ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2

Size: px
Start display at page:

Download "ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2"

Transcription

1 Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ + uw Dt a a = 1 p ρ x + fv f 'w + F x Dv Dt + u2 tanφ + vw a a = 1 p ρ y fu + F y Dw Dt u2 + v 2 = 1 p a ρ z g + f 'u + F z Dρ Dt + ρ U = 0 DT c p Dt α Dp Dt = L(C E) + Q rad + Q diff (for full moist model, equation of water vapor is also included) f --- 2Ωsinφ f ' --- 2Ωcosφ C condensation E evaporation 6 equations 6 unknowns: u, v, w, p, ρ, T 4 dimensions x, y, z, t SCALE ANALYSIS Equations above describe motions of the atmosphere at all scales from mm to 1000s km. If we are interested in the motions that matter to our day-to-day weather (i.e., phenomenology described by synoptic weather map), we may want to eliminate or filter out the unwanted type of motions, such as sound waves. Elimination of terms on scaling considerations not only has the advantage of simplifying the mathematics, but also elimination of the unwanted motions which may corrupt the numerical solution for the wanted motion (e.g., the first attempt of Richardson on numerical weather forecast failed because of the equations he used contain the acoustic and gravity waves). To determine the dominant balance of terms in the equations, and apply approximations to simplify their solutions, we define the following characteristics scales of the field variables based on observed values from midlatitude synoptic systems. These estimates of scales are then substituted into the equations to determine which terms are of the same (larger) order of magnitude---the balance of leading orders. Note that scale analysis in general only tells what but not why. 1

2 U 10m s 1 W 10 2 m s 1 L 10 6 m H 10 4 m δp/ρ 10 3 m 2 s 2 T L /U 10 5 s horizontal velocity vertical velocity horizoantl length depth scale (vertial length) horizonal pressure fluctuation scale advective time scale f 10 4 s 1 planetary vorticity, time scale of earth rotation, Coriolis acceleration on relative motion Table 2.1 shows the characteristic magnitude of each term in the equation set above. 1. Geostrophic approximation It is apparent from Table 2.1 that for midlatitude synoptic scale disturbances the Coriolis force and the pressure gradient force are in approximate balance. Retaining only these two terms in the equations gives as a first approximation the geostrophic relationship fv 1 p ρ x ; fu 1 p (2.22) ρ y which is just a diagnostic relationship. To predict time evolution, we need keep the higher order term---the time tendency term and inertial terms. For example, 2

3 Du Dt u t + u u x + v u y U 2 / L 10 4 For the geostrophic relationship to hold, R o U f 0 L 1. + w u z 1 p ρ x + fv By analogy to the geostrophic approximation, it is possible to define horizontal geostrophic wind V g = iu g + jv g, which satisfies (2.22) identically. In vectorial form, V g k 1 p (2.23) ρ f It should be kept in mind that (2.23) always defines the geostrophic wind, but only for large-scale motions away from equator should (2.22) apply as an approximation to the actual horizontal wind field. The typical accuracy of (2.22) is within 10-15% of the actual wind. Homework: show p V g or p V g = 0 f 0 U Hydrostatic approximation Similar scale analysis leads to, to a high degree of accuracy, the hydrostatic equilibrium, that is, the pressure at any point is simply equal the weight of the of a unit cross-section column of air above that point. However, the above analysis is somehow misleading. It is not sufficient to show merely that the vertical acceleration is small compared to g. Because only that part of pressure field that varies horizontally is directly coupled to the horizontal velocity field, it is actually necessary to show that the horizontally varying pressure component is itself in hydrostatic equilibrium with the horizontally varying density field. To do this it is conventional to first define a standard pressure p 0 (z), which is the horizontally averaged pressure at each height, and a corresponding standard density ρ 0 (z), defined as such so that p 0 (z) and ρ 0 (z) are in exact hydrostatic balance: 3

4 Therefore, for synoptic motion, vertical accelerations are negligible and the vertical velocity cannot be determined from the vertical momentum equation. Can be transformed to p-coordinate, because p is a monotonic and single-valued function of z. 3. Scale analysis of the Continuity Equation 1 Dρ ρ Dt + U = 0 (2.31) Following the technique developed above, and assuming that ρ'/ ρ 0 approximate the continuity equation (2.31) as 1, we 4

