National University of Singapore Department of Mathematics

Size: px
Start display at page:

Download "National University of Singapore Department of Mathematics"

Transcription

1 National University of Singapore Department of Mathematics Semester I, 2002/2003 MA505 Math I Suggested Solutions to T. 2. Let f() be a real function defined as follows: sin(a) if <0, f() = b + c if 0, 2 if >, where a, b, c and d are real numbers. (a) Find all conditions on a, b, c such that f is continuous on (, ). (b) Find conditions on b, c and d such that f is differentiable at =. SOLUTION. (a) Obviously f is continuous at 0,. f is continuous at =0 f() =f(0) + sin(a) = c +(b + c) sin(a) a = c a a = c. Here we use the it sin t t 0 t =. f is continuous at = f() =f() f() + (b + c) =b + c b + c = d. Therefore, f is continuous in (, ) if and only if a = c, b + c = d. + 2 (b) f is differentiable at = if and only if the following two conditions are satisfied: (i) f is continuous at =, and (ii) two one-sided its f() f() f() f() and eist and equal. We have + f() f() b + c (b + c) = b.

2 On the other hand, f() f() + 2 (b + c) + 2 d by above + d( )( +) =2d. + Recall that if f is differentiable at =,thenf is continuous at =. Hence f is differentiable at =ifandonlyifd = b + c and b =2d. It follows that c = d as well. 2. For the following functions, find y. (a) 2/3 + y 2/3 = a 2/3. Differentiating the equality we get 2 3 /3 + 2 dy y /3 3 =0. Since 0 <<awe have dy y/3 a = = 2/3 2/3 = ( a /3 /3 )2/3 ; d 2 y = 2 2 ( a ( 2 3 )a2/3 5/3 a 2/3 = )2/3 3 ( 5/3 a )2/3 = a 2/3 3 4/3 a 2/3 2/3. (b) y =(sin),0<< π,sosin>0. 2 y ln y = sin ln, =cosln +cos, y y = y( + ln )cos, [ ] y = y ( + ln )cos + y ( + ln )( )+ cos2 [ cos = y( + ln ) 2 cos 2 2 ] + y ( + ln )sin. Hence y = (sin) ( + ln )cos, [ ] y = (sin) ( + ln ) 2 cos 2 + cos2 ( + ln )sin. (c) = a cos t, y = a sin t. dy = dy dt dt = a cos t a sin t d 2 y 2 = d (dy )= d ( dy ) dt dt = cot t, = d ( cot t) dt dt = sin 2 t a sin t = a sin 3 t.

3 General Remarks. We apply the chain rule quite a few times in this tutorial. Let s recall the chain rule df g() =[f g()] =[f(g())] = f (g()) g (). 3. Let y = f(u) andu = g(). Using the chain rule, show that d 2 y 2 = dy du d2 u 2 + d2 y du 2 ( ) 2 du. We assume that f and g are twice differentiable functions so that the above formula makes sense. SOLUTION: By the chain rule, we have d ( dy dy = dy du du ) = d ( dy du du ) = d ( ) dy du = d du = d2 y du 2 du + dy du d ( ) du ( ) dy du du du + dy du d2 u 2 ( ) 2 du + dy du d2 u. 2 (product rule) 4. Assume f has continuous derivatives up to the second order. Find y. (a) y = f( 2 ), (b) y = f ( ), y = 2f ( 2 ), y = 2f ( 2 )+4 2 f ( 2 ).. y = 2 f ( ), y = 2 3 f ( )+ 4 f ( ). (c) y = f(ln ), y = f (ln ), y = 2 f (ln )+ 2 f (ln ).

