The q-deformation of Hyperbolic and Trigonometric Potentials

Size: px
Start display at page:

Download "The q-deformation of Hyperbolic and Trigonometric Potentials"

Transcription

1 International Journal of Difference Euations ISSN , Volume 9, Number 1, pp The -deformation of Hyperbolic and Trigonometric Potentials Alina Dobrogowska Institute of Mathematics, University of Białystok Akademicka 2, Białystok, Poland Abstract We present solutions of -deformed Schrödinger euation for the hyperbolic and trigonometric potentials given by a factorization method. Their various properties including the correspondence 1 to the non deformed Schrödinger operators are discussed. AMS Subject Classifications: 39A70, 39A13. Keywords: -difference operators, factorization, -hyperbolic and -trigonometric potentials. 1 Introduction The paper deals with a second order -difference euation such that in the limit 1 we get a differential euation related to the stationary Schrödinger euation with the Scarf potentials [14]. We shall consider eigenproblems H k ψ k = λ k ψ k, 1.1 for the discrete family k N {0} of the second order -difference operators H k = Z k x Q 1 + W k x + V k x, k N {0} 1.2 acting in the Hilbert spaces H k, where 0 < < 1 and is the -derivative see [9] ψx = ψx ψx x Received November 30, 2013; Accepted March 15, 2014 Communicated by Malgorzata Migda

2 46 Alina Dobrogowska By definition, H k consists of the complex valued functions ψ : [a, b] C defined on the -interval [a, b] := { n a : n N {0}} { n b : n N {0}}, a, b R, a < b, a n b, which are suare integrable with respect to the scalar products ψ ϕ k := b Let us recall that the -integral is given by b a ψxd x := ψxd x = n= a ψxϕxϱ k xd x n bψ n b aψ n a, 1.5 n=0 1 n ψ n + and the shift operators Q, Q 1 are given by n= 1 n ψ n Qψx = ψx, 1.6 Q 1 ψx = ψ 1 x. 1.7 We postulate some conditions which must be satisfied by weight functions, ϱ k 1 = Q B k ϱ k, 1.8 B k ϱ k = A k ϱ k, 1.9 where A k, B k are real valued functions on [a, b]. The euation 1.9 corresponds in the limit 1 to the Pearson euation, which is important for the theory of classical orthogonal polynomials. Additionally we impose the boundary conditions B k aϱ k a = B k bϱ k b = The basic idea of the factorization method is well known, see [10 12]. Some results concerning the factorization method for the second order -difference euations were presented for example in papers [3, 13]. In this work, we apply our previous results obtained in the paper [6]. We will factorize the chain of second order -difference operators 1.2 using the first order -difference operators of the form A k = + f k, 1.11 A k = + f k = B k Q 1 + f k Ak xf k The operator A k : H k 1 H k is adjoint to A k : H k H k 1 with respect to the scalar products 1.4. We say that the operators H k admit a factorization if there exist seuences of operators A k, A k and constants a k such that H k = A ka k + a k = A k+1 A k+1 + a k+1 for k N {0}. 1.13

3 The -deformation of hyperbolic and -trigonometric potentials 47 In papers [5, 7] we considered the -deformation of the Schrödinger operator with the following potentials: shifted oscillator, isotropic oscillator, Rosen Morse II, Eckart II, Poschl Teller I and II. Next in the paper [8] we considered the case of -deformed Schrödinger euation for the Morse potential. In this work we will study the case of -deformed Schrödinger euation for the -hyperbolic and -trigonometric Scarf potentials. 2 The -hyperbolic and -trigonometric Potentials We obtain the case of the -deformation of hyperbolic and trigonometric potentials if we consider the operators H k in the following forms: H k = k b 2 + a 0 a 1 b 2 x 2 1 2k 1 x h k 1 x + b + b b 2 2k 2 x 2 Q 1 + b 0 k + 1 x b 2 + a 0 a 1 1 2k+1 x h k x + b 1 0 b 2 2k x 2 + b 0 b 2 + a 0 a 1 b 2 x 2 1 2k 1 x h k 1 x + b + b b 2 2k 2 x 2 + b k+1 b 2 x 2 + b x 2 b 2 + a 0 a 1 1 2k 1 x h k 1 x + b 1 0 b 2 2k 2 x 2 + b 0 k 1 2 x 2 b 2 + a 0 a 1 1 2k+1 x h k x + b 1 0 b 2 2k x 2 + b 0 k x 2 b 2 + a 0 a 1 2k+1 x h k x + b k+1 b 2 x 2 + b x k a 1 [k] a 0 [k 1] b 2 [k 1] [k],

4 48 Alina Dobrogowska where [k] = 1 k 1. This chain is factorized using first order -difference operators 1 A k = 1 x Q + A k = k b 2 x 2 + b 0 1 x Q 1 b 2 + a 0 a b 2 + a 0 a 1 2k+1 x h k x + b 1 1 0, x 2 b 2 2k x 2 + b 0 b2 2k x 2 + b k 1 x 2k+1 x h k x + b 0. The constants a k in the factorization relations 1.13 are given by the following formula a k = 1 k a 1 [k] a 0 [k 1] b 2 [k 1] [k]. 2.4 In this case the functions B k, A k and f k are given by B k x = k b 2 x 2 + b 0, 2.5 A k x = k [ 2k] b 2 x, 2.6 b 2 + a 0 a 1 2k+1 x h k x + b 1 f k x = x 2 b 2 2k x 2 + b 0 1 x. 2.7 Solving the euation 1.9 we obtain the weight function ϱ k x = 1, 2.8 2k x 2 b 2 b0 ; k+1 2 where x; 2 k+1 = 1 x1 2 x k x. Substituting 2.5 and 2.8 into the boundary condition 1.10 we choose as the - interval [a, b] = [, ]. It is easy to see that any solution of the euation A k ψ 0 k = is automatically a solution of euation 1.1 with the eigenvalue λ k = a k. Solving the euation 2.9 we obtain ψkx 0 b = C 2 2i x 2 + b 0, 2.10 i= k b 2 + a 0 a 1 1 2i+1 x h i x + b 1 0