5 1 ρ' + U ρ' ρ t + w dρ 0 + U ρ 0 dz 0 A ρ' U ρ 0 L A. For synoptic scale motion: ρ'/ ρ 0 ~ 10 2 B W H C 10 1 U L 10 7 s s s 1 B. For motion in which the depth scale H is comparable to the density scale height, d ln ρ 0 / dz H 1 10km. C. U = u x + v y + w, for synoptic motions the first two terms tend to cancel each z other, giving rise to a sum that is an order smaller. Thus, terms B and C are each an order of magnitude larger than term A, and to a first approximation, terms B and C balance each other in the continuity equation. u x + v y + w z + w d dz (ln ρ ) = 0 0 or in vectorial form (ρ 0 U) = 0 (2.34) This means that for synoptic scale motions the mass flux computed using the basic state density is nondivergent. For purely horizontal flow, the atmosphere behaves as though it were an incompressible fluid. This is similar to, but not the same as the idealization of incompressibility used in fluid mechanics. However, an incompressible fluid has density constant following the motion: Dρ Dt = 0 Thus, by (2.31), velocity divergence vanishes ( U = 0, used in Boussinesq sets of equations 1 ) in an incompressible fluid, which is not the same as (2.34). 1 The Boussinesq approximation ignores all variations of density of a fluid in the momentum equations, except when associated with the gravitational (or buoyancy) term. Boussinesq sets of equations use U = 0, but this should absolutely not allow one to go back and use (2.31) to say that Dρ = 0 ; the evolution of density is given by the Dt thermodynamic equation in conjunction with an equation of state. However, using p-coordinates, the Boussinesq equations for atmospheric circulation do not need these approximation in continuity equations. Let the oceanographers to worry about this issue. 5

6 It is also worthy of note that equation (2.34) is where the eponymous anelastic approximation arises: the elastic compressibility of the fluid is neglected (by assuming T ~ U / L, in which time scale the sound waves do not dominate --- A term drops out of the equation), and this serves to eliminate sound waves. This approximation is also referred to as weak Boussinesq approximation. Because if we let ρ 0 (z) be a constant, the anelastic equations become identical to the Boussinesq equations. 6

7 GOVERNING EQUATION OF MOTION IN PRESSURE COORDINATES 1. Horizontal momentum equations Recall equation (1.25) and (1.26), 1 p = Φ ρ x z x p 1 p = Φ ρ y z y p In vectorial form, let the horizontal velocity V = iu + jv, the horizontal momentum equation in isobaric coordinate can be written as DV Dt + fk V = Φ (3.2) p where p is the horizontal gradient operator applied with pressure held constant. (some nuances about the observation of the horizontal wind on isobaric surface) In p-coor, variables are function of x, y, p,t, and total derivative D Dt = t + u x + v y + ω p where ω Dp is the pressure change following the motion, which plays the same role in Dt p-coor as w does in z-coor. 2. Continuity equation It is possible to transform the continuity equation (2.31) from z-coor to p-coor. But I leave it to you. However, it is simpler to directly derive the isobaric form by considering a Lagrangian control volume δv = δ xδ yδz and applying the hydrostatic equation δ p = ρgδz to express the volume element as δv = δ xδ yδ p / (ρg). The mass of this fluid element, which is conserved following the motion, is then δ M = ρδv = δ xδ yδz / g, thus 1 δ M D Dt (δ M ) = g δ xδ yδ p D Dt δ xδ yδ p g = 0 chain rule and change order of the differential operators 1 δ x δ or Dx Dt + 1 δ y δ δu δ x + δv δ y + δω δ p = 0 Dy Dt + 1 δ p δ Dp Dt = 0 7

