The Sum n. Introduction. Proof I: By Induction. Caleb McWhorter

Size: px
Start display at page:

Download "The Sum n. Introduction. Proof I: By Induction. Caleb McWhorter"

Transcription

1 The Sum n Caleb McWhorter Introduction Mathematicians study patterns, logic, and the relationships between objects. Though this definition is so vague it could be describing any field not just a scientific field! Where Mathematics differs from the others is the notion of a proof. But what exactly is that? A proof is one of those many nebulous words that refuse to be pinned down to a single concrete definition. But we will define a proof as an argument that uses assumed or known facts to establish a particular statement. Learning what a proof is and how to write them is an important part of a mathematician s early development. In fact, it is a lifelong process. One of the first proof techniques introduced to students is the Principle of Mathematical Induction. As an early example, students are shown the identity n i n() and asked to prove it using induction. 1 Though there are many ways of establishing this fact. Our goals here are twofold. First, we hope to demonstrate several different proofs of this fact using a variety of different (but related) techniques. Second, we hope to demonstrate that mathematical proofs can take many forms. Proofs of the same fact written by different people can look very different. What is important is that they convincingly (usually this is means rigorously whatever that means) establish the claim it endeavors to prove. After reading through the various proofs, the reader should look carefully to see what the various proofs have in common. Proof I: By Induction Proof. We proceed by induction. First, we check the first few cases by hand n 1 : n : n 3 : 1 i 1; i 1 + 3; 3 i ; 1(1 + 1) ( + 1) 3(3 + 1) This formula is a special case of Faulhaber s Formula. The values produced by the formula are called triangular numbers. 1

2 Now assume the result is true for n 1,, 3,..., k. We need to show that the formula holds for n k + 1. k+1 i (k + 1) + k i (k + 1) + k + k + k + k(k + 1) k + 3k + (k + 1) + k(k + 1) (k + 1)(k + ) k + + k + k (k + 1(k + 1) + 1) where the starred equality follows from the induction hypothesis: k i k(k+1). But then n i n() follows by induction. Proof II: By Dots Proof. Think of numbers as representing some number of dots, i.e. 1 represents one dot, represents dots, et cetera. Observe the sum represents the total number of dots in the diagram in Table 1. Table 1: The triangular array for n 5. We can represent the sum n as a total number of dots in diagram. The case for n 5 is demonstrated in Table 1. We can place two such diagrams next to each other. Observe we can remove the hypotenuse of the right triangular array, place it on top of the left triangular array and form a square, placing the removed hypotenuse s circles in a line to the right. Table : Adding the arrays for the case n 5. + The sum of the diagrams on the left is precisely the number of dots in the two triangular arrays: ( n) + ( n) ( n). The number of dots on the right of the equality is the area of the square, n n n, plus the number of dots in the column, n. Since both computations

3 calculate the number of dots in the diagram, we have ( n) n + n ( n) n(n + 1) n(n + 1) n But then n i n() Proof III: By Gauss Trick Proof. (Gauss ): Write out the sum in increasing order and again directly beneath it in decreasing order. Adding these two rows yields n n + (n 1) + (n ) n n + (n 1) + (n ) (n + 1) + (n + 1) + (n + 1) + + (n + 1) This result is the n-fold sum of (n + 1) s. But then we have ( n) n(n + 1) so that n i n n() Proof IV: By Summation Prestidigitation Proof. We want to find 1++ +n n i. Observe this is the same as finding n+(n 1)+ ++1 n n i + 1, the sum written in reverse. But then we have i i + n i + 1 i + (n i + 1) n + 1 n(n + 1) But then we have n i n() The story goes though there are many versions that when Gauss was in primary school, his teacher asked the class to practice addition by adding all the numbers from 1 to 100. Gauss came up with the correct sum of 5,050 in only a few seconds by thinking of the addition in the same way that we prove the theorem in Proof III. 3