5 The -deformation of hyperbolic and -trigonometric potentials 49 where C R. The solutions 2.10 can be used to construct solutions ψ k+n = A k+n... A k+1ψ 0 k of the eigenvalue problems for the operators H k+n given by Limit Case The second order -difference operator 2.1 in the limit case as 1 becomes the second order differential operator H k = b 2 x 2 + b 0 d2 dx 2 + 2kb 2x d dx + 2kb2 2x 2 + kb 2 a 0 a 1 x 2 + kb 2 hx b 2 x 2 + b 0 + a 0 a 1 x 2 + 2ha 0 a 1 x + h 2 + 4b 2 b 0 4b 2 x 2 + b 0 + ka 1 k 1a 0 kk 1b a 0 a The chains of operators 1.11 and 1.12 in the limit are given by A k = d dx + 2b 2x + a 0 a 1 x + h, b 2 x 2 + b 0 A k = b 2 x 2 + b 0 d dx + 2k 1b 2x + a 0 a 1 x + h The constants a k 2.4 are transformed into a k = ka 1 k 1a 0 kk 1b The ground state 2.10 tends to ψkx 0 = b 2 x 2 + b 0 2b 2 +a 1 a 0 4b 2 and the weight function 2.8 to exp h 2b 0 dx 1 + b 2 b0 x 2 ϱ k x = b 2 x 2 + b 0 k+1. In order to systematize the class of the potentials given by -deformation we shall transform the considered differential operator 3.1 into the standard form where H k = d2 dy 2 + V kxy, 3.5 V k x = d 2x + d 1 b 2 x 2 + b 0 + d 0 3.6

6 50 Alina Dobrogowska and d 2 = h kb 2 + a 0 a 1, d 1 = h b 2b 0 k b 2 + a 0 a 1 k + 1 b 0, b 2 d 0 = a 0 a 1 + a 1 + a b b The transformation connecting these operators and these eigenvalue problems are following ψ k x = b 2 x 2 2k b 0 ϕ k y, 3.10 dx dy =, b2 x 2 + b where ϕ k is eigenfunction of the operator 3.5. These functions belong to the standard Hilbert space L 2 R, dx. For the different values of the parameters b 2, b 0 we have the following possibilities: 1. If b 2, b 0 > 0 from 3.11 we obtain b0 x = sinh b2 y c, b 2 where c is constant. In this subcase the potential is given by V k y = d 1 cosh 2 y c + d 2 sinhy c cosh 2 y c + d 0, where we put b 2 = b 0 = 1. We see that in the limit we obtain the hyperbolic potential [1,2,4]. This potential was proposed and solved by F. Scarf. It is usually called the hyperbolic Scarf potential. The domain for this potential is,. 2. If b 2 < 0 and b 0 > 0 from 3.11 we obtain b0 x = sin b 2 y c. In this subcase the potential is given by V k y = b 2 d 1 cos 2 y c + d 2 siny c cos 2 y c + d 0, where we put b 2 = b 0 = 1. We see that in the limit we obtain the trigonometric potential [1,2,4]. In the literature it is know as trigonometric Scarf potential. The domain for this potential is π 2 + c, π 2 + c.

7 The -deformation of hyperbolic and -trigonometric potentials 51 References [1] D.E. Alvarez-Castillo, Exactly solvable potentials and Romanovski polynomials in uantum mechanics, arxiv: , [2] B.K. Bagchi, Supersymmetry in uantum and classical mechanics, Chapman & Hall/CRC, [3] G. Bangerezako and M.N. Hounkonnou, The factorization method for the general second order -difference euation and the Laguerre-Hahn polynomials on the general -lattice, J. Phys. A: Math. Gen., 36, , [4] J. Dereziski, M. Wrochna, Exactly solvable Schrödinger operators, Ann. Henri Poincaré, 12, , [5] A. Dobrogowska, T. Goliski, A. Odzijewicz, Change of variables in factorization method for second order functional euations, Czech. J. Phys., 54, , [6] A. Dobrogowska, A. Odzijewicz, Second order -difference euations solvable by factorization method, J. Comput. Appl. Math., 193, , [7] A. Dobrogowska, A. Odzijewicz, Solutions of the -deformed Schrödinger euation for special potentials, J. Phys. A: Math. Theor., 40, , [8] A. Dobrogowska, The -deformation of the Morse potential, Appl. Math. Lett., 7, , [9] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge: Cambridge University Press, [10] L. Infeld, T.E. Hull, The Factorization Method, Rev. Mod. Phys., 23, 21 68, [11] B. Mielnik, L.M. Nieto, O. Rosas-Ortiz, The finite difference algorithm for higher order supersymmetry, Phys. Lett. A, 269, 70 78, [12] W. Miller, Jr., Lie Theory and Special Functions, Academic Press New York and London, [13] W. Miller, Jr., Lie theory and -difference euations, SIAM J. Math. Anal., 1, , [14] F.L. Scarf, New soluble energy band problem, Phys. Rev., 112, , 1958.