8 Taking the limit δ x,δ y,δ p 0 and observing that δ x and δ y are evaluated at constant pressure, we derive the continuity equation in the isobaric system: u x + v y + ω p = 0 This form of the continuity equation contains no reference to the density field and does not involve time derivatives---the chief advantages of the isobaric coordinates. 3. Thermodynamic Energy Equation From (2.42) DT c p Dt α Dp Dt = J, we have the following written in isobaric system: T c p t + u T x + v T y + ω T p αω = J This may be further, by combining the last two terms of the lhs, written as T t + u T x + v T y S pω = J c p where p S p RT c p p T p = T θ θ p (3.7, derive this) is the static stability parameter for the isobaric system. Using (2.49) and the hydrostatic equation, (3.7) may be rewritten as S p = (Γ d Γ) / ρg Thus, S p is positive provided that the lapse rate is less than dry adiabatic. Scale analysis of ω Dp Dt = p p + V p + w t z shows that it is quite a good approximation to let ω = ρgw Put together, we now have 8

9 p = ρrt or pα = RT u t + u u x + v u y + ω u p v t + u v x + v v y + ω v Φ p = α u x + v y + ω p = 0 Fundamental Equation in p-coordinate uv tanφ = + uω f 'ω + fv + a ρga ρg Φ x + F rx p = u2 tanφ a + vω ρga fu Φ y + F ry c p OR T t + u T x + v T y αω = L(C E) + Q rad + Q diff T t + u T x + v T y = Sω + L c p (C E) + q rad + q diff where q rad = Q rad / c p q diff = Q diff / c p S = T θ (static stability) θ p r t + u r x + v r y + ω r = Sources Sinks p after the scale ananlysis of the first round 9

10 p = ρrt or pα = RT u t + u u x + v u y + ω u Φ = fv p x + F rx v t + u v x + v v y + ω v Φ = fu p y + F ry Φ p = α = RT p u x + v y + ω p = 0 c p OR T t + u T x + v T y αω = L(C E) + Q rad + Q diff T t + u T x + v T y = Sω + L c p (C E) + q rad + q diff where q rad = Q rad / c p q diff = Q diff / c p S = T θ (static stability) θ p (see page 147, equations (6.1-4)) 10

11 Geostrophic wind Thermal Wind fv g = k p Φ fv g = Φ x fu g = Φ y p v g = 1 f x Φ p p u g = 1 f y using hydrostatic equation: Φ p = α = RT p, then, p v g p = v g ln p = R f p u g p = u g ln p = R f or in vectorial form V g ln p = R f k pt thermal wind (3.30) Designating the thermal wind vector by V T, we may integrate (3.30) from pressure level p 0 to p 1 (p 1 < p 0 ) to get V T V g (p 1 ) V g (p 0 ) = R k p T f d ln p (3.31) p 0 Letting T denote the mean temperature in the layer between pressure level p 0 and p 1, than the thermal wind relation can be written as: V T = R f k T ln p 0 p 1 = 1 f k (Φ Φ ) = g 1 0 f k Z T (3.35) The equivalence of these equations can be verified readily by integrating the hydrostatic equation vertically from p 0 to p 1. Φ p p 1 T x T y p p ( ) With (3.35), it is therefore possible to obtain a reasonable estimate of the horizontal temperature advection and its vertical dependence at a given location solely from data on the vertical profile of the wind of a single sounding. In the meantime, the geostrophic wind at any level can be estimated from the mean temperature field, provided that the geostrophic velocity is known at a single level. Counterclockwise turning with height cold advection Clockwise turning (veering) with height warm advection 11

12 12

13 13

14 Homework A: read page 73 carefully and derive the hypsometric equation Φ 1 Φ 0 gz T = R T ln p 0 (3.34) Homework B: Use the knowledge of page 73 and the hypsometric equation above to estimate the expected tilt of 500 hpa pressure surface between the tropics and the pole based on the following conditions and assumptions: (i) T only varies only merdionally, i.e., isothermal in vertical; (ii) surface pressure p s = 1000 hpa; (iii) equator-to-pole temperature difference ΔT equator pole = 40K. And draw picture to demonstrate the results schematically. p 1 Hints: use equation Δz equator pole = RΔT equator pole g ln p s p 500 and diagram below as clues. 14