4 Proof V: By More Summation Magic Proof. Let S (n) : n i0 i. Observe that S (n) S (n 1) n for n 1,,. But then S (n) is a polynomial of degree two. 3 Suppose that S (n) an + bn + c. We must have c 0 as S (0) 0. Furthermore, S (n) S (n 1) n and n S (n) S (n 1) (an + bn) (a(n 1) + b(n 1)) (a)n + (b a) Relating the polynomials in n on the far left and right, we have a 1 and b a 0. But then a 1/ and b a. Therefore, S (n) n i 1 n + 1 n n(). Alternatively, once one knows that S (n) is a polynomial of degree two, we could use the points (0, 0), (1, 1), and (, 3coming from the fact that S (0) 0, S (1) 1, and S () 3) and use Lagrange Interpolation to find that S (n) 0 (n 1)(n n 0)(n n 0)(n 1) n(n + 1) (1 0)( 01 0)(1 0)( 1) Proof VI: By Combinatorics Proof. Let S denote the n-element set {1,,..., n}. We count the number of ways to choose a two element subset from S. First, we can choose the first element in n ways and the second element in (n 1) ways. However, choosing i and then j produces the same two element subset as choosing j then i. So the number of ways of choosing a two element subset from S is n(n 1). Alternatively, suppose the larger of the two numbers chosen is i. Then for i, 3,..., n, there are i 1 choices for the second number j. That is for i, 3,..., n, there are 1,,, n 1 possible two element subsets of S. Then in total there are (n 1) total two element subsets of S. But then n 1 n(n 1) i (n 1) Proof VII: By Binomial Coefficients Proof. First, we prove Pascal s Identity: ( k n k + n k 1). We count the number of ways to choose a k element subset from the set {1,,..., n + 1} in two different ways. Since they count the same thing, they must be equal. First, we do this directly. The number of k element subsets one can choose from this set is exactly ( ) k. Second, each k element subset either contains n + 1 or does not. The number of k element subsets containing n + 1 is ( n k 1) while the number of k element subsets not containing n + 1 is ( n k. But then the number of k element subsets is n k + n k 1. Therefore, k n k + n k 1). We will need this identity for the starred equality below. 3 This actually takes a bit more work to show. Let V be the space of all polynomials defined over N {0} over a field F of characteristic 0. Define the forward difference operator Dp(n) : p(n + 1) p(n). If p(n) has degree d + 1, then Dp(n) has degree at most d. Let V d denote the subspace of V consisting of polynomials of degree at most d. Then we have dim F V d d + 1. Choosing the standard basis, observe that matrix for the forward difference operator is upper triangular and defines an operator D : V d+1 V d. Then the result is clear. 4

5 Now we show n i ( ) using induction. The case where n 1 is simple: 1 i 1 and ( ) 1. Assume the result is true for n 1,,..., k 1. Then k k 1 i k + i ( ) k k + 1 ( ) k + 1 k(k + 1) Then n i ( ) n() follows by induction Proof VIII: By Graph Theory Proof. A graph is a collection of vertices (one can think of these as points) and edges (one can think of these as line segments connecting the vertices, i.e. points). A graph is called complete if given any two distinct vertices in the graph, there is an edge connecting them. That is, a complete graph has the maximal number of edges. A complete graph with n vertices is denoted K n. For example, the complete graph K 6 is illustrated in Figure 1. Figure 1: The complete graph K 6. Consider the complete graph K n. Label the vertices v 1, v,..., v n. Associate to vertex v 1 the (n 1)- edges connecting it to all the other vertices in K n. Associate to vertex v the (n )-edges connecting it to all the other vertices in K n except for v 1. Continue this process for v 3, v 4,..., v n. Notice that for each i, the association for v i+1 contributes no new edges and this process never duplicates an edge. Let v i denote the number of edges associated with v i. Then the number of edges in K n is... # of edges v i v 1 + v + + v n 1 + v n (n 1) + (n )

6 But then we have n v i n 1 i. The result will follow if we can show that the number of edges, n v i, is n(n 1). But every edge in K n connects two vertices. The number of edges must then be the number of ways one can select two vertices to connect. But this is precisely ( ) n n(n 1). Therefore, we have n 1 ( ) n n(n 1) i v i But this is exactly what was to be shown. Proof IX: By Triangles Proof. (Larson [Lar85]): We want to show that (n 1) n(n 1). Represent the sum (n 1) as a triangular array of yellow circles. Place a row of n blue dots beneath this array to create larger a triangular array of dots. The case when n 5 is illustrated in Figure. Observe that if Figure : An illustration for the triangular array for n 5. one chooses any two distinct blue dots, there is a unique yellow dot in the upper portion of the triangular array associated to the pair of dots as illustrated in Figure. Vise versa for each yellow dot, there is a unique pair of blue dots associated to it. That is, there is a one-to-one correspondence between yellow dots and pairs of blue dots. But then the number of yellow dots, (n 1), must be the same as the number of ways of choosing two distinct blue dots, ( n ). Then we must have n 1 i (n 1) ( ) n n(n 1) But this was exactly what was to be shown. 6

7 Proof X: By Telescoping Series Proof. Observe that (i + 1) i (i + i + 1) i i + 1. The series (i+1) i ( 1 )+(3 )+(4 3 )+ +(() n ) 1 +() 1+(n +) n +n Take note also that n 1 n. We also have... (i + 1) i + 1 i + 1 n + so that n i n + n (i + 1). Putting these results together, we have... i n + n + i + 1 (i + 1) i n + (n + n) n + n n(n + 1) Therefore, n i n() i Proof XI: By l Hôpital Proof. Consider the finite geometric series 1 + r + r + + r n 1 r 1 r Differentiating both sides of the equality yields d ( 1 + r + r + + r n) 1 + r + 3r + + nr n 1 dr ( ) d 1 r dr 1 r (1 r)(n + 1)rn ( 1)(1 r ) (1 r) nr (n + 1)r n + 1 (1 r) We obtain the sum n by taking the limit as r tends to 1: nr (n + 1)r n + 1 L.H. n(n + 1)(r 1)r n 1 lim r 1 (1 r) lim r 1 (1 r) L.H. n(n + 1)(n(r 1) + 1)r n lim r 1 n(n + 1) 7