4 (d) y = f(e ), y = e f (e ), y = e f (e )+e 2 f (e ). 5. Show that the tangents to the curve y = π at = π and = π intersect at right angle. SOLUTION. y = π, y cos = π. 2 At = π we have y =0,y =. The tangent line l at = π is given by y = π. At = π we have y =0,y =. The tangent line l 2 at = π is given by y = π +. l and l 2 intersect at (0,π). The slopes of l, l 2 are k = andk 2 = respectively. k k 2 =. Hence l and l 2 intersect at right angle. Or else l : + y = π = the vector, is to the line l ; l 2 : ( ) + y = π = the vector, is to the line l 2. By finding the dot product,, = + = 0, we can also see out that l l Consider differentiable functions f and g on IR. Suppose that f is increasing on IR, and g is decreasing on IR. Are the following statements always true? (a) f g is increasing on IR. (b) f g is decreasing on IR. Justify your answers. SOLUTION. (a) f is differentiable and increasing f () > 0;g is differentiable and decreasing g () < 0. By the product formula, (f g) () =f ()g()+g ()f(). But we CANNOT conclude that (f g) () > 0 for all IR (i.e., f g is increasing on IR). For eample, f() =, which is differentiable and increasing; and g() =, which is differentiable and decreasing; but f g = 2 is NOT increasing on IR. It follows that statement (a) is NOT always true. (b) By the chain rule, (f g) () =f (g()) g () < 0 as f (y) > 0, g () < 0 for all, y IR. Hence f g is decreasing on IR. Hence statement (b) is always valid.

5 7. Find the etremal values of the following functions. (7a) y = + 2 +, [ 3, 3]. y = y 2 ( +)2 ( 2 +) 2. y =0if = ± 2. < 0 if < 2, =0 if = 2, > 0 if 2 << + 2, =0 if = + 2, < 0 if > + 2. Hence y is decreasing in [ 3, 2), increasing in ( 2, + 2), and decreasing in ( + 2, 3]. y( 2) = 2( 2+), y( + 2) = 2( 2+) < 5 < 2 5 < 2( 2 ). 2( 2 ), y( 3) = 5, y(3) = 2 5. So y has an absolute minimum value at = 2 with min y = [ 3,3] 2( 2+) and has an absolute maimum value at = + 2with ma y = [ 3,3] 2( 2 ).

6 (7b) y =( ) 3 2, (, ). When 0wehave y = 2/ ( ) /3 = /3. y does not eist at = 0. The critical points are =0an = 2 5. y > 0 if <0, does not eist if =0, < 0 if 0 << 2, 5 =0 if = 2, 5 > 0 if > 2. 5 Hence y is increasing in (, 0), decreasing in (0, 2), and increasing in ( 2, ). 5 5 = 0 is a local maimum point with y(0) = 0. = 2 is a local minimum point with y( 2)= 3( )2/3. y =, y =. Soy has no absolute etremes.

7 (7c) y = ln(+), (, ). For > wehavey = + = +, y < 0in(, 0) and y > 0in(0, ). The only critical point is =0. y is decreasing in (, 0) and increasing in (0, ). y =, y =. + Therefore y has an absolute minimum value at =0with has no absolute maimum value. min y = y(0) = 0. y <<

8 (7d) y =2tan tan 2, [0, π 2 ). y = 2 cos 2 2tan cos 2 = 2 ( tan ). cos 2 y > 0if0 < π, 4 y < 0if π << π. The only critical point is = π. y is increasing in [0, π) and decreasing in ( π, π ). y(0) = 0, y( π ) = and π 2 y =. Therefore y has a local minimum value at =0. y has an absolute maimum value at = π with ma y =.yhas no absolute minimum value. 4 0 < π 2

9 (7e) y =sin 3 +cos 3, y =3sin 2 cos 3cos 2 = 3 sin 2( cos ). 2 y =0if = kπ, kπ + π,orkπ + π for any integer k Z. Here Z = { 4 2 2,, 0,, 2 } is the set of all integers. y =3cos2( cos )+ 3 sin 2( +cos). 2 { > 0 if k is odd,. y (kπ) = 3coskπ =3( ) k+ So y has a local maimum value at =2nπ with y(2nπ) =, and a local minimum value at =(2n+)π < 0 if k is even. with y((2n +)π) = for any n Z. 2. y (kπ + π 4 )=3sin(kπ + π { 4 )=3 2 > 0 if k is even, 2 ( )k So y has a local < 0 if k is odd. maimum value at =(2n +)π + π with y((2n +)π + π )= 2,andalocal minimum value at =2nπ + π with y(2nπ + π )= 2 for any n Z y (kπ + π 2 )=3cosπsin(kπ + π { > 0 if k is odd, 2 )=3( )k+ So y has a < 0 if k is even. local maimum value at =2nπ + π with y(2nπ + π ) =, and a local minimum 2 2 value at =(2n +)π + π with y((2n +)π + π )= for any n Z. 2 2 Summarizing, we have: y has absolute maimum values at =2nπ, and2nπ + π,with ma y =, and 2 << a local maimum value at =(2n +)π + π with y((2n +)π + π )= 2, for any n Z. y has absolute minimum values at =(2n+)π and (2n+)π + π with min y = 2 <<, and a local minimum value at =2nπ+ π with y(2nπ+ π)= 2, for any n Z