15 Barotropic flow Barotropic defined by ρ = ρ(p), so the isobaric surface is also the surface of constant density. For an ideal gas, the isobaric surface will be also isothermal for the barotropic atmosphere. Thus p T = 0 in a barotropic ideal-gas atmosphere and V g ln p = R f k pt = 0 and geostrophic wind is independent of p (vertical coordinate). Barotropy produces a very strong constraint on the motions and forms basis of much of theoretical understanding. If ρ = ρ( p,t ), then the flow is baroclinic. 15

t tendency advection convergence twisting baroclinicity

t tendency advection convergence twisting baroclinicity RELATIVE VORTICITY EQUATION Newton s law in a rotating frame in z-coordinate (frictionless): U + U U = 2Ω U Φ α p U + U U 2 + ( U) U = 2Ω U Φ α p Applying to both sides, and noting ω U and using identities

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Hydrostatic Equation and Thermal Wind. Meteorology 411 Iowa State University Week 5 Bill Gallus

Hydrostatic Equation and Thermal Wind. Meteorology 411 Iowa State University Week 5 Bill Gallus Hydrostatic Equation and Thermal Wind Meteorology 411 Iowa State University Week 5 Bill Gallus Hydrostatic Equation In the atmosphere, vertical accelerations (dw/dt) are normally fairly small, and we can

More information

Meteorology 6150 Cloud System Modeling

Meteorology 6150 Cloud System Modeling Meteorology 6150 Cloud System Modeling Steve Krueger Spring 2009 1 Fundamental Equations 1.1 The Basic Equations 1.1.1 Equation of motion The movement of air in the atmosphere is governed by Newton s Second

More information

Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations

Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations Scale analysis relevant to the tropics [large-scale synoptic systems]* Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations *Reminder: Midlatitude scale

More information

Circulation and Vorticity

Circulation and Vorticity Circulation and Vorticity Example: Rotation in the atmosphere water vapor satellite animation Circulation a macroscopic measure of rotation for a finite area of a fluid Vorticity a microscopic measure

More information

Dust devils, water spouts, tornados

Dust devils, water spouts, tornados Balanced flow Things we know Primitive equations are very comprehensive, but there may be a number of vast simplifications that may be relevant (e.g., geostrophic balance). Seems that there are things

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

7 Balanced Motion. 7.1 Return of the...scale analysis for hydrostatic balance! CSU ATS601 Fall 2015

7 Balanced Motion. 7.1 Return of the...scale analysis for hydrostatic balance! CSU ATS601 Fall 2015 7 Balanced Motion We previously discussed the concept of balance earlier, in the context of hydrostatic balance. Recall that the balanced condition means no accelerations (balance of forces). That is,

More information

Chapter 2. The continuous equations

Chapter 2. The continuous equations Chapter. The continuous equations Fig. 1.: Schematic of a forecast with slowly varying weather-related variations and superimposed high frequency Lamb waves. Note that even though the forecast of the slow

More information

Atmospheric Dynamics: lecture 2

Atmospheric Dynamics: lecture 2 Atmospheric Dynamics: lecture 2 Topics Some aspects of advection and the Coriolis-effect (1.7) Composition of the atmosphere (figure 1.6) Equation of state (1.8&1.9) Water vapour in the atmosphere (1.10)

More information

Dynamic Meteorology - Introduction

Dynamic Meteorology - Introduction Dynamic Meteorology - Introduction Atmospheric dynamics the study of atmospheric motions that are associated with weather and climate We will consider the atmosphere to be a continuous fluid medium, or

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Models of ocean circulation are all based on the equations of motion.

Models of ocean circulation are all based on the equations of motion. Equations of motion Models of ocean circulation are all based on the equations of motion. Only in simple cases the equations of motion can be solved analytically, usually they must be solved numerically.

More information

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere.

