Mass-conserving and positive-definite semi-lagrangian advection in NCEP GFS: Decomposition for massively parallel computing without halo

Size: px
Start display at page:

Download "Mass-conserving and positive-definite semi-lagrangian advection in NCEP GFS: Decomposition for massively parallel computing without halo"

Transcription

1 Mass-conserving and positive-definite semi-lagrangian advection in NCEP GFS: Decomposition for massively parallel computing without halo Hann-Ming Henry Juang Environmental Modeling Center, NCEP NWS,NOAA,DOC,USA 1

2 Introduction The common elements for traditional semi- Lagrangian method are Iteration to find departure and/or mid-point values Interpolation from regular grid points to departure and/or mid-points Require halo grids in MPP Advantage of semi-lagrangian Method Allowable larger time step, saving time Use linear grid in spectral model; same grid-point with higher resolution of spectral truncation 2

3 q t + u q x + v q y = 0 Dq Dt = 0 q A n +1 = q D n 1 M A D 3

4 Starting from mid-point A M D No guessing and no iteration but one 2-D interpolation and one 2-D remapping 4

5 Proposed Method Splitting semi-lagrangian advection advection in one direction first then advection in another direction temporal and spatial splitting Advantage no guessing and no iteration 1-D interpolation and remapping possible no halo (with transpose) incremental implementation Possible to add mass conservation and positive definite advection 5

6 q t + u q x + v q y = 0 q t q t Dq Dt X direction X direction X direction + q t Y direction + u q x + q t + Dq Dt Y direction + u q x + v q y = 0 Y direction = 0 + v q y = 0 6

7 X D = X M U M Δt X A = X M + U M Δt q A *n +1 = q D n 1 Interpolation q D n 1 relocation q A *n +1 D M A remapping *n +1 q 7

8 relocation q A n +1 A q n +1 Y D = Y M V M Δt Y A = Y M + V M Δt q A n +1 = q D *n +1 M remapping Interpolation q D *n +1 D 8

9 Ay Ay Dx Mx Ax My My Dx Mx Ax Dy Dy 9

10 Gaussian 256 x 128 with time step of 1800 sec 10

11 Gaussian 256 x 128 with time step of 1800 sec Across north pole 11

12 Gaussian 256 x 128 with time step of 1800 sec Across south pole 12

13 at north pole 13

14 at equator 14

15 at south pole 15

16 one complete revolution 16

17 [ ] [ ] L 1 = I q q T I q T [ ] [ ] L = Max q q T Max q T L 2 = 1 I[ ( q q T ) 2 ] 2 1 I[ ( q T ) 2 ] 2 max = Max [ q ] Max q T Max[ q T ] Min q T [ ] [ ] min = Min [ q ] Min q T Max[ q T ] Min q T [ ] [ ] where I[A] = 1 Acosφdφdλ 4πa 2 φλ Max[A] = global_max_of _ A Min[A] = global _min_of _ A 17

18 Compare Errors min max L 1 L 2 L FFSL-5 128x64 FFSL-3 256x128 NISL 128x64 NISL 256x128 NISL 512x E E E E E

19 For mass conservation, let s start from continuity equation ρ t + ρu x + ρv y + ρζ ζ = 0 ρ t (X ) + ρu x + ρ t (Y ) + ρv y + ρ t (Z ) + ρζ ζ = 0 Consider 1-D and rewrite it in advection form, we have ρ t (X direction) + u ρ x = ρ u x Advection form is for semi-lagrangian, but it is not conserved if divergence is treated as force at mid-point, So divergence term should be treated with advection 19

20 Divergence term in Lagrangian sense is the change of the volume if mass is conserved, so we can write divergence form as u x Lagrangian _ sense = 1 Δ x dδ x dt Put it into the previous continuity equation, we have dρδ x dt ρδ x t X direction X direction = 0 + u ρδ x x = 0 which can be seen as ( ρδ ) x departure = ( ρδ ) x arrival 20

21 How about mass conservation for tracer? If we use tracer and continuity equation as following together q t + u q x + v q y + ζ q ζ = 0 ρ t + ρu x + ρv y + ρζ ζ = 0 Then density weighted tracer can be treated as conservation as ρq t + ρqu x + ρqv y + ρqζ ζ = 0 Combine it with continuity equation, we can have conserved tracer advection dρqδ dt = 0 dρδ dt = 0 21

22 We do X D L = X M L U M L Δt X D R = X M R U M R Δt Δ D = X D D R X L Interpolation ρ D n 1 X A L = X M L + U M L Δt X A R = X M R + U M R Δt Δ A = X A A R X L *n +1 relocation ρ A M L M R X D L D R M A L A R Δ D Δ A ρ D n 1 Δ D = ρ A n +1 Δ A 22