Supersymmetric Approach for Eckart Potential Using the NU Method

Supersymmetric Approach for Eckart Potential Using the NU Method Adv. Studies Theor. Phys., Vol. 5, 011, no. 10, 469-476 Supersymmetric Approach for Eckart Potential Using the NU Method H. Goudarzi 1 and V. Vahidi Department of Physics, Faculty of Science Urmia University,

More information

E.G. KALNINS AND WILLARD MILLER, JR. The notation used for -series and -integrals in this paper follows that of Gasper and Rahman [3].. A generalizati

E.G. KALNINS AND WILLARD MILLER, JR. The notation used for -series and -integrals in this paper follows that of Gasper and Rahman [3].. A generalizati A NOTE ON TENSOR PRODUCTS OF -ALGEBRA REPRESENTATIONS AND ORTHOGONAL POLYNOMIALS E.G. KALNINSy AND WILLARD MILLER, Jr.z Abstract. We work out examples of tensor products of distinct generalized s`) algebras

More information

Exact solutions of the radial Schrödinger equation for some physical potentials

Exact solutions of the radial Schrödinger equation for some physical potentials arxiv:quant-ph/070141v1 14 Feb 007 Exact solutions of the radial Schrödinger equation for some physical potentials Sameer M. Ikhdair and Ramazan Sever Department of Physics, Near East University, Nicosia,

More information

arxiv:quant-ph/ v1 17 Oct 2004

arxiv:quant-ph/ v1 17 Oct 2004 A systematic study on the exact solution of the position dependent mass Schrödinger equation Ramazan Koç Department of Physics, Faculty of Engineering University of Gaziantep, 7310 Gaziantep, Turkey Mehmet

More information

New Shape Invariant Potentials in Supersymmetric. Quantum Mechanics. Avinash Khare and Uday P. Sukhatme. Institute of Physics, Sachivalaya Marg,

New Shape Invariant Potentials in Supersymmetric. Quantum Mechanics. Avinash Khare and Uday P. Sukhatme. Institute of Physics, Sachivalaya Marg, New Shape Invariant Potentials in Supersymmetric Quantum Mechanics Avinash Khare and Uday P. Sukhatme Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India Abstract: Quantum mechanical potentials

More information

Integrable Hamiltonian systems generated by antisymmetric matrices

Integrable Hamiltonian systems generated by antisymmetric matrices Journal of Physics: Conference Series OPEN ACCESS Integrable Hamiltonian systems generated by antisymmetric matrices To cite this article: Alina Dobrogowska 013 J. Phys.: Conf. Ser. 474 01015 View the

More information

Hamiltonians with Position-Dependent Mass, Deformations and Supersymmetry

Hamiltonians with Position-Dependent Mass, Deformations and Supersymmetry Bulg. J. Phys. 33 (2006) 308 38 Hamiltonians with Position-Dependent Mass Deformations and Supersymmetry C. Quesne B. Bagchi 2 A. Banerjee 2 V.M. Tkachuk 3 Physique Nucléaire Théorique et Physique Mathématique

More information

Supersymmetrical Separation of Variables in Two-Dimensional Quantum Mechanics

Supersymmetrical Separation of Variables in Two-Dimensional Quantum Mechanics Symmetry, Integrability and Geometry: Methods and Applications Supersymmetrical Separation of Variables in Two-Dimensional Quantum Mechanics Mikhail V. IOFFE Saint-Petersburg State University, St.-Petersburg,

More information

Connection Formula for Heine s Hypergeometric Function with q = 1

Connection Formula for Heine s Hypergeometric Function with q = 1 Connection Formula for Heine s Hypergeometric Function with q = 1 Ryu SASAKI Department of Physics, Shinshu University based on arxiv:1411.307[math-ph], J. Phys. A in 48 (015) 11504, with S. Odake nd Numazu

More information

Harmonic oscillator Wigner function extension to exceptional polynomials

Harmonic oscillator Wigner function extension to exceptional polynomials Pramana J. Phys. (2018) 91:39 https://doi.org/10.1007/s12043-018-1619-9 Indian Academy of Sciences Harmonic oscillator Wigner function extension to exceptional polynomials K V S SHIV CHAITANYA Department

More information

Second-order SUSY partners of the trigonometric Pöschl-Teller potentials

Second-order SUSY partners of the trigonometric Pöschl-Teller potentials Journal of Physics: Conference Series 18 (008) 01043 doi:10.1088/174-6596/18/1/01043 Second-order SUSY partners of the trigonometric Pöschl-Teller potentials Alonso Contreras-Astorga 1 and David J. Fernández

More information

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 16, Number 2, 2012 Available online at www.math.ut.ee/acta/ Bilinear generating relations for a family of -polynomials and generalized

More information

Calculation of Franck-Condon factors and r-centroids using isospectral Hamiltonian approach

Calculation of Franck-Condon factors and r-centroids using isospectral Hamiltonian approach Indian Journal of Pure & Applied Physics Vol. 43, October 5, pp. 738-74 Calculation of Franck-Condon factors and r-centroids using isospectral Hamiltonian approach Anil Kumar & C Nagaraja Kumar* Department

More information

Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry

Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry PRAMANA c Indian Academy of Sciences Vol. 73, No. journal of August 009 physics pp. 337 347 Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry

More information

arxiv: v1 [quant-ph] 15 Dec 2011

arxiv: v1 [quant-ph] 15 Dec 2011 Sharp and Infinite Boundaries in the Path Integral Formalism Phillip Dluhy and Asim Gangopadhyaya Loyola University Chicago, Department of Physics, Chicago, IL 666 Abstract arxiv:.3674v [quant-ph 5 Dec