8 where L.H. denotes that the equality follows by application of l Hôpital s Rule. But it then follows that n i n() References [Lar85] L. Larson. A Discrete Look at n. College Mathematics Journal, 16:369 38,

Counting. Math 301. November 24, Dr. Nahid Sultana

Counting. Math 301. November 24, Dr. Nahid Sultana Basic Principles Dr. Nahid Sultana November 24, 2012 Basic Principles Basic Principles The Sum Rule The Product Rule Distinguishable Pascal s Triangle Binomial Theorem Basic Principles Combinatorics: The

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

What is proof? Lesson 1

What is proof? Lesson 1 What is proof? Lesson The topic for this Math Explorer Club is mathematical proof. In this post we will go over what was covered in the first session. The word proof is a normal English word that you might

More information

What can you prove by induction?

What can you prove by induction? MEI CONFERENCE 013 What can you prove by induction? Martyn Parker M.J.Parker@keele.ac.uk Contents Contents iii 1 Splitting Coins.................................................. 1 Convex Polygons................................................

More information

Contents. Counting Methods and Induction

Contents. Counting Methods and Induction Contents Counting Methods and Induction Lesson 1 Counting Strategies Investigations 1 Careful Counting... 555 Order and Repetition I... 56 3 Order and Repetition II... 569 On Your Own... 573 Lesson Counting

More information

PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO. Prepared by Kristina L. Gazdik. March 2005

PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO. Prepared by Kristina L. Gazdik. March 2005 PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO Prepared by Kristina L. Gazdik March 2005 1 TABLE OF CONTENTS Course Description.3 Scope and Sequence 4 Content Outlines UNIT I: FUNCTIONS AND THEIR GRAPHS

More information

5. Sequences & Recursion

5. Sequences & Recursion 5. Sequences & Recursion Terence Sim 1 / 42 A mathematician, like a painter or poet, is a maker of patterns. Reading Sections 5.1 5.4, 5.6 5.8 of Epp. Section 2.10 of Campbell. Godfrey Harold Hardy, 1877

More information

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School Basic counting techniques Periklis A. Papakonstantinou Rutgers Business School i LECTURE NOTES IN Elementary counting methods Periklis A. Papakonstantinou MSIS, Rutgers Business School ALL RIGHTS RESERVED

More information

CS1800: Mathematical Induction. Professor Kevin Gold

CS1800: Mathematical Induction. Professor Kevin Gold CS1800: Mathematical Induction Professor Kevin Gold Induction: Used to Prove Patterns Just Keep Going For an algorithm, we may want to prove that it just keeps working, no matter how big the input size

More information

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Name (please print) Mathematics Final Examination December 14, 2005 I. (4) Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

More information

( ) is called the dependent variable because its

( ) is called the dependent variable because its page 1 of 16 CLASS NOTES: 3 8 thru 4 3 and 11 7 Functions, Exponents and Polynomials 3 8: Function Notation A function is a correspondence between two sets, the domain (x) and the range (y). An example

More information

Lesson 8: Why Stay with Whole Numbers?

Lesson 8: Why Stay with Whole Numbers? Student Outcomes Students use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Students create functions that

More information

LAKELAND COMMUNITY COLLEGE COURSE OUTLINE FORM

LAKELAND COMMUNITY COLLEGE COURSE OUTLINE FORM LAKELAND COMMUNITY COLLEGE COURSE OUTLINE FORM ORIGINATION DATE: 8/2/99 APPROVAL DATE: 3/22/12 LAST MODIFICATION DATE: 3/28/12 EFFECTIVE TERM/YEAR: FALL/ 12 COURSE ID: COURSE TITLE: MATH2800 Linear Algebra

More information

Franklin Math Bowl 2007 Group Problem Solving Test 6 th Grade

Franklin Math Bowl 2007 Group Problem Solving Test 6 th Grade Group Problem Solving Test 6 th Grade 1. Consecutive integers are integers that increase by one. For eample, 6, 7, and 8 are consecutive integers. If the sum of 9 consecutive integers is 9, what is the

More information

Situation: Summing the Natural Numbers

Situation: Summing the Natural Numbers Situation: Summing the Natural Numbers Prepared at Penn State University Mid-Atlantic Center for Mathematics Teaching and Learning 14 July 005 Shari and Anna Edited at University of Georgia Center for

More information

1 Sequences and Summation

1 Sequences and Summation 1 Sequences and Summation A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer. For example, a m, a m+1,...,

More information

CISC-102 Fall 2017 Week 3. Principle of Mathematical Induction

CISC-102 Fall 2017 Week 3. Principle of Mathematical Induction Week 3 1 of 17 CISC-102 Fall 2017 Week 3 Principle of Mathematical Induction A proposition is defined as a statement that is either true or false. We will at times make a declarative statement as a proposition