10 8. Given a constant c, eplain why the equation c =0hasatleastone real root. For what values of c does the equation have only one real root? Solution. Set f() = c. Forafiednumberc, clearly when > 0islarge, then f( ) is positive; and when 2 < 0isvery negative, thenf( 2 ) is negative. The function is continuous on IR. It follows from the Intermediate Value Theorem that there is a real number o such that f( o )= 3 o 3 o + c =0. That is, the equation has at least one real root. f () =3( 2 ) > 0 if <, =0 if =, < 0 if <<, =0 if =, > 0 if >. Thus f is increasing in (, ), decreasing in (, ) and increasing in (, ). It follows from the above (or the second derivative test) that = iswheref achieves a local maimum, an =iswheref achieves a local minimum. Furthermore, ( ) f( ) = c +2 (localma), f() = c 2 (local min). An useful insight is that adding the number c to the epression 3 3 amounts to uplifting or pushing down the graph of y = 3 3, according to c>0orc<0 (compare with the figures below). Hence if c is so large that the local minimum in (*) is also positive, then we have just one real solution. And the same if c is so negative that the local maimum is made negative. So if c>2, then f() > 0andf has only one real solution. When c =2,f() = 0 and f( ) > 0, hence f has more than one real root. When 2 <c 2and f( ) > 0 >f(), and f has more than one real root. When c = 2, we have f( ) = 0 and f has more than one real root. Finally, when c< 2,f( ) < 0 and f() < 0, and again we have only one root. See the figures for the cases c =3, 2, 0, 2 & 3. c = 3

11 c=2 c=0

12 c=-2 c=-3

13 9. Use L Hopital s rule to find the following its. (9a) π/2 +cos2 π/2 cos 2sin2 π/2 4cos2 = 4. (9b) ln(cos a) ln(cos b) a sin a cos a b sin b cos b a sin a cos b b sin b cos a = a2 b 2. (9c). (9d) (9e) (9f) tan + a ln + ln Using (4d) we have tan( ) ln a + ln 2 sec 2 ( ) 2 a a + cos 2 ( )= a a =0. =. So = e. ln + + ln + So + = e 0 =. ln + + ln =0. (9g) ( + ) =. (9h) ( ) ln 2 = 2 = 6 = 6. So ( ) 2 = e /6. ln( ) 2 cos 3 ( = 2 cos ) 2 2 cos cos 3 2

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

Ph.D. Katarína Bellová Page 1 Mathematics 1 (10-PHY-BIPMA1) RETAKE EXAM, 4 April 2018, 10:00 12:00

Ph.D. Katarína Bellová Page 1 Mathematics 1 (10-PHY-BIPMA1) RETAKE EXAM, 4 April 2018, 10:00 12:00 Ph.D. Katarína Bellová Page Mathematics (0-PHY-BIPMA) RETAKE EXAM, 4 April 08, 0:00 :00 Problem [4 points]: Prove that for any positive integer n, the following equality holds: + 4 + 7 + + (3n ) = n(3n

More information

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist.

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist. . The asymptotes of the graph of the parametric equations = t, y = t t + are A) =, y = B) = only C) =, y = D) = only E) =, y =. What are the coordinates of the inflection point on the graph of y = ( +

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1 Regent College Maths Department Core Mathematics Trapezium Rule C Integration Page Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points)

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points) BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: United and Continuous! ( points) For #- below, find the its, if they eist.(#- are pt each) ) 7 ) 9 9 ) 5 ) 8 For #5-7, eplain why

More information

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer.