More information

Polynomial Heisenberg algebras and higher order supersymmetry

Polynomial Heisenberg algebras and higher order supersymmetry Polynomial Heisenberg algebras and higher order supersymmetry David J. Fernández C. a,andvéronique Hussin b a Depto Física, CINVESTAV, AP 14-740, 07000 México DF, Mexico; b Département de Mathématiques,

More information

arxiv:quant-ph/ v1 21 Feb 2001

arxiv:quant-ph/ v1 21 Feb 2001 Explicit summation of the constituent WKB series and new approximate wavefunctions arxiv:quant-ph/0102111v1 21 Feb 2001 1. Introduction Vladimir V Kudryashov and Yulian V Vanne Institute of Physics, National

More information

Shape Invariant Potentials for Effective Mass Schrödinger Equation

Shape Invariant Potentials for Effective Mass Schrödinger Equation Shape Invariant Potentials for Effective Mass Schrödinger Equation K A Samani and F Loran Department of Physics, Isfahan University of Technology (IUT), Isfahan 84154, Iran Abstract Using the method of

More information

Solution of One-dimensional Dirac Equation via Poincaré Map

Solution of One-dimensional Dirac Equation via Poincaré Map ucd-tpg:03.03 Solution of One-dimensional Dirac Equation via Poincaré Map Hocine Bahlouli a,b, El Bouâzzaoui Choubabi a,c and Ahmed Jellal a,c,d a Saudi Center for Theoretical Physics, Dhahran, Saudi Arabia

More information

A RECURSION FORMULA FOR THE COEFFICIENTS OF ENTIRE FUNCTIONS SATISFYING AN ODE WITH POLYNOMIAL COEFFICIENTS

A RECURSION FORMULA FOR THE COEFFICIENTS OF ENTIRE FUNCTIONS SATISFYING AN ODE WITH POLYNOMIAL COEFFICIENTS Georgian Mathematical Journal Volume 11 (2004), Number 3, 409 414 A RECURSION FORMULA FOR THE COEFFICIENTS OF ENTIRE FUNCTIONS SATISFYING AN ODE WITH POLYNOMIAL COEFFICIENTS C. BELINGERI Abstract. A recursion

More information

Algebraic Aspects for Two Solvable Potentials

Algebraic Aspects for Two Solvable Potentials EJTP 8, No. 5 (11) 17 Electronic Journal of Theoretical Physics Algebraic Aspects for Two Solvable Potentials Sanjib Meyur TRGR Khemka High School, 3, Rabindra Sarani, Liluah, Howrah-711, West Bengal,

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics 233 2010) 1554 1561 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: wwwelseviercom/locate/cam

More information

Symmetries for fun and profit

Symmetries for fun and profit Symmetries for fun and profit Sourendu Gupta TIFR Graduate School Quantum Mechanics 1 August 28, 2008 Sourendu Gupta (TIFR Graduate School) Symmetries for fun and profit QM I 1 / 20 Outline 1 The isotropic

More information

arxiv: v2 [math-ph] 18 Mar 2011

arxiv: v2 [math-ph] 18 Mar 2011 SU(, ) Coherent States For Position-Dependent Mass Singular Oscillators arxiv:090.3976v [math-ph] 8 Mar 0 Sara Cruz y Cruz and Oscar Rosas-Ortiz Sección de Estudios de Posgrado e Investigación, UPIITA-IPN,

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors,

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors, chmy564-19 Fri 18jan19 Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors, 3. Theorems vs. Postulates Scalar (inner) prod.

More information

arxiv: v1 [physics.class-ph] 28 Sep 2007

arxiv: v1 [physics.class-ph] 28 Sep 2007 arxiv:0709.4649v1 [physics.class-ph] 8 Sep 007 Factorizations of one dimensional classical systems Şengül Kuru and Javier Negro October 4, 018 Departamento de Física Teórica, Atómica y Óptica, Universidad

More information

Models for the 3D singular isotropic oscillator quadratic algebra

Models for the 3D singular isotropic oscillator quadratic algebra Models for the 3D singular isotropic oscillator quadratic algebra E. G. Kalnins, 1 W. Miller, Jr., and S. Post 1 Department of Mathematics, University of Waikato, Hamilton, New Zealand. School of Mathematics,

More information

Derivation of Pekar s polaron from a microscopic model of quantum crystal

Derivation of Pekar s polaron from a microscopic model of quantum crystal Derivation of Pekar s polaron from a microscopic model of quantum crystal Mathieu LEWIN Mathieu.Lewin@math.cnrs.fr (CNRS & University of Cergy-Pontoise) joint work with Nicolas Rougerie (Grenoble, France)

More information

Approximate solutions of the Wei Hua oscillator using the Pekeris approximation and Nikiforov Uvarov method

Approximate solutions of the Wei Hua oscillator using the Pekeris approximation and Nikiforov Uvarov method PRAMANA c Indian Academy of Sciences Vol. 78, No. 1 journal of January 01 physics pp. 91 99 Approximate solutions of the Wei Hua oscillator using the Pekeris approximation and Nikiforov Uvarov method P

More information

BOUNDARY-VALUE PROBLEMS FOR NONLINEAR THIRD-ORDER q-difference EQUATIONS

BOUNDARY-VALUE PROBLEMS FOR NONLINEAR THIRD-ORDER q-difference EQUATIONS Electronic Journal of Differential Equations, Vol. 211 (211), No. 94, pp. 1 7. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu BOUNDARY-VALUE PROBLEMS

More information

Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere

Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere Willard Miller, [Joint with E.G. Kalnins (Waikato) and Sarah Post (CRM)] University of Minnesota Special Functions

