 Instituto de Matemática

More information

Model comparison: Deviance-based approaches

Model comparison: Deviance-based approaches Model comparison: Deviance-based approaches Patrick Breheny February 19 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/23 Model comparison Thus far, we have looked at residuals in a fairly

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Using Mplus individual residual plots for. diagnostics and model evaluation in SEM

Using Mplus individual residual plots for. diagnostics and model evaluation in SEM Using Mplus individual residual plots for diagnostics and model evaluation in SEM Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 20 October 31, 2017 1 Introduction A variety of plots are available

More information

Metric Predicted Variable on One Group

Metric Predicted Variable on One Group Metric Predicted Variable on One Group Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Prior Homework

More information

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables /4/04 Structural Equation Modeling and Confirmatory Factor Analysis Advanced Statistics for Researchers Session 3 Dr. Chris Rakes Website: http://csrakes.yolasite.com Email: Rakes@umbc.edu Twitter: @RakesChris

More information

Using Bayesian Priors for More Flexible Latent Class Analysis

Using Bayesian Priors for More Flexible Latent Class Analysis Using Bayesian Priors for More Flexible Latent Class Analysis Tihomir Asparouhov Bengt Muthén Abstract Latent class analysis is based on the assumption that within each class the observed class indicator

More information

CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA

CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA Examples: Multilevel Modeling With Complex Survey Data CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA Complex survey data refers to data obtained by stratification, cluster sampling and/or

More information

Applied Bayesian Nonparametrics Session 9: Polya Tree Examples

Applied Bayesian Nonparametrics Session 9: Polya Tree Examples 1 / 26 Applied Bayesian Nonparametrics Session 9: Polya Tree Examples Timothy Hanson 1 and Alejandro Jara 2 1 Department of Statistics, University of South Carolina, USA 2 Department of Statistics, Pontificia

More information

Latent Variable Centering of Predictors and Mediators in Multilevel and Time-Series Models

Latent Variable Centering of Predictors and Mediators in Multilevel and Time-Series Models Latent Variable Centering of Predictors and Mediators in Multilevel and Time-Series Models Tihomir Asparouhov and Bengt Muthén August 5, 2018 Abstract We discuss different methods for centering a predictor

More information

An Introduction to Path Analysis

An Introduction to Path Analysis An Introduction to Path Analysis PRE 905: Multivariate Analysis Lecture 10: April 15, 2014 PRE 905: Lecture 10 Path Analysis Today s Lecture Path analysis starting with multivariate regression then arriving

More information

Bayes: All uncertainty is described using probability.

Bayes: All uncertainty is described using probability. Bayes: All uncertainty is described using probability. Let w be the data and θ be any unknown quantities. Likelihood. The probability model π(w θ) has θ fixed and w varying. The likelihood L(θ; w) is π(w

More information

Metric Predicted Variable on Two Groups

Metric Predicted Variable on Two Groups Metric Predicted Variable on Two Groups Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Goals

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

CFA Loading Estimation and Comparison Example Joel S Steele, PhD

CFA Loading Estimation and Comparison Example Joel S Steele, PhD CFA Loading Estimation and Comparison Example Joel S Steele, PhD The Common Factor Model Figure 1: Common factor diagram Model expectations Using the tracing rules and our model above in Figure 1, we can

More information

Package factorqr. R topics documented: February 19, 2015

Package factorqr. R topics documented: February 19, 2015 Package factorqr February 19, 2015 Version 0.1-4 Date 2010-09-28 Title Bayesian quantile regression factor models Author Lane Burgette , Maintainer Lane Burgette

More information

Bayesian Inference for Regression Parameters

Bayesian Inference for Regression Parameters Bayesian Inference for Regression Parameters 1 Bayesian inference for simple linear regression parameters follows the usual pattern for all Bayesian analyses: 1. Form a prior distribution over all unknown

More information

Nesting and Equivalence Testing

Nesting and Equivalence Testing Nesting and Equivalence Testing Tihomir Asparouhov and Bengt Muthén August 13, 2018 Abstract In this note, we discuss the nesting and equivalence testing (NET) methodology developed in Bentler and Satorra

More information

The evdbayes Package

The evdbayes Package The evdbayes Package April 19, 2006 Version 1.0-5 Date 2006-18-04 Title Bayesian Analysis in Extreme Theory Author Alec Stephenson and Mathieu Ribatet. Maintainer Mathieu Ribatet