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer. Chapter 3 1. (AB/BC, non-calculator) Given g ( ) 2 4 3 6 : (a) Find the critical numbers of g. (b) For what values of is g increasing? Justify your answer. (c) Identify the -coordinate of the critical

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Unit 5 MC and FR Practice

Unit 5 MC and FR Practice Name: Date:. If y = e, then y = ( )e ( )e ( )e. If y = e /, then y = e/ e / e / e /. If y = e cos, then dy d = e cos sin e cos sin e cos e cos sin. curve is defined by y = e sin. Find dy d. e sin cos sin

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

AP Calc Summer Packet #1 Non-Calculator

AP Calc Summer Packet #1 Non-Calculator This packet is a review of the prerequisite concepts for AP Calculus. It is to be done NEATLY and on a SEPARATE sheet of paper. All problems are to be done WITHOUT a graphing calculator. Points will be

More information

AP Calculus (BC) Summer Assignment (169 points)

AP Calculus (BC) Summer Assignment (169 points) AP Calculus (BC) Summer Assignment (69 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

2. Find the value of y for which the line through A and B has the given slope m: A(-2, 3), B(4, y), 2 3

2. Find the value of y for which the line through A and B has the given slope m: A(-2, 3), B(4, y), 2 3 . Find an equation for the line that contains the points (, -) and (6, 9).. Find the value of y for which the line through A and B has the given slope m: A(-, ), B(4, y), m.. Find an equation for the line

More information

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2.

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2. . Find A and B so that f Ae B has a local minimum of 6 when.. The graph below is the graph of f, the derivative of f; The domain of the derivative is 5 6. Note there is a cusp when =, a horizontal tangent

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f( 8 6 4 8 6-3 - - 3 4 5 6 f(.9.8.7.6.5.4.3.. -4-3 - - 3 f( 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the following

More information

Math 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n.

Math 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n. . Find the following its (if they eist: sin 7 a. 0 9 5 b. 0 tan( 8 c. 4 d. e. f. sin h0 h h cos h0 h h Math 4 Final Eam Review g. h. i. j. k. cos 0 n nn e 0 n arctan( 0 4 l. 0 sin(4 m. cot 0 = n. = o.

More information

AP Calculus AB Sample Exam Questions Course and Exam Description Effective Fall 2016

AP Calculus AB Sample Exam Questions Course and Exam Description Effective Fall 2016 P alculus Sample Eam Questions ourse and Eam escription Effective Fall 6 Section I, Part ( graphing calculator may not be used) Multiple hoice Questions.. 3.. 5. lim f( g( )) f(lim g( )) f() 3 7 sin lim

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

Math 171 Calculus I Spring, 2019 Practice Questions for Exam II 1

Math 171 Calculus I Spring, 2019 Practice Questions for Exam II 1 Math 171 Calculus I Spring, 2019 Practice Questions for Eam II 1 You can check your answers in WebWork. Full solutions in WW available Sunday evening. Problem 1. Find the average rate of change of the

More information

Differentiating Functions & Expressions - Edexcel Past Exam Questions

Differentiating Functions & Expressions - Edexcel Past Exam Questions - Edecel Past Eam Questions. (a) Differentiate with respect to (i) sin + sec, (ii) { + ln ()}. 5-0 + 9 Given that y =, ¹, ( -) 8 (b) show that = ( -). (6) June 05 Q. f() = e ln, > 0. (a) Differentiate

More information

M151B Practice Problems for Exam 1

M151B Practice Problems for Exam 1 M151B Practice Problems for Eam 1 Calculators will not be allowed on the eam. Unjustified answers will not receive credit. 1. Compute each of the following its: 1a. 1b. 1c. 1d. 1e. 1 3 4. 3. sin 7 0. +

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

4.3. Differentiation Rules for Sinusoidal Functions. How do the differentiation rules apply to sinusoidal functions?

4.3. Differentiation Rules for Sinusoidal Functions. How do the differentiation rules apply to sinusoidal functions? .3 Differentiation Rules for Sinusoidal Functions Sinusoidal patterns occur frequentl in nature. Sinusoidal functions and compound sinusoidal functions are used to describe the patterns found in the stu

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five extra percentage points on the semester exam.

AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five extra percentage points on the semester exam. AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five etra percentage points on the semester eam. *Even though the eam will have a calculator active portion with 0 of the 8 questions,

More information

This theorem guarantees solutions to many problems you will encounter. exists, then f ( c)

This theorem guarantees solutions to many problems you will encounter. exists, then f ( c) Maimum and Minimum Values Etreme Value Theorem If f () is continuous on the closed interval [a, b], then f () achieves both a global (absolute) maimum and global minimum at some numbers c and d in [a,

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015 AP Calculus Review Assignment Answer Sheet 1 Name: Date: Per. Harton Spring Break Packet 015 This is an AP Calc Review packet. As we get closer to the eam, it is time to start reviewing old concepts. Use