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions Basic Combinatorics Math 4010, Section 01 Fall 01 Homework 8 Solutions 1.8.1 1: K n has ( n edges, each one of which can be given one of two colors; so Kn has (n -edge-colorings. 1.8.1 3: Let χ : E(K k

More information

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists Vectors, Linear Combinations, and Matrix-Vector Mulitiplication In this section, we introduce vectors, linear combinations, and matrix-vector multiplication The rest of the class will involve vectors,

More information

SERIES

SERIES SERIES.... This chapter revisits sequences arithmetic then geometric to see how these ideas can be extended, and how they occur in other contexts. A sequence is a list of ordered numbers, whereas a series

More information

MCR3U Unit 7 Lesson Notes

MCR3U Unit 7 Lesson Notes 7.1 Arithmetic Sequences Sequence: An ordered list of numbers identified by a pattern or rule that may stop at some number or continue indefinitely. Ex. 1, 2, 4, 8,... Ex. 3, 7, 11, 15 Term (of a sequence):

More information

CHINO VALLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL GUIDE ALGEBRA II

CHINO VALLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL GUIDE ALGEBRA II CHINO VALLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL GUIDE ALGEBRA II Course Number 5116 Department Mathematics Qualification Guidelines Successful completion of both semesters of Algebra 1 or Algebra 1

More information

Sums and Products. a i = a 1. i=1. a i = a i a n. n 1

Sums and Products. a i = a 1. i=1. a i = a i a n. n 1 Sums and Products -27-209 In this section, I ll review the notation for sums and products Addition and multiplication are binary operations: They operate on two numbers at a time If you want to add or

More information

1 ** The performance objectives highlighted in italics have been identified as core to an Algebra II course.

1 ** The performance objectives highlighted in italics have been identified as core to an Algebra II course. Strand One: Number Sense and Operations Every student should understand and use all concepts and skills from the pervious grade levels. The standards are designed so that new learning builds on preceding

More information

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 01 Introduction to Optimization Today, we will start the constrained

More information

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n Appendix A: The Principle of Mathematical Induction We now present an important deductive method widely used in mathematics: the principle of mathematical induction. First, we provide some historical context

More information

CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction. Linda Shapiro Spring 2016

CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction. Linda Shapiro Spring 2016 CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction Linda Shapiro Spring 2016 Background on Induction Type of mathematical proof Typically used to establish a given statement for all natural

More information

Ross Program 2017 Application Problems

Ross Program 2017 Application Problems Ross Program 2017 Application Problems This document is part of the application to the Ross Mathematics Program, and is posted at http://u.osu.edu/rossmath/. The Admission Committee will start reading

More information

( ε > 0) ( N N) ( n N) : n > N a n A < ε.

( ε > 0) ( N N) ( n N) : n > N a n A < ε. CHAPTER 1. LIMITS OF SEQUENCES 1.1. An Ad-hoc Definition. In mathematical analysis, the concept of limits is of paramount importance, in view of the fact that many basic objects of study such as derivatives,

More information

G-GPE Explaining the equation for a circle

G-GPE Explaining the equation for a circle G-GPE Explaining the equation for a circle Alignments to Content Standards: G-GPE.A.1 Task This problem examines equations defining different circles in the - plane. a. Use the Pythagorean theorem to find

More information

At the start of the term, we saw the following formula for computing the sum of the first n integers:

At the start of the term, we saw the following formula for computing the sum of the first n integers: Chapter 11 Induction This chapter covers mathematical induction. 11.1 Introduction to induction At the start of the term, we saw the following formula for computing the sum of the first n integers: Claim

More information

Contents. CHAPTER P Prerequisites 1. CHAPTER 1 Functions and Graphs 69. P.1 Real Numbers 1. P.2 Cartesian Coordinate System 14

Contents. CHAPTER P Prerequisites 1. CHAPTER 1 Functions and Graphs 69. P.1 Real Numbers 1. P.2 Cartesian Coordinate System 14 CHAPTER P Prerequisites 1 P.1 Real Numbers 1 Representing Real Numbers ~ Order and Interval Notation ~ Basic Properties of Algebra ~ Integer Exponents ~ Scientific Notation P.2 Cartesian Coordinate System

More information

Sequences of Real Numbers

Sequences of Real Numbers Chapter 8 Sequences of Real Numbers In this chapter, we assume the existence of the ordered field of real numbers, though we do not yet discuss or use the completeness of the real numbers. In the next

More information

Journal of Integer Sequences, Vol. 3 (2000), Article Magic Carpets

Journal of Integer Sequences, Vol. 3 (2000), Article Magic Carpets Journal of Integer Sequences, Vol. 3 (2000), Article 00.2.5 Magic Carpets Erich Friedman Stetson University Deland, FL 32720 Mike Keith 4100 Vitae Springs Road Salem, OR 97306 Email addresses: efriedma@stetson.edu