More information

Bayesian SEM: A more flexible representation of substantive theory

Bayesian SEM: A more flexible representation of substantive theory Bayesian SEM: A more flexible representation of substantive theory Bengt Muthén & Tihomir Asparouhov Mplus Accepted for publication in Psychological Methods October 21, 2011 1 Abstract This paper proposes

More information

Package effectfusion

Package effectfusion Package November 29, 2016 Title Bayesian Effect Fusion for Categorical Predictors Version 1.0 Date 2016-11-21 Author Daniela Pauger [aut, cre], Helga Wagner [aut], Gertraud Malsiner-Walli [aut] Maintainer

More information

Specifying Latent Curve and Other Growth Models Using Mplus. (Revised )

Specifying Latent Curve and Other Growth Models Using Mplus. (Revised ) Ronald H. Heck 1 University of Hawai i at Mānoa Handout #20 Specifying Latent Curve and Other Growth Models Using Mplus (Revised 12-1-2014) The SEM approach offers a contrasting framework for use in analyzing

More information

Dealing with rotational invariance in Bayesian confirmatory factor analysis

Dealing with rotational invariance in Bayesian confirmatory factor analysis Dealing with rotational invariance in Bayesian confirmatory factor analysis Elena A. Erosheva and S. McKay Curtis Technical Report no. 589 Department of Statistics University of Washington Seattle, WA

More information

The sbgcop Package. March 9, 2007

The sbgcop Package. March 9, 2007 The sbgcop Package March 9, 2007 Title Semiparametric Bayesian Gaussian copula estimation Version 0.95 Date 2007-03-09 Author Maintainer This package estimates parameters of

More information

Metric Predicted Variable With One Nominal Predictor Variable

Metric Predicted Variable With One Nominal Predictor Variable Metric Predicted Variable With One Nominal Predictor Variable Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more

More information

Using Structural Equation Modeling to Conduct Confirmatory Factor Analysis

Using Structural Equation Modeling to Conduct Confirmatory Factor Analysis Using Structural Equation Modeling to Conduct Confirmatory Factor Analysis Advanced Statistics for Researchers Session 3 Dr. Chris Rakes Website: http://csrakes.yolasite.com Email: Rakes@umbc.edu Twitter:

More information

PRESENTATION TITLE. Is my survey biased? The importance of measurement invariance. Yusuke Kuroki Sunny Moon November 9 th, 2017

PRESENTATION TITLE. Is my survey biased? The importance of measurement invariance. Yusuke Kuroki Sunny Moon November 9 th, 2017 PRESENTATION TITLE Is my survey biased? The importance of measurement invariance Yusuke Kuroki Sunny Moon November 9 th, 2017 Measurement Invariance Measurement invariance: the same construct is being

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Bayesian Graphical Models

Bayesian Graphical Models Graphical Models and Inference, Lecture 16, Michaelmas Term 2009 December 4, 2009 Parameter θ, data X = x, likelihood L(θ x) p(x θ). Express knowledge about θ through prior distribution π on θ. Inference

More information

Bayes Model Selection with Path Sampling: Factor Models

Bayes Model Selection with Path Sampling: Factor Models with Path Sampling: Factor Models Ritabrata Dutta and Jayanta K Ghosh Purdue University 07/02/11 Factor Models in Applications Factor Models in Applications Factor Models Factor Models and Factor analysis

More information

DIC: Deviance Information Criterion

DIC: Deviance Information Criterion (((( Welcome Page Latest News DIC: Deviance Information Criterion Contact us/bugs list WinBUGS New WinBUGS examples FAQs DIC GeoBUGS DIC (Deviance Information Criterion) is a Bayesian method for model

More information

Computationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models

Computationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models Computationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models Tihomir Asparouhov 1, Bengt Muthen 2 Muthen & Muthen 1 UCLA 2 Abstract Multilevel analysis often leads to modeling

More information

Package LBLGXE. R topics documented: July 20, Type Package

Package LBLGXE. R topics documented: July 20, Type Package Type Package Package LBLGXE July 20, 2015 Title Bayesian Lasso for detecting Rare (or Common) Haplotype Association and their interactions with Environmental Covariates Version 1.2 Date 2015-07-09 Author

More information

Misspecification in Nonrecursive SEMs 1. Nonrecursive Latent Variable Models under Misspecification

Misspecification in Nonrecursive SEMs 1. Nonrecursive Latent Variable Models under Misspecification Misspecification in Nonrecursive SEMs 1 Nonrecursive Latent Variable Models under Misspecification Misspecification in Nonrecursive SEMs 2 Abstract A problem central to structural equation modeling is