23 n-1 D L Δ D D R n X n+1 A L A R Δ A ρ D n 1 Δ D = ρ A n +1 Δ A 23

24 The given value can be presented piece-wisely by D R S n 1 D (x)dx = n S +1 A (x)dx D L ρ = S(x) so the previous mass equality can be replaced as following A R A L Also we want to make sure that total mass is conserved as S n 1 R (x)dx = S n 1 D (x)dx = n S +1 A (x)dx = n S +1 R (x)dx where subscript R is regular grid D is departure grid A is arrival grid for This implies that mass conservation should be used during interpolation from regular cell to departure cell and from arrival cell to regular cell. thus, we apply monotonic PPM for S(x). 24

25 ( total mass) initial total mass ( ) initial total mass ( )

26 Isochronal flow Any given point will return to its original location after a given period of time. Gaussian grid dimensioned 512 x 256. Rotate coordinates so equator goes through (39N,77W), thus giving flow over real poles. Apply non-divergent global wave number 4-20 perturbation displacement (of standard deviation size non-dimensional vorticity) using a random number generator. Set return period to 10 days. 26

27 27

28 28

29 29

30 30

31 31

32 Decomposition in NCEP GFS Current NCEP GFS uses 1D decomposition with MPI and thread with OpenMP. Transpose with MPI_AllToAllv is used to move between two sub-domains for spectral transform. First sub-domain has some given latitudes with all longitudes grids, which is for FFT in longitudinal direction. Second sub-domain has some given zonal wave numbers with all meridian wave numbers, which is for Legendre transform in meridian direction. Transpose between two sub-domains, thus there is no halo required. 32

33 Implement into NCEP GFS The same first sub-domain is used to compute semi- Lagrangian advection in any given latitudinal global circle. All departure and arrival points are in the same circle, so no halo is needed. Then transpose first sub-domain to another grid-point sub-domain, which has all Gaussian latitude points but some longitude points. Therefore semi- Lagrangian advection can be computed in any given longitude with all latitude points, so, again, no halo is required. The PPM mass conserving between reduced grid and full grid in any given latitude is also applied. 33

34 np. np.. <=> sp Transpose sp No halo is required No increasing memory with Increasing number of PE(cpu) np 34

35 1D halo Halo Exchange Extra memory is required, which may be as huge as computing grid while number of MPP cpu increases. 2D 35

36 Case test in NCEP GFS Arbitrary date is selected. Modify NCEP GFS IO into grid-point data. Negative tracers are replaced with zero value at the initial time. T126 L64 resolution is tested. Model physics is included. Two runs are compared; control: Spectral advection in horizontal, finite difference in vertical asoperational GFS. nislfv: Non-iteration mass conserving positive definite semi- Lagrangian on tracers. 36

37 24h nislfv 72h control 37

38 24 h nislfv 72 h control 38

39 control 06h fcst specific humidity at model layer 40 nislfv 39

40 control 12h fcst specific humidity at model layer 40 nislfv 40

41 control 24h fcst specific humidity at model layer 40 nislfv 41

42 control 72h fcst specific humidity at model layer 40 nislfv 42

43 control 6hr fcst cloud water at model layer 35 nislfv 43

44 control 12hr fcst cloud water at model layer 30 nislfv 44

45 control 24hr fcst cloud water at model layer 30 nislfv 45

46 control 72hr fcst cloud water at model layer 5 nislfv 46

47 control 6hr fcst precipitation nislfv 47

48 control 24hr fcst precipitation nislfv 48

49 control 72hr fcst precipitation nislfv 49

50 Conclusion & Future Work Modified traditional semi-lagrangian without iteration to locate mid-/departure-points, but require interpolation and remapping with temporal and spatial split computation. Mass conserving is included with consideration of semi- Lagrangian for divergence. Positive definite is applied with monotone piecewise parabolic method (PPM) for interpolation/remapping. Due to spatial split, no halo is required since all required data for computation are all in the partial domain through transpose. Since no halo, there is no extra memory request, but it may have more data in communication than the method with halo and small number of cpu. Implement all prognostic variable, not only tracers, to have larger model time step to save integration cost. 50

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008 A Global Atmospheric Model Joe Tribbia NCAR Turbulence Summer School July 2008 Outline Broad overview of what is in a global climate/weather model of the atmosphere Spectral dynamical core Some results-climate

More information

Spectral transforms. Contents. ARPEGE-Climat Version 5.1. September Introduction 2

Spectral transforms. Contents. ARPEGE-Climat Version 5.1. September Introduction 2 Spectral transforms ARPEGE-Climat Version 5.1 September 2008 Contents 1 Introduction 2 2 Spectral representation 2 2.1 Spherical harmonics....................... 2 2.2 Collocation grid.........................

More information

Development of Yin-Yang Grid Global Model Using a New Dynamical Core ASUCA.