More information

Higher monotonicity properties of q gamma and q-psi functions

Higher monotonicity properties of q gamma and q-psi functions Advances in Dynamical Systems and Applications ISSN 973-5321, Volume x, Number x, pp. 1 13 (2xx) http://campus.mst.edu/adsa Higher monotonicity properties of q gamma and q-psi functions Mourad E. H. Ismail

More information

arxiv: v3 [quant-ph] 1 Jul 2013

arxiv: v3 [quant-ph] 1 Jul 2013 Stieltjes Electrostatic Model Interpretation for Bound State Problems K. V. S. Shiv Chaitanya BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, India. arxiv:304.5735v3 [quant-ph]

More information

The elliptic sinh-gordon equation in the half plane

The elliptic sinh-gordon equation in the half plane Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 8 25), 63 73 Research Article The elliptic sinh-gordon equation in the half plane Guenbo Hwang Department of Mathematics, Daegu University, Gyeongsan

More information

semi-analytically and numerically solvable potentials

semi-analytically and numerically solvable potentials . Spontaneous breakdown of PT symmetry in exactly, semi-analytically and numerically solvable potentials Géza Lévai Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), Debrecen,

More information

arxiv:quant-ph/ v4 13 Jun 2006

arxiv:quant-ph/ v4 13 Jun 2006 arxiv:quant-ph/0604106v4 13 Jun 006 η-weak-pseudo-hermiticity generators and exact solvability Omar Mustafa 1 and S.Habib Mazharimousavi Department of Physics, Eastern Mediterranean University, G Magusa,

More information

International Conference on Mathematics, Science, and Education 2015 (ICMSE 2015)

International Conference on Mathematics, Science, and Education 2015 (ICMSE 2015) International Conference on Mathematics, Science, and Education 215 ICMSE 215 Solution of the Dirac equation for pseudospin symmetry with Eckart potential and trigonometric Manning Rosen potential using

More information

Subur Pramono, 1 A. Suparmi, 2 and Cari Cari Introduction

Subur Pramono, 1 A. Suparmi, 2 and Cari Cari Introduction Advances in High Energy Physics Volume 6 Article ID 7934 pages http://dx.doi.org/.55/6/7934 Research Article Relativistic Energy Analysis of Five-Dimensional -Deformed Radial Rosen-Morse Potential Combined

More information

Energy spectrum for a short-range 1/r singular potential with a nonorbital barrier using the asymptotic iteration method

Energy spectrum for a short-range 1/r singular potential with a nonorbital barrier using the asymptotic iteration method Energy spectrum for a short-range 1/r singular potential with a nonorbital barrier using the asymptotic iteration method A. J. Sous 1 and A. D. Alhaidari 1 Al-Quds Open University, Tulkarm, Palestine Saudi

More information

The massless Dirac-Weyl equation with deformed extended complex potentials

The massless Dirac-Weyl equation with deformed extended complex potentials The massless Dirac-Weyl equation with deformed extended complex potentials Journal: Manuscript ID cjp-017-0608.r1 Manuscript Type: Article Date Submitted by the Author: 7-Nov-017 Complete List of Authors:

More information

Higher Monotonicity Properties of q-gamma and q-psi Functions

Higher Monotonicity Properties of q-gamma and q-psi Functions Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 8, Number 2, pp. 247 259 (213) http://campus.mst.edu/adsa Higher Monotonicity Properties of q-gamma and q-psi Functions Mourad E. H.

More information

Supersymmetric Quantum Mechanics and Solvable Models

Supersymmetric Quantum Mechanics and Solvable Models Loyola University Chicago Loyola ecommons Physics: Faculty Publications and Other Works Faculty Publications 8-16-01 Supersymmetric Quantum Mechanics and Solvable Models Asim Gangopadhyaya Loyola University

More information

arxiv: v1 [math-ph] 31 Jan 2015

arxiv: v1 [math-ph] 31 Jan 2015 Symmetry, Integrability and Geometry: Methods and Applications SIGMA? (00?), 00?,?? pages Structure relations and Darboux contractions for D nd order superintegrable systems R. Heinonen, E. G. Kalnins,

More information

arxiv: v1 [quant-ph] 22 Jul 2007

arxiv: v1 [quant-ph] 22 Jul 2007 Generalized Harmonic Oscillator and the Schrödinger Equation with Position-Dependent Mass JU Guo-Xing 1, CAI Chang-Ying 1, and REN Zhong-Zhou 1 1 Department of Physics, Nanjing University, Nanjing 10093,

More information

Models of quadratic quantum algebras and their relation to classical superintegrable systems

Models of quadratic quantum algebras and their relation to classical superintegrable systems Models of quadratic quantum algebras and their relation to classical superintegrable systems E. G, Kalnins, 1 W. Miller, Jr., 2 and S. Post 2 1 Department of Mathematics, University of Waikato, Hamilton,

More information

Exact Solution of the Dirac Equation for the Coulomb Potential Plus NAD Potential by Using the Nikiforov-Uvarov Method

Exact Solution of the Dirac Equation for the Coulomb Potential Plus NAD Potential by Using the Nikiforov-Uvarov Method Adv. Studies Theor. Phys., Vol. 6, 01, no. 15, 733-74 Exact Solution of the Dirac Equation for the Coulomb Potential Plus NAD Potential by Using the Nikiforov-Uvarov Method S. Bakkeshizadeh 1 and V. Vahidi

More information

EIGENFUNCTIONS OF DIRAC OPERATORS AT THE THRESHOLD ENERGIES

EIGENFUNCTIONS OF DIRAC OPERATORS AT THE THRESHOLD ENERGIES EIGENFUNCTIONS OF DIRAC OPERATORS AT THE THRESHOLD ENERGIES TOMIO UMEDA Abstract. We show that the eigenspaces of the Dirac operator H = α (D A(x)) + mβ at the threshold energies ±m are coincide with the

More information

EXACT SOLUTIONS OF THE KLEIN-GORDON EQUATION WITH HYLLERAAS POTENTIAL. Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria.