More information

SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS

SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS (Chapter 9: Discrete Math) 9.11 SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS PART A: WHAT IS AN ARITHMETIC SEQUENCE? The following appears to be an example of an arithmetic (stress on the me ) sequence:

More information

Mathematical Background

Mathematical Background Chapter 1 Mathematical Background When we analyze various algorithms in terms of the time and the space it takes them to run, we often need to work with math. That is why we ask you to take MA 2250 Math

More information

ACTIVITY 14 Continued

ACTIVITY 14 Continued 015 College Board. All rights reserved. Postal Service Write your answers on notebook paper. Show your work. Lesson 1-1 1. The volume of a rectangular bo is given by the epression V = (10 6w)w, where w

More information

Teaching with a Smile

Teaching with a Smile Teaching with a Smile Igor Minevich Boston College AMS - MAA Joint Mathematics Meetings January 11, 2015 Outline 1 Introduction 2 Puzzles and Other Fun Stuff 3 Projects Yin-Yang of Mathematics Yang Logic

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

- 1 - Items related to expected use of technology appear in bold italics.

- 1 - Items related to expected use of technology appear in bold italics. - 1 - Items related to expected use of technology appear in bold italics. Operating with Geometric and Cartesian Vectors Determining Intersections of Lines and Planes in Three- Space Similar content as

More information

Study skills for mathematicians

Study skills for mathematicians PART I Study skills for mathematicians CHAPTER 1 Sets and functions Everything starts somewhere, although many physicists disagree. Terry Pratchett, Hogfather, 1996 To think like a mathematician requires

More information

College Algebra (CIS) Content Skills Learning Targets Standards Assessment Resources & Technology

College Algebra (CIS) Content Skills Learning Targets Standards Assessment Resources & Technology St. Michael-Albertville Schools Teacher: Gordon Schlangen College Algebra (CIS) May 2018 Content Skills Learning Targets Standards Assessment Resources & Technology CEQs: WHAT RELATIONSHIP S EXIST BETWEEN

More information

APPENDIX B SUMMARIES OF SUBJECT MATTER TOPICS WITH RELATED CALIFORNIA AND NCTM STANDARDS PART 1

APPENDIX B SUMMARIES OF SUBJECT MATTER TOPICS WITH RELATED CALIFORNIA AND NCTM STANDARDS PART 1 APPENDIX B SUMMARIES OF SUBJECT MATTER TOPICS WITH RELATED CALIFORNIA AND NCTM STANDARDS This appendix lists the summaries of the subject matter topics presented in Section 2 of the Statement. After each

More information

JANE LONG ACADEMY HIGH SCHOOL MATH SUMMER PREVIEW PACKET SCHOOL YEAR. Geometry

JANE LONG ACADEMY HIGH SCHOOL MATH SUMMER PREVIEW PACKET SCHOOL YEAR. Geometry JANE LONG ACADEMY HIGH SCHOOL MATH SUMMER PREVIEW PACKET 2015-2016 SCHOOL YEAR Geometry STUDENT NAME: THE PARTS BELOW WILL BE COMPLETED ON THE FIRST DAY OF SCHOOL: DUE DATE: MATH TEACHER: PERIOD: Algebra

More information

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S.

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S. 1 Notation For those unfamiliar, we have := means equal by definition, N := {0, 1,... } or {1, 2,... } depending on context. (i.e. N is the set or collection of counting numbers.) In addition, means for

More information

Introduction Assignment

Introduction Assignment PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

More information

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers Faculty of Mathematics Waterloo, Ontario N2L G Centre for Education in Mathematics and Computing Introduction Grades 7 & 8, Math Circles 0//2 October, 207 Series & Polygonal Numbers Mathematicians are

More information

A description of a math circle set of activities around polynomials, especially interpolation.

A description of a math circle set of activities around polynomials, especially interpolation. A description of a math circle set of activities around polynomials, especially interpolation. Bob Sachs Department of Mathematical Sciences George Mason University Fairfax, Virginia 22030 rsachs@gmu.edu

More information

Lecture 6: Lies, Inner Product Spaces, and Symmetric Matrices

Lecture 6: Lies, Inner Product Spaces, and Symmetric Matrices Math 108B Professor: Padraic Bartlett Lecture 6: Lies, Inner Product Spaces, and Symmetric Matrices Week 6 UCSB 2014 1 Lies Fun fact: I have deceived 1 you somewhat with these last few lectures! Let me

More information

Arizona Mathematics Standards Articulated by Grade Level (2008) for College Work Readiness (Grades 11 and 12)

Arizona Mathematics Standards Articulated by Grade Level (2008) for College Work Readiness (Grades 11 and 12) Strand 1: Number and Operations Concept 1: Number Sense Understand and apply numbers, ways of representing numbers, and the relationships among numbers and different number systems. College Work Readiness

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Trinity Christian School Curriculum Guide