More information

Inference using structural equations with latent variables

Inference using structural equations with latent variables This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

CE 590 Applied Bayesian Statistics. Mid-term Take-home Exam

CE 590 Applied Bayesian Statistics. Mid-term Take-home Exam CE 590 Applied Bayesian Statistics Mid-term Take-home Exam Due: April 1, 2015 ST495/590 Mid-term take-home exam Due 4/1 This portion of the exam is take-home and must be dropped in my office by 5PM on

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Bain: A program for Bayesian testing of order constrained hypotheses in structural equation models

Bain: A program for Bayesian testing of order constrained hypotheses in structural equation models Bain: A program for Bayesian testing of order constrained hypotheses in structural equation models Xin Gu 1, Herbert Hoijtink 2, Joris Mulder 3, and Yves Rosseel 4 1 Department of Educational Psychology,

More information

SRMR in Mplus. Tihomir Asparouhov and Bengt Muthén. May 2, 2018

SRMR in Mplus. Tihomir Asparouhov and Bengt Muthén. May 2, 2018 SRMR in Mplus Tihomir Asparouhov and Bengt Muthén May 2, 2018 1 Introduction In this note we describe the Mplus implementation of the SRMR standardized root mean squared residual) fit index for the models

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Bayesian philosophy Bayesian computation Bayesian software. Bayesian Statistics. Petter Mostad. Chalmers. April 6, 2017

Bayesian philosophy Bayesian computation Bayesian software. Bayesian Statistics. Petter Mostad. Chalmers. April 6, 2017 Chalmers April 6, 2017 Bayesian philosophy Bayesian philosophy Bayesian statistics versus classical statistics: War or co-existence? Classical statistics: Models have variables and parameters; these are

More information

SEM Day 3 Lab Exercises SPIDA 2007 Dave Flora

SEM Day 3 Lab Exercises SPIDA 2007 Dave Flora SEM Day 3 Lab Exercises SPIDA 2007 Dave Flora 1 Today we will see how to estimate SEM conditional latent trajectory models and interpret output using both SAS and LISREL. Exercise 1 Using SAS PROC CALIS,

More information

SEM Day 1 Lab Exercises SPIDA 2007 Dave Flora

SEM Day 1 Lab Exercises SPIDA 2007 Dave Flora SEM Day 1 Lab Exercises SPIDA 2007 Dave Flora 1 Today we will see how to estimate CFA models and interpret output using both SAS and LISREL. In SAS, commands for specifying SEMs are given using linear

More information

Centering Predictor and Mediator Variables in Multilevel and Time-Series Models

Centering Predictor and Mediator Variables in Multilevel and Time-Series Models Centering Predictor and Mediator Variables in Multilevel and Time-Series Models Tihomir Asparouhov and Bengt Muthén Part 2 May 7, 2018 Tihomir Asparouhov and Bengt Muthén Part 2 Muthén & Muthén 1/ 42 Overview

More information

Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS

Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS 1. (a) The posterior mean estimate of α is 14.27, and the posterior mean for the standard deviation of

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Jim Albert March 18, 2018 A Selected Data Problem Here is an interesting problem with selected data. Suppose you are measuring the speeds of cars driving on an

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Jamie Monogan University of Georgia Spring 2013 For more information, including R programs, properties of Markov chains, and Metropolis-Hastings, please see: http://monogan.myweb.uga.edu/teaching/statcomp/mcmc.pdf

More information

Package spatial.gev.bma

Package spatial.gev.bma Type Package Package spatial.gev.bma February 20, 2015 Title Hierarchical spatial generalized extreme value (GEV) modeling with Bayesian Model Averaging (BMA) Version 1.0 Date 2014-03-11 Author Alex Lenkoski

More information

Default Priors and Efficient Posterior Computation in Bayesian Factor Analysis

Default Priors and Efficient Posterior Computation in Bayesian Factor Analysis Default Priors and Efficient Posterior Computation in Bayesian Factor Analysis Joyee Ghosh Institute of Statistics and Decision Sciences, Duke University Box 90251, Durham, NC 27708 joyee@stat.duke.edu

More information

Bayesian Model Diagnostics and Checking

Bayesian Model Diagnostics and Checking Earvin Balderama Quantitative Ecology Lab Department of Forestry and Environmental Resources North Carolina State University April 12, 2013 1 / 34 Introduction MCMCMC 2 / 34 Introduction MCMCMC Steps in