More information

AP Calculus Prep Session Handout. Integral Defined Functions

AP Calculus Prep Session Handout. Integral Defined Functions AP Calculus Prep Session Handout A continuous, differentiable function can be epressed as a definite integral if it is difficult or impossible to determine the antiderivative of a function using known

More information

Understanding Part 2 of The Fundamental Theorem of Calculus

Understanding Part 2 of The Fundamental Theorem of Calculus Understanding Part of The Fundamental Theorem of Calculus Worksheet 8: The Graph of F () What is an Anti-Derivative? Give an eample that is algebraic: and an eample that is graphical: eample : Below is

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible.

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible. Math 4 Final Eam Review. Evaluate, giving eact values when possible. sin cos cos sin y. Evaluate the epression. loglog 5 5ln e. Solve for. 4 6 e 4. Use the given graph of f to answer the following: y f

More information

Summer Review Packet (Limits & Derivatives) 1. Answer the following questions using the graph of ƒ(x) given below.

Summer Review Packet (Limits & Derivatives) 1. Answer the following questions using the graph of ƒ(x) given below. Name AP Calculus BC Summer Review Packet (Limits & Derivatives) Limits 1. Answer the following questions using the graph of ƒ() given below. (a) Find ƒ(0) (b) Find ƒ() (c) Find f( ) 5 (d) Find f( ) 0 (e)

More information

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) = CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name:

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name: AP Calculus AB/IB Math SL Unit : Limits and Continuity Name: Block: Date:. A bungee jumper dives from a tower at time t = 0. Her height h (in feet) at time t (in seconds) is given by the graph below. In

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim Math 0-0-RE - Calculus I Trigonometry Limits & Derivatives Page of 8 Trigonometric Limits It has been shown in class that: lim 0 sin lim 0 sin lim 0 cos cos 0 lim 0 cos lim 0 + cos + To evaluate trigonometric

More information

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique.

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique. MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #4 Part I: Cauchy Sequence Definition (Cauchy Sequence): A sequence of real number { n } is Cauchy if and only if for any ε >

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve MAT 11 Solutions TH Eam 3 1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: Therefore, d 5 5 d d 5 5 d 1 5 1 3 51 5 5 and 5 5 5 ( ) 3 d 1 3 5 ( ) So the

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

Unit #3 Rules of Differentiation Homework Packet

Unit #3 Rules of Differentiation Homework Packet Unit #3 Rules of Differentiation Homework Packet In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

2.4 The Product and Quotient Rules

2.4 The Product and Quotient Rules Hartfield MATH 040 Unit Page 1.4 The Product and Quotient Rules For functions which are the result of multiplying or dividing epressions, special rules apply which involve multiple steps. E. 1: Find the

More information

Given the vectors u, v, w and real numbers α, β, γ. Calculate vector a, which is equal to the linear combination α u + β v + γ w.

Given the vectors u, v, w and real numbers α, β, γ. Calculate vector a, which is equal to the linear combination α u + β v + γ w. Selected problems from the tetbook J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I Problems in Mathematics I I. LINEAR ALGEBRA I.. Vectors, vector spaces Given the vectors u, v, w and real numbers

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Objective Mathematics

Objective Mathematics Chapter No - ( Area Bounded by Curves ). Normal at (, ) is given by : y y. f ( ) or f ( ). Area d ()() 7 Square units. Area (8)() 6 dy. ( ) d y c or f ( ) c f () c f ( ) As shown in figure, point P is

More information

November 13, 2018 MAT186 Week 8 Justin Ko

November 13, 2018 MAT186 Week 8 Justin Ko 1 Mean Value Theorem Theorem 1 (Mean Value Theorem). Let f be a continuous on [a, b] and differentiable on (a, b). There eists a c (a, b) such that f f(b) f(a) (c) =. b a Eample 1: The Mean Value Theorem

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

(d by dx notation aka Leibniz notation)

(d by dx notation aka Leibniz notation) n Prerequisites: Differentiating, sin and cos ; sum/difference and chain rules; finding ma./min.; finding tangents to curves; finding stationary points and their nature; optimising a function. Maths Applications:

More information

ax, From AtoB bx c, From BtoC

ax, From AtoB bx c, From BtoC Name: Date: Block: Semester Assessment Revision 3 Multiple Choice Calculator Active NOTE: The eact numerical value of the correct answer may not always appear among the choices given. When this happens,