EXACT SOLUTIONS OF THE KLEIN-GORDON EQUATION WITH HYLLERAAS POTENTIAL. Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria. EXACT SOLUTIONS OF THE KLEIN-GORDON EQUATION WITH HYLLERAAS POTENTIAL Akpan N. Ikot +1, Oladunjoye A. Awoga 1 and Benedict I. Ita 2 1 Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria.

More information

Chini Equations and Isochronous Centers in Three-Dimensional Differential Systems

Chini Equations and Isochronous Centers in Three-Dimensional Differential Systems Qual. Th. Dyn. Syst. 99 (9999), 1 1 1575-546/99-, DOI 1.17/s12346-3- c 29 Birkhäuser Verlag Basel/Switzerland Qualitative Theory of Dynamical Systems Chini Equations and Isochronous Centers in Three-Dimensional

More information

Reflectionless Analytic Difference Operators (A Os): Examples, Open Questions and Conjectures

Reflectionless Analytic Difference Operators (A Os): Examples, Open Questions and Conjectures Journal of Nonlinear Mathematical Physics 2001, V.8, Supplement, 240 248 Proceedings: NEEDS 99 Reflectionless Analytic Difference Operators (A Os): Examples, Open Questions and Conjectures S N M RUIJSENAARS

More information

Bound state solutions of the Klein - Gordon equation for deformed Hulthen potential with position dependent mass

Bound state solutions of the Klein - Gordon equation for deformed Hulthen potential with position dependent mass Sri Lankan Journal of Physics, Vol. 13(1) (2012) 27-40 Institute of Physics - Sri Lanka Research Article Bound state solutions of the Klein - Gordon equation for deformed Hulthen potential with position

More information

A DISTRIBUTIONAL APPROACH TO FRAGMENTATION EQUATIONS. To Professor Jeff Webb on his retirement, with best wishes for the future. 1.

A DISTRIBUTIONAL APPROACH TO FRAGMENTATION EQUATIONS. To Professor Jeff Webb on his retirement, with best wishes for the future. 1. A DISTRIBUTIONAL APPROACH TO FRAGMENTATION EQUATIONS. WILSON LAMB 1 AND ADAM C MCBRIDE 2 Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, UK. E-mail: w.lamb@strath.ac.uk

More information

arxiv:math-ph/ v1 10 May 2000

arxiv:math-ph/ v1 10 May 2000 HEP-00-13 Conjecture on the Interlacing of Zeros in Complex Sturm-Liouville Problems arxiv:math-ph/0005012v1 10 May 2000 Carl M. Bender 1, Stefan Boettcher 2, and Van M. Savage 1 1 Department of Physics,

More information

QUANTUM MECHANICS LIVES AND WORKS IN PHASE SPACE

QUANTUM MECHANICS LIVES AND WORKS IN PHASE SPACE Two slit experiment The Wigner phase-space quasi-probability distribution function QUANTUM MECHANICS LIVES AND WORKS IN PHASE SPACE A complete, autonomous formulation of QM based on the standard c- number

More information

arxiv:math-ph/ v1 30 Sep 2003

arxiv:math-ph/ v1 30 Sep 2003 CUQM-99 math-ph/0309066 September 2003 Asymptotic iteration method for eigenvalue problems arxiv:math-ph/0309066v1 30 Sep 2003 Hakan Ciftci, Richard L. Hall and Nasser Saad Gazi Universitesi, Fen-Edebiyat

More information

Universal inequalities for eigenvalues. of elliptic operators in divergence. form on domains in complete. noncompact Riemannian manifolds

Universal inequalities for eigenvalues. of elliptic operators in divergence. form on domains in complete. noncompact Riemannian manifolds Theoretical athematics & Applications, vol.3, no., 03, 39-48 ISSN: 79-9687 print, 79-9709 online Scienpress Ltd, 03 Universal inequalities for eigenvalues of elliptic operators in divergence form on domains

More information

Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity

Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity ANZIAM J. 46 (E) ppc46 C438, 005 C46 Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity Aliki D. Muradova (Received 9 November 004, revised April 005) Abstract

More information

Geometric Aspects of Quantum Condensed Matter

Geometric Aspects of Quantum Condensed Matter Geometric Aspects of Quantum Condensed Matter November 13, 2013 Lecture V y An Introduction to Bloch-Floquet Theory (part. I) Giuseppe De Nittis Department Mathematik (room 02.317) +49 (0)9131 85 67071

More information

Interplay between Riccati, Ermakov and Schrödinger equations to produce complex-valued potentials with real energy spectrum

Interplay between Riccati, Ermakov and Schrödinger equations to produce complex-valued potentials with real energy spectrum Interplay between Riccati, Ermakov and Schrödinger equations to produce complex-valued potentials with real energy spectrum arxiv:1804.05799v1 [quant-ph] 16 Apr 2018 Zurika Blanco-Garcia, Oscar Rosas-Ortiz,

More information

Position Dependent Mass for the Hulthén plus Hyperbolic Cotangent Potential

Position Dependent Mass for the Hulthén plus Hyperbolic Cotangent Potential Bulg. J. Phys. 38 (011) 357 363 Position Dependent Mass for the Hulthén plus Hyperbolic Cotangent Potential Tansuk Rai Ganapat Rai Khemka High School, 3, Rabindra Sarani, Liluah, Howrah-71104, West Bengal,