More information

Package sbgcop. May 29, 2018

Package sbgcop. May 29, 2018 Package sbgcop May 29, 2018 Title Semiparametric Bayesian Gaussian Copula Estimation and Imputation Version 0.980 Date 2018-05-25 Author Maintainer Estimation and inference for parameters

More information

Introduction to mtm: An R Package for Marginalized Transition Models

Introduction to mtm: An R Package for Marginalized Transition Models Introduction to mtm: An R Package for Marginalized Transition Models Bryan A. Comstock and Patrick J. Heagerty Department of Biostatistics University of Washington 1 Introduction Marginalized transition

More information

Online Appendix for Sterba, S.K. (2013). Understanding linkages among mixture models. Multivariate Behavioral Research, 48,

Online Appendix for Sterba, S.K. (2013). Understanding linkages among mixture models. Multivariate Behavioral Research, 48, Online Appendix for, S.K. (2013). Understanding linkages among mixture models. Multivariate Behavioral Research, 48, 775-815. Table of Contents. I. Full presentation of parallel-process groups-based trajectory

More information

Why Bayesian approaches? The average height of a rare plant

Why Bayesian approaches? The average height of a rare plant Why Bayesian approaches? The average height of a rare plant Estimation and comparison of averages is an important step in many ecological analyses and demographic models. In this demonstration you will

More information

MULTILEVEL IMPUTATION 1

MULTILEVEL IMPUTATION 1 MULTILEVEL IMPUTATION 1 Supplement B: MCMC Sampling Steps and Distributions for Two-Level Imputation This document gives technical details of the full conditional distributions used to draw regression

More information

Instrumental variables regression on the Poverty data

Instrumental variables regression on the Poverty data Instrumental variables regression on the Poverty data /********************** poverty2.sas **************************/ options linesize=79 noovp formdlim='-' nodate; title 'UN Poverty Data: Instrumental

More information

ANOVA, ANCOVA and MANOVA as sem

ANOVA, ANCOVA and MANOVA as sem ANOVA, ANCOVA and MANOVA as sem Robin Beaumont 2017 Hoyle Chapter 24 Handbook of Structural Equation Modeling (2015 paperback), Examples converted to R and Onyx SEM diagrams. This workbook duplicates some

More information

Multilevel Structural Equation Modeling with lavaan

Multilevel Structural Equation Modeling with lavaan VIII European Congress of Methodology University of Jena 24 July 2018 1 / 159 Contents 1 Before we start 4 1.1 From regression to structural equation modeling.......... 4 1.2 The essence of SEM........................

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks (9) Model selection and goodness-of-fit checks Objectives In this module we will study methods for model comparisons and checking for model adequacy For model comparisons there are a finite number of candidate

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Bayesian Inference and Decision Theory

Bayesian Inference and Decision Theory Bayesian Inference and Decision Theory Instructor: Kathryn Blackmond Laskey Room 2214 ENGR (703) 993-1644 Office Hours: Tuesday and Thursday 4:30-5:30 PM, or by appointment Spring 2018 Unit 6: Gibbs Sampling

More information

9.1 Analysis of Variance models

9.1 Analysis of Variance models 9.1 Analysis of Variance models Assume a continuous response variable y with categorical explanatory variable x (i.e. factor). Assume x has an inuence on expected values of y, hence there would be dierent

More information

Bayesian Dynamic Linear Modelling for. Complex Computer Models

Bayesian Dynamic Linear Modelling for. Complex Computer Models Bayesian Dynamic Linear Modelling for Complex Computer Models Fei Liu, Liang Zhang, Mike West Abstract Computer models may have functional outputs. With no loss of generality, we assume that a single computer

More information

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

Addition to PGLR Chap 6

Addition to PGLR Chap 6 Arizona State University From the SelectedWorks of Joseph M Hilbe August 27, 216 Addition to PGLR Chap 6 Joseph M Hilbe, Arizona State University Available at: https://works.bepress.com/joseph_hilbe/69/

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

Regression without measurement error using proc calis

Regression without measurement error using proc calis Regression without measurement error using proc calis /* calculus2.sas */ options linesize=79 pagesize=500 noovp formdlim='_'; title 'Calculus 2: Regression with no measurement error'; title2 ''; data

More information

RESMA course Introduction to LISREL. Harry Ganzeboom RESMA Data Analysis & Report #4 February