Trinity Christian School Curriculum Guide Course Title: Calculus Grade Taught: Twelfth Grade Credits: 1 credit Trinity Christian School Curriculum Guide A. Course Goals: 1. To provide students with a familiarity with the properties of linear,

More information

Locus Problems With Complex Numbers

Locus Problems With Complex Numbers Locus Locus Problems With Complex Numbers We start with a definition concept of locus. Then, we will present some basic examples of locus problems, given as regions in the complex plane. A locus is a set

More information

An Introduction to Tropical Geometry

An Introduction to Tropical Geometry An Introduction to Tropical Geometry Ryan Hart Doenges June 8, 2015 1 Introduction In their paper A Bit of Tropical Geometry [1], Erwan Brugallé and Kristin Shaw present an elementary introduction to the

More information

This section is an introduction to the basic themes of the course.

This section is an introduction to the basic themes of the course. Chapter 1 Matrices and Graphs 1.1 The Adjacency Matrix This section is an introduction to the basic themes of the course. Definition 1.1.1. A simple undirected graph G = (V, E) consists of a non-empty

More information

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 39 Chapter Summary The Basics

More information

A Prelude to Euler's Pentagonal Number Theorem

A Prelude to Euler's Pentagonal Number Theorem A Prelude to Euler's Pentagonal Number Theorem August 15, 2007 Preliminaries: Partitions In this paper we intend to explore the elementaries of partition theory, taken from a mostly graphic perspective,

More information

Binomial Coefficient Identities/Complements

Binomial Coefficient Identities/Complements Binomial Coefficient Identities/Complements CSE21 Fall 2017, Day 4 Oct 6, 2017 https://sites.google.com/a/eng.ucsd.edu/cse21-fall-2017-miles-jones/ permutation P(n,r) = n(n-1) (n-2) (n-r+1) = Terminology

More information

Mathathon Round 1 (2 points each)

Mathathon Round 1 (2 points each) Mathathon Round ( points each). A circle is inscribed inside a square such that the cube of the radius of the circle is numerically equal to the perimeter of the square. What is the area of the circle?

More information

Induction 1 = 1(1+1) = 2(2+1) = 3(3+1) 2

Induction 1 = 1(1+1) = 2(2+1) = 3(3+1) 2 Induction 0-8-08 Induction is used to prove a sequence of statements P(), P(), P(3),... There may be finitely many statements, but often there are infinitely many. For example, consider the statement ++3+

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

Problems for Putnam Training

Problems for Putnam Training Problems for Putnam Training 1 Number theory Problem 1.1. Prove that for each positive integer n, the number is not prime. 10 1010n + 10 10n + 10 n 1 Problem 1.2. Show that for any positive integer n,

More information

UNCORRECTED SAMPLE PAGES. Extension 1. The binomial expansion and. Digital resources for this chapter

UNCORRECTED SAMPLE PAGES. Extension 1. The binomial expansion and. Digital resources for this chapter 15 Pascal s In Chapter 10 we discussed the factoring of a polynomial into irreducible factors, so that it could be written in a form such as P(x) = (x 4) 2 (x + 1) 3 (x 2 + x + 1). In this chapter we will

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

Homework 1 2/7/2018 SOLUTIONS Exercise 1. (a) Graph the following sets (i) C = {x R x in Z} Answer:

Homework 1 2/7/2018 SOLUTIONS Exercise 1. (a) Graph the following sets (i) C = {x R x in Z} Answer: Homework 1 2/7/2018 SOLTIONS Eercise 1. (a) Graph the following sets (i) C = { R in Z} nswer: 0 R (ii) D = {(, y), y in R,, y 2}. nswer: = 2 y y = 2 (iii) C C nswer: y 1 2 (iv) (C C) D nswer: = 2 y y =

More information

e π i 1 = 0 Proofs and Mathematical Induction Carlos Moreno uwaterloo.ca EIT-4103 e x2 log k a+b a + b

e π i 1 = 0 Proofs and Mathematical Induction Carlos Moreno uwaterloo.ca EIT-4103 e x2 log k a+b a + b Proofs and Mathematical Induction Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 N k=0 log k 0 e x2 e π i 1 = 0 dx a+b a + b https://ece.uwaterloo.ca/~cmoreno/ece250 Proofs and Mathematical Induction Today's

More information

PRIMES Math Problem Set

PRIMES Math Problem Set PRIMES Math Problem Set PRIMES 017 Due December 1, 01 Dear PRIMES applicant: This is the PRIMES 017 Math Problem Set. Please send us your solutions as part of your PRIMES application by December 1, 01.