More information

Waves on 2 and 3 dimensional domains

Waves on 2 and 3 dimensional domains Chapter 14 Waves on 2 and 3 dimensional domains We now turn to the studying the initial boundary value problem for the wave equation in two and three dimensions. In this chapter we focus on the situation

More information

Supersymmetric Quantum Mechanics

Supersymmetric Quantum Mechanics Supersymmetric Quantum Mechanics David J. Fernández C. Depto. de Física, Cinvestav A.P. 14-740, 07000 México D.F., Mexico arxiv:0910.019v1 [quant-ph] 1 Oct 009 Abstract Supersymmetric quantum mechanics

More information

Swanson s non-hermitian Hamiltonian and su(1,1): a way towards generalizations

Swanson s non-hermitian Hamiltonian and su(1,1): a way towards generalizations arxiv:0705.868v1 [math-ph] 1 May 007 Swanson s non-hermitian Hamiltonian and su1,1: a way towards generalizations C Quesne Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles,

More information

Solutions of the Klein-Gordon Equation for the Harmonic Oscillator Potential Plus NAD Potential

Solutions of the Klein-Gordon Equation for the Harmonic Oscillator Potential Plus NAD Potential Adv. Studies Theor. Phys., Vol. 6, 01, no. 6, 153-16 Solutions of the Klein-Gordon Equation for the Harmonic Oscillator Potential Plus NAD Potential H. Goudarzi, A. Jafari, S. Bakkeshizadeh 1 and V. Vahidi

More information

Perturbation Theory for Self-Adjoint Operators in Krein spaces

Perturbation Theory for Self-Adjoint Operators in Krein spaces Perturbation Theory for Self-Adjoint Operators in Krein spaces Carsten Trunk Institut für Mathematik, Technische Universität Ilmenau, Postfach 10 05 65, 98684 Ilmenau, Germany E-mail: carsten.trunk@tu-ilmenau.de

More information

The square lattice Ising model on the rectangle

The square lattice Ising model on the rectangle The square lattice Ising model on the rectangle Fred Hucht, Theoretische Physik, Universität Duisburg-Essen, 47048 Duisburg Introduction Connection to Casimir forces Free energy contributions Analytical

More information

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions PHYS 771, Quantum Mechanics, Final Exam, Fall 11 Instructor: Dr. A. G. Petukhov Solutions 1. Apply WKB approximation to a particle moving in a potential 1 V x) = mω x x > otherwise Find eigenfunctions,

More information

Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity. A.M.

Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity. A.M. Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity A.M. Ishkhanyan 1, 1 Institute for Physical Research, NAS of Armenia, Ashtarak 3,

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

Sums of arctangents and some formulas of Ramanujan

Sums of arctangents and some formulas of Ramanujan SCIENTIA Series A: Mathematical Sciences, Vol. 11 (2005), 13 24 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 c Universidad Técnica Federico Santa María 2005 Sums of arctangents

More information

Diagonalization of the Coupled-Mode System.

Diagonalization of the Coupled-Mode System. Diagonalization of the Coupled-Mode System. Marina Chugunova joint work with Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Collaborators: Mason A. Porter, California Institute

More information

Analysis III Solutions - Serie 12

Analysis III Solutions - Serie 12 .. Necessary condition Let us consider the following problem for < x, y < π, u =, for < x, y < π, u y (x, π) = x a, for < x < π, u y (x, ) = a x, for < x < π, u x (, y) = u x (π, y) =, for < y < π. Find

More information

Non-Hermitian Hamiltonian with Gauge-Like Transformation

Non-Hermitian Hamiltonian with Gauge-Like Transformation Bulg. J. Phys. 35 (008) 3 Non-Hermitian Hamiltonian with Gauge-Like Transformation S. Meyur 1, S. Debnath 1 Tansuk Rai Ganapat Rai Khemka High School, 3, Rabindra Sarani, Liluah, Howrah-71104, India Department

More information

Exact Propagators for Soliton Potentials

Exact Propagators for Soliton Potentials Symmetry, Integrability and Geometry: Methods and Applications Vol. (2005), Paper 020, 7 pages Exact Propagators for Soliton Potentials Andrey M. PUPASOV and Boris F. SAMSONOV Department of Physics, Tomsk

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

arxiv: v2 [quant-ph] 9 Jul 2009

arxiv: v2 [quant-ph] 9 Jul 2009 The integral property of the spheroidal wave functions Guihua Tian 1,, Shuquan Zhong 1 1.School of Science, Beijing University of Posts And Telecommunications. Beijing 10087 China..Department of Physics,

More information

Structure relations for the symmetry algebras of classical and quantum superintegrable systems

Structure relations for the symmetry algebras of classical and quantum superintegrable systems UNAM talk p. 1/4 Structure relations for the symmetry algebras of classical and quantum superintegrable systems Willard Miller miller@ima.umn.edu University of Minnesota UNAM talk p. 2/4 Abstract 1 A quantum

More information

su(1, 1) so(2, 1) Lie Algebraic Extensions of the Mie-type Interactions with Positive Constant Curvature

su(1, 1) so(2, 1) Lie Algebraic Extensions of the Mie-type Interactions with Positive Constant Curvature arxiv:1301.0203v1 [math-ph] 2 Jan 2013 su1, 1) so2, 1) Lie Algebraic Extensions of the Mie-type Interactions with Positive Constant Curvature Özlem Yeşiltaş 1 Department of Physics, Faculty of Science,