RESMA course Introduction to LISREL. Harry Ganzeboom RESMA Data Analysis & Report #4 February RESMA course Introduction to LISREL Harry Ganzeboom RESMA Data Analysis & Report #4 February 17 2009 LISREL SEM: Simultaneous [Structural] Equations Model: A system of linear equations ( causal model )

More information

STAT 740: Testing & Model Selection

STAT 740: Testing & Model Selection STAT 740: Testing & Model Selection Timothy Hanson Department of Statistics, University of South Carolina Stat 740: Statistical Computing 1 / 34 Testing & model choice, likelihood-based A common way to

More information

Old and new approaches for the analysis of categorical data in a SEM framework

Old and new approaches for the analysis of categorical data in a SEM framework Old and new approaches for the analysis of categorical data in a SEM framework Yves Rosseel Department of Data Analysis Belgium Myrsini Katsikatsou Department of Statistics London Scool of Economics UK

More information

PIER HLM Course July 30, 2011 Howard Seltman. Discussion Guide for Bayes and BUGS

PIER HLM Course July 30, 2011 Howard Seltman. Discussion Guide for Bayes and BUGS PIER HLM Course July 30, 2011 Howard Seltman Discussion Guide for Bayes and BUGS 1. Classical Statistics is based on parameters as fixed unknown values. a. The standard approach is to try to discover,

More information

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours Name (Print): Student Number: Signature: Last/Surname First /Given Name UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours Aids allowed: Calculator

More information

Confirmatory Factor Analysis: Model comparison, respecification, and more. Psychology 588: Covariance structure and factor models

Confirmatory Factor Analysis: Model comparison, respecification, and more. Psychology 588: Covariance structure and factor models Confirmatory Factor Analysis: Model comparison, respecification, and more Psychology 588: Covariance structure and factor models Model comparison 2 Essentially all goodness of fit indices are descriptive,

More information

Factor Analysis. Qian-Li Xue

Factor Analysis. Qian-Li Xue Factor Analysis Qian-Li Xue Biostatistics Program Harvard Catalyst The Harvard Clinical & Translational Science Center Short course, October 7, 06 Well-used latent variable models Latent variable scale

More information

THE GENERAL STRUCTURAL EQUATION MODEL WITH LATENT VARIATES

THE GENERAL STRUCTURAL EQUATION MODEL WITH LATENT VARIATES THE GENERAL STRUCTURAL EQUATION MODEL WITH LATENT VARIATES I. Specification: A full structural equation model with latent variables consists of two parts: a latent variable model (which specifies the relations

More information

Latent variable interactions

Latent variable interactions Latent variable interactions Bengt Muthén & Tihomir Asparouhov Mplus www.statmodel.com November 2, 2015 1 1 Latent variable interactions Structural equation modeling with latent variable interactions has

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Assumptions of Linear Model Homoskedasticity Model variance No error in X variables Errors in variables No missing data Missing data model Normally distributed error Error in

More information

Vector Autoregression

Vector Autoregression Vector Autoregression Jamie Monogan University of Georgia February 27, 2018 Jamie Monogan (UGA) Vector Autoregression February 27, 2018 1 / 17 Objectives By the end of these meetings, participants should

More information

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables.

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Index Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Adaptive rejection metropolis sampling (ARMS), 98 Adaptive shrinkage, 132 Advanced Photo System (APS), 255 Aggregation

More information

Package CopulaRegression

Package CopulaRegression Type Package Package CopulaRegression Title Bivariate Copula Based Regression Models Version 0.1-5 Depends R (>= 2.11.0), MASS, VineCopula Date 2014-09-04 Author, Daniel Silvestrini February 19, 2015 Maintainer

More information

Introduction to Confirmatory Factor Analysis

Introduction to Confirmatory Factor Analysis Introduction to Confirmatory Factor Analysis Multivariate Methods in Education ERSH 8350 Lecture #12 November 16, 2011 ERSH 8350: Lecture 12 Today s Class An Introduction to: Confirmatory Factor Analysis

More information

BAYESIAN INFERENCE FOR A COVARIANCE MATRIX

BAYESIAN INFERENCE FOR A COVARIANCE MATRIX Libraries Conference on Applied Statistics in Agriculture 2014-26th Annual Conference Proceedings BAYESIAN INFERENCE FOR A COVARIANCE MATRIX Ignacio Alvarez Iowa State University Jarad Niemi Iowa State

More information