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere. Lecture 3: Applications of Basic Equations Pressure as Vertical Coordinate From the hydrostatic equation, it is clear that a single valued monotonic relationship exists between pressure and height in each

More information

where p oo is a reference level constant pressure (often 10 5 Pa). Since θ is conserved for adiabatic motions, a prognostic temperature equation is:

where p oo is a reference level constant pressure (often 10 5 Pa). Since θ is conserved for adiabatic motions, a prognostic temperature equation is: 1 Appendix C Useful Equations Purposes: Provide foundation equations and sketch some derivations. These equations are used as starting places for discussions in various parts of the book. C.1. Thermodynamic

More information

Dynamic Meteorology 1

Dynamic Meteorology 1 Dynamic Meteorology 1 Lecture 14 Sahraei Department of Physics, Razi University http://www.razi.ac.ir/sahraei Buys-Ballot rule (Northern Hemisphere) If the wind blows into your back, the Low will be to

More information

EAS372 Open Book Final Exam 11 April, 2013

EAS372 Open Book Final Exam 11 April, 2013 EAS372 Open Book Final Exam 11 April, 2013 Professor: J.D. Wilson Time available: 2 hours Value: 30% Please check the Terminology, Equations and Data section before beginning your responses. Answer all

More information

EATS Notes 1. Some course material will be online at

EATS Notes 1. Some course material will be online at EATS 3040-2015 Notes 1 14 Aug 2015 Some course material will be online at http://www.yorku.ca/pat/esse3040/ HH = Holton and Hakim. An Introduction to Dynamic Meteorology, 5th Edition. Most of the images

More information

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms,

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms, Chapter 1 Notes A Note About Coordinates We nearly always use a coordinate system in this class where the vertical, ˆk, is normal to the Earth s surface and the x-direction, î, points to the east and the

More information

Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation

Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation Chapter 9 Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation 9.1 Geostrophy and scaling. We examined in the last chapter some consequences of the dynamical balances for low frequency, nearly

More information

2.5 Shallow water equations, quasigeostrophic filtering, and filtering of inertia-gravity waves

2.5 Shallow water equations, quasigeostrophic filtering, and filtering of inertia-gravity waves Chapter. The continuous equations φ=gh Φ=gH φ s =gh s Fig..5: Schematic of the shallow water model, a hydrostatic, incompressible fluid with a rigid bottom h s (x,y), a free surface h(x,y,t), and horizontal

More information

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

Class exercises Chapter 3. Elementary Applications of the Basic Equations

Class exercises Chapter 3. Elementary Applications of the Basic Equations Class exercises Chapter 3. Elementary Applications of the Basic Equations Section 3.1 Basic Equations in Isobaric Coordinates 3.1 For some (in fact many) applications we assume that the change of the Coriolis

More information

Generalizing the Boussinesq Approximation to Stratified Compressible Flow

Generalizing the Boussinesq Approximation to Stratified Compressible Flow Generalizing the Boussinesq Approximation to Stratified Compressible Flow Dale R. Durran a Akio Arakawa b a University of Washington, Seattle, USA b University of California, Los Angeles, USA Abstract

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

4. The rules of the game

4. The rules of the game ! Revised Friday, November 14, 2014! 1 4. The rules of the game Introduction This chapter gives a quick review of concepts to be used later. Topics covered including the conservation principles for momentum,

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Ocean Dynamics.

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Ocean Dynamics. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.e.au Ocean Dynamics The Equations of Motion d u dt = 1 ρ Σ F dt = 1 ρ ΣF x dt = 1 ρ ΣF y dw dt =

More information

= vorticity dilution + tilting horizontal vortices + microscopic solenoid

= vorticity dilution + tilting horizontal vortices + microscopic solenoid 4.4 Vorticity Eq 4.4.1 Cartesian Coordinates Because ζ = ˆk V, gives D(ζ + f) x minus [v momentum eq. in Cartesian Coordinates] y [u momentum eq. in Cartesian Coordinates] = vorticity dilution + tilting

More information

( ) (9.1.1) Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation. 9.1 Geostrophy and scaling.