More information

CS1800: Sequences & Sums. Professor Kevin Gold

CS1800: Sequences & Sums. Professor Kevin Gold CS1800: Sequences & Sums Professor Kevin Gold Moving Toward Analysis of Algorithms Today s tools help in the analysis of algorithms. We ll cover tools for deciding what equation best fits a sequence of

More information

Chapter 4. Induction. 4.1 Chains of Implications

Chapter 4. Induction. 4.1 Chains of Implications Chapter 4 Induction There is one additional method of proof, known as mathematical induction, that is especially important in discrete mathematics. Since it is rather more complicated than the proof techniques

More information

Unit 5: Sequences, Series, and Patterns

Unit 5: Sequences, Series, and Patterns Unit 5: Sequences, Series, and Patterns Section 1: Sequences and Series 1. Sequence: an ordered list of numerical terms 2. Finite Sequence: has a first term (a beginning) and a last term (an end) 3. Infinite

More information

CSE 1400 Applied Discrete Mathematics Proofs

CSE 1400 Applied Discrete Mathematics Proofs CSE 1400 Applied Discrete Mathematics Proofs Department of Computer Sciences College of Engineering Florida Tech Fall 2011 Axioms 1 Logical Axioms 2 Models 2 Number Theory 3 Graph Theory 4 Set Theory 4

More information

Finite Summation of Integer Powers x p, Part 1

Finite Summation of Integer Powers x p, Part 1 Finite Summation of Integer Powers x p, Part Assad Ebrahim /26/2 (Rev. d, April 4, 2) Abstract È We solve the finite-summation-of-integer-powers problem S p(n) = N k= kp using recurrence relations to obtain

More information

Algebra 2 Secondary Mathematics Instructional Guide

Algebra 2 Secondary Mathematics Instructional Guide Algebra 2 Secondary Mathematics Instructional Guide 2009-2010 ALGEBRA 2AB (Grade 9, 10 or 11) Prerequisite: Algebra 1AB or Geometry AB 310303 Algebra 2A 310304 Algebra 2B COURSE DESCRIPTION Los Angeles

More information

Use estimation strategies reasonably and fluently while integrating content from each of the other strands. PO 1. Recognize the limitations of

Use estimation strategies reasonably and fluently while integrating content from each of the other strands. PO 1. Recognize the limitations of for Strand 1: Number and Operations Concept 1: Number Sense Understand and apply numbers, ways of representing numbers, and the relationships among numbers and different number systems. PO 1. Solve problems

More information

7 th Grade Math Scope and Sequence Student Outcomes (Objectives Skills/Verbs)

7 th Grade Math Scope and Sequence Student Outcomes (Objectives Skills/Verbs) own discovery of the Big BIG IDEA: How are different types of numbers used to represent real life situations? Why is it necessary to have different types of numbers for different situations? Pg 762 1-4(no

More information

Mathematical Induction

Mathematical Induction Mathematical Induction Let s motivate our discussion by considering an example first. What happens when we add the first n positive odd integers? The table below shows what results for the first few values

More information

HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013

HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013 HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013 PROFESSOR HENRY C. PINKHAM 1. Prerequisites The only prerequisite is Calculus III (Math 1201) or the equivalent: the first semester of multivariable calculus.

More information

Mix It Up: Correlated Mathematics and Science Texas State University San Marcos Correlated Lesson Plan

Mix It Up: Correlated Mathematics and Science Texas State University San Marcos Correlated Lesson Plan File Name: Algebraic Reasoning_Geometry_Physics_Distance vs Displacement_5-27-2011.docx Lesson Title: Distance vs. Displacement Targeted Grade Band: 4 5 6 7 X 8 9 10 11 12 Targeted Mathematics Strand:

More information

300-Level Math Courses

300-Level Math Courses 300-Level Math Courses Math 250: Elementary Differential Equations A differential equation is an equation relating an unknown function to one or more of its derivatives; for instance, f = f is a differential

More information

Volusia County Mathematics Curriculum Map. Pre-Calculus. Course Number /IOD

Volusia County Mathematics Curriculum Map. Pre-Calculus. Course Number /IOD Volusia County Mathematics Curriculum Map Pre-Calculus Course Number 1202340/IOD Mathematics Department Volusia County Schools Revised June 9, 2012 Pre- Calculus Curriculum Map 120234/IOD COMPONENTS OF

More information

SURVEY ON ISLANDS a possible research topic, even for students

SURVEY ON ISLANDS a possible research topic, even for students SURVEY ON ISLANDS a possible research topic, even for students Eszter K. Horváth Department of Algebra and Number Theory, University of Szeged, Hungary Aradi vértanúk tere 1, Szeged, Hungary, 670 horeszt@math.u-szeged.hu

More information

Dominican International School PRECALCULUS

Dominican International School PRECALCULUS Dominican International School PRECALCULUS GRADE EVEL: 11 1 Year, 1 Credit TEACHER: Yvonne Lee SY: 2017-2018 email: ylee@dishs.tp.edu.tw COURSE DESCRIPTION Pre-Calculus serves as a transition between algebra

More information

19. TAYLOR SERIES AND TECHNIQUES

19. TAYLOR SERIES AND TECHNIQUES 19. TAYLOR SERIES AND TECHNIQUES Taylor polynomials can be generated for a given function through a certain linear combination of its derivatives. The idea is that we can approximate a function by a polynomial,

More information

3.4 Pascal s Pride. A Solidify Understanding Task

3.4 Pascal s Pride. A Solidify Understanding Task 3.4 Pascal s Pride A Solidify Understanding Task Multiplying polynomials can require a bit of skill in the algebra department, but since polynomials are structured like numbers, multiplication works very

More information

Mathematical Focus 1 Complex numbers adhere to certain arithmetic properties for which they and their complex conjugates are defined.