More information

JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS. Mumtaz Ahmad Khan and Mohammad Asif. 1. Introduction

JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS. Mumtaz Ahmad Khan and Mohammad Asif. 1. Introduction MATEMATIQKI VESNIK 64 (0) 47 58 June 0 originalni nauqni rad research paper JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS Mumtaz Ahmad Khan and Mohammad Asif Abstract. This paper

More information

Exactly Solvable Systems and the Quantum Hamilton Jacobi Formalism

Exactly Solvable Systems and the Quantum Hamilton Jacobi Formalism Loyola University Chicago Loyola ecommons Physics: Faculty Publications and Other Works Faculty Publications 1-11-2005 Exactly Solvable Systems and the Quantum Hamilton Jacobi Formalism C. Rasinariu Columbia

More information

arxiv: v1 [nucl-th] 5 Jul 2012

arxiv: v1 [nucl-th] 5 Jul 2012 Approximate bound state solutions of the deformed Woods-Saxon potential using asymptotic iteration method Babatunde J. Falaye 1 Theoretical Physics Section, Department of Physics University of Ilorin,

More information

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators Basic Formulas 17-1-1 Division of Material Science Hans Weer The de Broglie wave length λ = h p The Schrödinger equation Hψr,t = i h t ψr,t Stationary states Hψr,t = Eψr,t Collection of formulae Quantum

More information

Combined systems in PT-symmetric quantum mechanics

Combined systems in PT-symmetric quantum mechanics Combined systems in PT-symmetric quantum mechanics Brunel University London 15th International Workshop on May 18-23, 2015, University of Palermo, Italy - 1 - Combined systems in PT-symmetric quantum

More information

arxiv: v1 [quant-ph] 31 Jan 2014

arxiv: v1 [quant-ph] 31 Jan 2014 Special rectangular (double-well and hole) potentials Zafar Ahmed 1, Tanayveer Bhatia, Shashin Pavaskar 3, Achint Kumar 4 1 Nuclear Physics Division, Bhabha Atomic Research Centre,Mumbai 400 085, India.

More information

Supersymmetrization of Quaternionic Quantum Mechanics

Supersymmetrization of Quaternionic Quantum Mechanics Supersymmetrization of Quaternionic Quantum Mechanics Seema Rawat 1), A. S. Rawat ) and O. P. S. Negi 3) 1) Department of Physics Zakir Hussain Delhi College, Jawahar Nehru Marg New Delhi-11, India ) Department

More information

Journal of Theoretical and Applied Physics 2013, 7:34

Journal of Theoretical and Applied Physics 2013, 7:34 Journal of Theoretical and Applied Physics This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTM versions will be made available soon. Optimized

More information

Eigenfunctions of Spinless Particles in a One-dimensional Linear Potential Well

Eigenfunctions of Spinless Particles in a One-dimensional Linear Potential Well EJTP 6, No. 0 (009) 399 404 Electronic Journal of Theoretical Physics Eigenfunctions of Spinless Particles in a One-dimensional Linear Potential Well Nagalakshmi A. Rao 1 and B. A. Kagali 1 Department

More information

Spectral analysis of two doubly infinite Jacobi operators

Spectral analysis of two doubly infinite Jacobi operators Spectral analysis of two doubly infinite Jacobi operators František Štampach jointly with Mourad E. H. Ismail Stockholm University Spectral Theory and Applications conference in memory of Boris Pavlov

More information

Dunkl operators and Clifford algebras II

Dunkl operators and Clifford algebras II Translation operator for the Clifford Research Group Department of Mathematical Analysis Ghent University Hong Kong, March, 2011 Translation operator for the Hermite polynomials Translation operator for

More information

Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries

Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries arxiv:math-ph/0209018v3 28 Nov 2002 Ali Mostafazadeh Department of Mathematics, Koç University, umelifeneri Yolu, 80910 Sariyer, Istanbul, Turkey

More information

Finite reductions of the two dimensional Toda chain

Finite reductions of the two dimensional Toda chain Journal of Nonlinear Mathematical Physics Volume 12, Supplement 2 (2005), 164 172 SIDE VI Finite reductions of the two dimensional Toda chain E V GUDKOVA Chernyshevsky str. 112, Institute of Mathematics,

More information

p-adic Feynman s path integrals

p-adic Feynman s path integrals p-adic Feynman s path integrals G.S. Djordjević, B. Dragovich and Lj. Nešić Abstract The Feynman path integral method plays even more important role in p-adic and adelic quantum mechanics than in ordinary

More information

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS

NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS Fixed Point Theory, Volume 9, No. 1, 28, 3-16 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS GIOVANNI ANELLO Department of Mathematics University

More information

The Spectral Theory of the X 1 -Laguerre Polynomials

The Spectral Theory of the X 1 -Laguerre Polynomials Advances in Dynamical Systems and Applications ISSN 973-5321, Volume x, Number x, pp. 25 36 (2xx) http://campus.mst.edu/adsa The Spectral Theory of the X 1 -Laguerre Polynomials Mohamed J. Atia a, Lance

More information

Quantum Mechanics: Postulates

Quantum Mechanics: Postulates Quantum Mechanics: Postulates 25th March 2008 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through

More information

Solutions of Burgers Equation

Solutions of Burgers Equation ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9( No.3,pp.9-95 Solutions of Burgers Equation Ch. Srinivasa Rao, Engu Satyanarayana Department of Mathematics, Indian

More information

Supporting Information

Supporting Information Supporting Information A: Calculation of radial distribution functions To get an effective propagator in one dimension, we first transform 1) into spherical coordinates: x a = ρ sin θ cos φ, y = ρ sin

More information