( ) (9.1.1) Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation. 9.1 Geostrophy and scaling. Chapter 9 Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation 9.1 Geostrophy and scaling. We examined in the last chapter some consequences of the dynamical balances for low frequency, nearly

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

NWP Equations (Adapted from UCAR/COMET Online Modules)

NWP Equations (Adapted from UCAR/COMET Online Modules) NWP Equations (Adapted from UCAR/COMET Online Modules) Certain physical laws of motion and conservation of energy (for example, Newton's Second Law of Motion and the First Law of Thermodynamics) govern

More information

Governing Equations and Scaling in the Tropics

Governing Equations and Scaling in the Tropics Governing Equations and Scaling in the Tropics M 1 ( ) e R ε er Tropical v Midlatitude Meteorology Why is the general circulation and synoptic weather systems in the tropics different to the those in the

More information

2 Equations of Motion

2 Equations of Motion 2 Equations of Motion system. In this section, we will derive the six full equations of motion in a non-rotating, Cartesian coordinate 2.1 Six equations of motion (non-rotating, Cartesian coordinates)

More information

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU Isentropic Analysis Much of this presentation is due to Jim Moore, SLU Utility of Isentropic Analysis Diagnose and visualize vertical motion - through advection of pressure and system-relative flow Depict

More information

Fundamental Meteo Concepts

Fundamental Meteo Concepts Fundamental Meteo Concepts Atmos 5110 Synoptic Dynamic Meteorology I Instructor: Jim Steenburgh jim.steenburgh@utah.edu 801-581-8727 Suite 480/Office 488 INSCC Suggested reading: Lackmann (2011), sections

More information

EAS372 Open Book Final Exam 11 April, 2013

EAS372 Open Book Final Exam 11 April, 2013 EAS372 Open Book Final Exam 11 April, 2013 Professor: J.D. Wilson Time available: 2 hours Value: 30% Please check the Terminology, Equations and Data section before beginning your responses. Answer all

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith.

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts The material in this section is based largely on Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts 2 Atmospheric Fronts A front is the sloping interfacial region of

More information

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States See CalTech 2005 paper on course web site Free troposphere assumed to have moist adiabatic lapse rate (s* does

More information

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations Needs work : define boundary conditions and fluxes before, change slides 1-2-3 Useful definitions and conservation equations Turbulent Kinetic energy The fluxes are crucial to define our boundary conditions,

More information

6 Two-layer shallow water theory.

6 Two-layer shallow water theory. 6 Two-layer shallow water theory. Wewillnowgoontolookatashallowwatersystemthathastwolayersofdifferent density. This is the next level of complexity and a simple starting point for understanding the behaviour

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction Chapter 2. Quasi-Geostrophic Theory: Formulation (review) 2.1 Introduction For most of the course we will be concerned with instabilities that an be analyzed by the quasi-geostrophic equations. These are

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017 Lecture 5: Waves in Atmosphere Perturbation Method Properties of Wave Shallow Water Model Gravity Waves Rossby Waves Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature

More information

Gas Dynamics: Basic Equations, Waves and Shocks

Gas Dynamics: Basic Equations, Waves and Shocks Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks Susanne Höfner Susanne.Hoefner@fysast.uu.se Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks

More information

APPENDIX B. The primitive equations

APPENDIX B. The primitive equations APPENDIX B The primitive equations The physical and mathematical basis of all methods of dynamical atmospheric prediction lies in the principles of conservation of momentum, mass, and energy. Applied to

More information

Project 3 Convection and Atmospheric Thermodynamics

Project 3 Convection and Atmospheric Thermodynamics 12.818 Project 3 Convection and Atmospheric Thermodynamics Lodovica Illari 1 Background The Earth is bathed in radiation from the Sun whose intensity peaks in the visible. In order to maintain energy balance

More information

Chapter 4: Fundamental Forces

Chapter 4: Fundamental Forces Chapter 4: Fundamental Forces Newton s Second Law: F=ma In atmospheric science it is typical to consider the force per unit mass acting on the atmosphere: Force mass = a In order to understand atmospheric

More information

1/25/2010. Circulation and vorticity are the two primary

1/25/2010. Circulation and vorticity are the two primary Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic.