Mathematical Focus 1 Complex numbers adhere to certain arithmetic properties for which they and their complex conjugates are defined. Situation: Complex Roots in Conjugate Pairs Prepared at University of Georgia Center for Proficiency in Teaching Mathematics June 30, 2013 Sarah Major Prompt: A teacher in a high school Algebra class has

More information

Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras

Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras Lecture - 9 Angular Momentum in Quantum Mechanics Dimensionality of the Direct-Product

More information

Grades Algebra 1. Polynomial Arithmetic Equations and Identities Quadratics. By Henri Picciotto. 395 Main Street Rowley, MA

Grades Algebra 1. Polynomial Arithmetic Equations and Identities Quadratics. By Henri Picciotto. 395 Main Street Rowley, MA Grades 7 10 ALGEBRA LAB GEAR Algebra 1 Polynomial Arithmetic Equations and Identities Quadratics Factoring Graphing Connections By Henri Picciotto 395 Main Street Rowley, MA 01969 www.didax.com Contents

More information

E = {x 0 < x < 1}. Z f(x) dx <.

E = {x 0 < x < 1}. Z f(x) dx <. Chapter Devastating Eamples Students of calculus develop an intuition for the subject typically based on geometric considerations. This intuition works adequately for problems in physics and engineering.

More information

Hawai`i Post-Secondary Math Survey -- Content Items

Hawai`i Post-Secondary Math Survey -- Content Items Hawai`i Post-Secondary Math Survey -- Content Items Section I: Number sense and numerical operations -- Several numerical operations skills are listed below. Please rank each on a scale from 1 (not essential)

More information

THE DYNAMICS OF SUCCESSIVE DIFFERENCES OVER Z AND R

THE DYNAMICS OF SUCCESSIVE DIFFERENCES OVER Z AND R THE DYNAMICS OF SUCCESSIVE DIFFERENCES OVER Z AND R YIDA GAO, MATT REDMOND, ZACH STEWARD Abstract. The n-value game is a dynamical system defined by a method of iterated differences. In this paper, we

More information

Conjectures and proof. Book page 24-30

Conjectures and proof. Book page 24-30 Conjectures and proof Book page 24-30 What is a conjecture? A conjecture is used to describe a pattern in mathematical terms When a conjecture has been proved, it becomes a theorem There are many types

More information

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLVI - SOLUTIONS. February 1, 2014 Second Round Three Hours

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLVI - SOLUTIONS. February 1, 2014 Second Round Three Hours UNM - PNM STATEWIDE MATHEMATICS CONTEST XLVI - SOLUTIONS February 1, 2014 Second Round Three Hours 1. Four siblings BRYAN, BARRY, SARAH and SHANA are having their names monogrammed on their towels. Different

More information

1.1.1 Algebraic Operations

1.1.1 Algebraic Operations 1.1.1 Algebraic Operations We need to learn how our basic algebraic operations interact. When confronted with many operations, we follow the order of operations: Parentheses Exponentials Multiplication

More information

Revised College and Career Readiness Standards for Mathematics

Revised College and Career Readiness Standards for Mathematics Revised College and Career Readiness Standards for Mathematics I. Numeric Reasoning II. A. Number representations and operations 1. Compare relative magnitudes of rational and irrational numbers, [real

More information

Algebra 2 (2006) Correlation of the ALEKS Course Algebra 2 to the California Content Standards for Algebra 2

Algebra 2 (2006) Correlation of the ALEKS Course Algebra 2 to the California Content Standards for Algebra 2 Algebra 2 (2006) Correlation of the ALEKS Course Algebra 2 to the California Content Standards for Algebra 2 Algebra II - This discipline complements and expands the mathematical content and concepts of

More information

1 Differentiability at a point

1 Differentiability at a point Notes by David Groisser, Copyright c 2012 What does mean? These notes are intended as a supplement (not a textbook-replacement) for a class at the level of Calculus 3, but can be used in a higher-level

More information

Some thoughts concerning power sums

Some thoughts concerning power sums Some thoughts concerning power sums Dedicated to the memory of Zoltán Szvetits (929 20 Gábor Nyul Institute of Mathematics, University of Debrecen H 00 Debrecen POBox 2, Hungary e mail: gnyul@scienceunidebhu

More information

1 Counting Collections of Functions and of Subsets.

1 Counting Collections of Functions and of Subsets. 1 Counting Collections of Functions and of Subsets See p144 All page references are to PJEccles book unless otherwise stated Let X and Y be sets Definition 11 F un (X, Y will be the set of all functions

More information