More information

AP Calculus BC Summer Packet 2017

AP Calculus BC Summer Packet 2017 AP Calculus BC Summer Packet 7 o The attached packet is required for all FHS students who took AP Calculus AB in 6-7 and will be continuing on to AP Calculus BC in 7-8. o It is to be turned in to your

More information

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx Chapter 6 AP Eam Problems Antiderivatives. ( ) + d = ( + ) + 5 + + 5 ( + ) 6 ( + ). If the second derivative of f is given by f ( ) = cos, which of the following could be f( )? + cos + cos + + cos + sin

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #5 Completion Date: Frida Februar 5, 8 Department of Mathematical and Statistical Sciences Universit of Alberta Question. [Sec.., #

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

" $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1

 $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1 CALCULUS 2 WORKSHEET #2. The asymptotes of the graph of the parametric equations x = t t, y = t + are A) x = 0, y = 0 B) x = 0 only C) x =, y = 0 D) x = only E) x= 0, y = 2. What are the coordinates of

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

Economics 205 Exercises

Economics 205 Exercises Economics 05 Eercises Prof. Watson, Fall 006 (Includes eaminations through Fall 003) Part 1: Basic Analysis 1. Using ε and δ, write in formal terms the meaning of lim a f() = c, where f : R R.. Write the

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

Math 170 Calculus I Final Exam Review Solutions

Math 170 Calculus I Final Exam Review Solutions Math 70 Calculus I Final Eam Review Solutions. Find the following its: (a (b (c (d 3 = + = 6 + 5 = 3 + 0 3 4 = sin( (e 0 cos( = (f 0 ln(sin( ln(tan( = ln( (g (h 0 + cot( ln( = sin(π/ = π. Find any values

More information

AP Calculus (BC) Summer Assignment (104 points)

AP Calculus (BC) Summer Assignment (104 points) AP Calculus (BC) Summer Assignment (0 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

. Show the work that leads to your answer. (c) State the equation(s) for the vertical asymptote(s) for the graph of y f( x).

. Show the work that leads to your answer. (c) State the equation(s) for the vertical asymptote(s) for the graph of y f( x). Chapter 1 1. (AB/BC, non-calculator) The function f is defined as follows: f( ) 5 6. 7 3 (a) State the value(s) of for which f is not continuous. (b) Evaluate f ( ). Show the work that leads to your answer.

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L 2 Limits and Continuous Functions 2.2 Introduction to Limits We first interpret limits loosel. We write lim f() = L and sa the limit of f() as approaches c, equals L if we can make the values of f() arbitraril

More information

Math 231 Final Exam Review

Math 231 Final Exam Review Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

Essential Question How can you verify a trigonometric identity?

Essential Question How can you verify a trigonometric identity? 9.7 Using Trigonometric Identities Essential Question How can you verify a trigonometric identity? Writing a Trigonometric Identity Work with a partner. In the figure, the point (, y) is on a circle of

More information

Solutions to Math 41 First Exam October 12, 2010

Solutions to Math 41 First Exam October 12, 2010 Solutions to Math 41 First Eam October 12, 2010 1. 13 points) Find each of the following its, with justification. If the it does not eist, eplain why. If there is an infinite it, then eplain whether it

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above AP Physics C - Problem Drill 10: Differentiability and Rules of Differentiation Question No. 1 of 10 Question 1. A derivative does not eist Question #01 (A) when 0 (B) where the tangent line is horizontal

More information

AP Calculus AB/BC ilearnmath.net 21. Find the solution(s) to the equation log x =0.

AP Calculus AB/BC ilearnmath.net 21. Find the solution(s) to the equation log x =0. . Find the solution(s) to the equation log =. (a) (b) (c) (d) (e) no real solutions. Evaluate ln( 3 e). (a) can t be evaluated (b) 3 e (c) e (d) 3 (e) 3 3. Find the solution(s) to the equation ln( +)=3.

More information

AP CALCULUS BC 2015 SCORING GUIDELINES

AP CALCULUS BC 2015 SCORING GUIDELINES 05 SCORING GUIDELINES Question 5 Consider the function f =, where k is a nonzero constant. The derivative of f is given by k f = k ( k). (a) Let k =, so that f =. Write an equation for the line tangent

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information