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic. Quasi-Geostrophic ω-equation For large-scale flow in the atmosphere, we have learned about two very important characteristics:. The atmosphere is approximately hydrostatic.. The atmosphere is approximately

More information

Ocean currents: some misconceptions and some dynamics

Ocean currents: some misconceptions and some dynamics Ocean currents: some misconceptions and some dynamics Joe LaCasce Dept. Geosciences October 30, 2012 Where is the Gulf Stream? BBC Weather Center Where is the Gulf Stream? Univ. Bergen news website (2011)

More information

ERTH 465 Fall Lab 3. Vertical Consistency and Analysis of Thickness. (300 points)

ERTH 465 Fall Lab 3. Vertical Consistency and Analysis of Thickness. (300 points) Name Date ERTH 465 Fall 2015 Lab 3 Vertical Consistency and Analysis of Thickness (300 points) 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show

More information

SEVERE AND UNUSUAL WEATHER

SEVERE AND UNUSUAL WEATHER SEVERE AND UNUSUAL WEATHER Basic Meteorological Terminology Adiabatic - Referring to a process without the addition or removal of heat. A temperature change may come about as a result of a change in the

More information

Part 4. Atmospheric Dynamics

Part 4. Atmospheric Dynamics Part 4. Atmospheric Dynamics We apply Newton s Second Law: ma =Σ F i to the atmosphere. In Cartesian coordinates dx u = dt dy v = dt dz w = dt 1 ai = F m i i du dv dw a = ; ay = ; az = x dt dt dt 78 Coordinate

More information

Quasi-geostrophic ocean models

Quasi-geostrophic ocean models Quasi-geostrophic ocean models March 19, 2002 1 Introduction The starting point for theoretical and numerical study of the three dimensional large-scale circulation of the atmosphere and ocean is a vorticity

More information

The Behaviour of the Atmosphere

The Behaviour of the Atmosphere 3 The Behaviour of the Atmosphere Learning Goals After studying this chapter, students should be able to: apply the ideal gas law and the concept of hydrostatic balance to the atmosphere (pp. 49 54); apply

More information

The dynamics of a simple troposphere-stratosphere model

The dynamics of a simple troposphere-stratosphere model The dynamics of a simple troposphere-stratosphere model by Jessica Duin under supervision of Prof. Dr. A. Doelman, UvA Dr. W.T.M. Verkley, KNMI August 31, 25 Universiteit van Amsterdam Korteweg-de vries

More information

ATMO 551a Moist Adiabat Fall Change in internal energy: ΔU

ATMO 551a Moist Adiabat Fall Change in internal energy: ΔU Enthalpy and the Moist Adiabat We have described the dry adiabat where an air parcel is lifted rapidly causing the air parcel to expand as the environmental pressure decreases and the air parcel does work

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

The Equations of Motion in a Rotating Coordinate System. Chapter 3

The Equations of Motion in a Rotating Coordinate System. Chapter 3 The Equations of Motion in a Rotating Coordinate System Chapter 3 Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study

More information

Dynamic Meteorology (lecture 13, 2016)

Dynamic Meteorology (lecture 13, 2016) Dynamic Meteorology (lecture 13, 2016) Topics Chapter 3, lecture notes: High frequency waves (no rota;on) Boussinesq approxima4on Normal mode analysis of the stability of hydrosta4c balance Buoyancy waves

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

Thermodynamic Energy Equation

Thermodynamic Energy Equation Thermodynamic Energy Equation The temperature tendency is = u T x v T y w T z + dt dt (1) where dt/dt is the individual derivative of temperature. This temperature change experienced by the air parcel

More information

Quasi-geostrophic system

Quasi-geostrophic system Quasi-eostrophic system (or, why we love elliptic equations for QGPV) Charney s QG the motion of lare-scale atmospheric disturbances is overned by Laws of conservation of potential temperature and potential

More information

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise.

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise. Chapter 4 4.1 The Circulation Theorem Circulation is a measure of rotation. It is calculated for a closed contour by taking the line integral of the velocity component tangent to the contour evaluated

More information

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Week 5.

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Week 5. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.e.au Week 5 Ocean Dynamics Transport of Volume, Heat & Salt Flux: Amount of heat, salt or volume

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 1. Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere,

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Reference Peixoto and Oort, Sec. 3.1, 3.2, 3.4, 3.5 (but skip the discussion of oceans until next week); Ch. 10 Thermodynamic

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Buoyancy and Coriolis forces

Buoyancy and Coriolis forces Chapter 2 Buoyancy and Coriolis forces In this chapter we address several topics that we need to understand before starting on our study of geophysical uid dynamics. 2.1 Hydrostatic approximation Consider

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

10 Shallow Water Models

10 Shallow Water Models 10 Shallow Water Models So far, we have studied the effects due to rotation and stratification in isolation. We then looked at the effects of rotation in a barotropic model, but what about if we add stratification

More information

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at

More information

The Euler Equation of Gas-Dynamics

The Euler Equation of Gas-Dynamics The Euler Equation of Gas-Dynamics A. Mignone October 24, 217 In this lecture we study some properties of the Euler equations of gasdynamics, + (u) = ( ) u + u u + p = a p + u p + γp u = where, p and u

More information

Changes in Density Within An Air are Density Velocity Column Fixed due and/or With Respect to to Advection Divergence the Earth

Changes in Density Within An Air are Density Velocity Column Fixed due and/or With Respect to to Advection Divergence the Earth The Continuity Equation: Dines Compensation and the Pressure Tendency Equation 1. General The Continuity Equation is a restatement of the principle of Conservation of Mass applied to the atmosphere. The

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

1. The vertical structure of the atmosphere. Temperature profile.

1. The vertical structure of the atmosphere. Temperature profile. Lecture 4. The structure of the atmosphere. Air in motion. Objectives: 1. The vertical structure of the atmosphere. Temperature profile. 2. Temperature in the lower atmosphere: dry adiabatic lapse rate.

More information

The Tropical Atmosphere: Hurricane Incubator

The Tropical Atmosphere: Hurricane Incubator The Tropical Atmosphere: Hurricane Incubator Images from journals published by the American Meteorological Society are copyright AMS and used with permission. A One-Dimensional Description of the Tropical

More information

ERTH 465 Fall Lab 3. Vertical Consistency and Analysis of Thickness

ERTH 465 Fall Lab 3. Vertical Consistency and Analysis of Thickness Name Date ERTH 465 Fall 2015 Lab 3 Vertical Consistency and Analysis of Thickness 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show all work

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Contents

More information

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0 ! Revised Friday, April 19, 2013! 1 Inertial Stability and Instability David Randall Introduction Inertial stability and instability are relevant to the atmosphere and ocean, and also in other contexts

More information

Geostrophic and Quasi-Geostrophic Balances

Geostrophic and Quasi-Geostrophic Balances Geostrophic and Quasi-Geostrophic Balances Qiyu Xiao June 19, 2018 1 Introduction Understanding how the atmosphere and ocean behave is important to our everyday lives. Techniques such as weather forecasting

More information

The Hydrostatic Approximation. - Euler Equations in Spherical Coordinates. - The Approximation and the Equations

The Hydrostatic Approximation. - Euler Equations in Spherical Coordinates. - The Approximation and the Equations OUTLINE: The Hydrostatic Approximation - Euler Equations in Spherical Coordinates - The Approximation and the Equations - Critique of Hydrostatic Approximation Inertial Instability - The Phenomenon - The

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

d v 2 v = d v d t i n where "in" and "rot" denote the inertial (absolute) and rotating frames. Equation of motion F =

d v 2 v = d v d t i n where in and rot denote the inertial (absolute) and rotating frames. Equation of motion F = Governing equations of fluid dynamics under the influence of Earth rotation (Navier-Stokes Equations in rotating frame) Recap: From kinematic consideration, d v i n d t i n = d v rot d t r o t 2 v rot

More information

Atmospheric dynamics and meteorology

Atmospheric dynamics and meteorology Atmospheric dynamics and meteorology B. Legras, http://www.lmd.ens.fr/legras III Frontogenesis (pre requisite: quasi-geostrophic equation, baroclinic instability in the Eady and Phillips models ) Recommended

More information