Development of Yin-Yang Grid Global Model Using a New Dynamical Core ASUCA. Development of Yin-Yang Grid Global Model Using a New Dynamical Core ASUCA. M. Sakamoto, J. Ishida, K. Kawano, K. Matsubayashi, K. Aranami, T. Hara, H. Kusabiraki, C. Muroi, Y. Kitamura Japan Meteorological

More information

Earth System Modeling Domain decomposition

Earth System Modeling Domain decomposition Earth System Modeling Domain decomposition Graziano Giuliani International Centre for Theorethical Physics Earth System Physics Section Advanced School on Regional Climate Modeling over South America February

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model Overview of the Numerics of the Atmospheric Forecast Model M. Hortal Seminar 6 Sept 2004 Slide 1 Characteristics of the model Hydrostatic shallow-atmosphere approimation Pressure-based hybrid vertical

More information

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh SAGES Scottish Alliance for Geoscience, Environment & Society Modelling Climate Change Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh Climate Modelling Climate

More information

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Katharina Kormann 1 Klaus Reuter 2 Markus Rampp 2 Eric Sonnendrücker 1 1 Max Planck Institut für Plasmaphysik 2 Max Planck Computing

More information

The spectral transform method

The spectral transform method The spectral transform method by Nils Wedi European Centre for Medium-Range Weather Forecasts wedi@ecmwf.int Advanced Numerical Methods for Earth-System Modelling Slide 1 Advanced Numerical Methods for

More information

The Experimental Regional Seasonal Ensemble Forecasting at NCEP

The Experimental Regional Seasonal Ensemble Forecasting at NCEP The Experimental Regional Seasonal Ensemble Forecasting at NCEP Hann-Ming Henry Juang Environment Modeling Center, NCEP, Washington, DC Jun Wang SAIC contractor under NCEP/EMC John Roads Experimental Climate

More information

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews.

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews. New variables in spherical geometry David G Dritschel Mathematical Institute University of St Andrews http://www-vortexmcsst-andacuk Collaborators: Ali Mohebalhojeh (Tehran St Andrews) Jemma Shipton &

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores

A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores A stable treatment of conservative thermodynamic variables for semi-implicit semi-lagrangian dynamical cores Kevin Viner Naval Research Laboratory, Monterey, CA September 26, 2012 Kevin Viner (NRL) PDE

More information

Latitude and Longitude Pre Test

Latitude and Longitude Pre Test Name Date Latitude and Longitude Pre Test Multiple Choice Directions: For questions, 1 10 circle the answer that letter that best answers the question. Each question is worth 1 point each. 1. To locate

More information

Partial Differential Equations, Winter 2015

Partial Differential Equations, Winter 2015 Partial Differential Equations, Winter 215 Homework #2 Due: Thursday, February 12th, 215 1. (Chapter 2.1) Solve u xx + u xt 2u tt =, u(x, ) = φ(x), u t (x, ) = ψ(x). Hint: Factor the operator as we did

More information

A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate

A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate A semi-implicit non-hydrostatic covariant dynamical kernel using spectral representation in the horizontal and a height based vertical coordinate Juan Simarro and Mariano Hortal AEMET Agencia Estatal de

More information

Probing Magnetic Fields in the Solar Convection Zone with Meridional Flow

Probing Magnetic Fields in the Solar Convection Zone with Meridional Flow Probing Magnetic Fields in the Solar Convection Zone with Meridional Flow Zhi-Chao Liang 22 Dec. 2015, MPS, Göttingen Liang, Z.-C. & Chou, D.-Y., 2015, Probing Magnetic Fields at the Base of the Solar

More information

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget Course 12.812, General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget Water Vapor Distribution First let us look at the distribution of specific humidity, q. The

More information

The next-generation supercomputer and NWP system of the JMA

The next-generation supercomputer and NWP system of the JMA The next-generation supercomputer and NWP system of the JMA Masami NARITA m_narita@naps.kishou.go.jp Numerical Prediction Division (NPD), Japan Meteorological Agency (JMA) Purpose of supercomputer & NWP

More information

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR.

More information

Recent Developments in Numerical Methods for 4d-Var

Recent Developments in Numerical Methods for 4d-Var Recent Developments in Numerical Methods for 4d-Var Mike Fisher Slide 1 Recent Developments Numerical Methods 4d-Var Slide 2 Outline Non-orthogonal wavelets on the sphere: - Motivation: Covariance Modelling

More information

Challenges and Opportunities in Modeling of the Global Atmosphere

Challenges and Opportunities in Modeling of the Global Atmosphere Challenges and Opportunities in Modeling of the Global Atmosphere Zavisa Janjic, Vladimir Djurdjevic, Ratko Vasic, and Tom Black NOAA/NCEP/EMC, College Park, MD 20740, U.S.A. (Email: zavisa.janjic@noaa.gov)

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

Recent developments of the global semi-lagrangian atmospheric model

Recent developments of the global semi-lagrangian atmospheric model Recent developments of the global semi-lagrangian atmospheric model Mikhail Tolstykh, Vladimir Shashkin (Inst. of Numerical Math. RAS, Hydrometcentre of Russia), Alla Yurova (Hydrometcentre of Russia)

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM

The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM I. Michael Navon 1, Dacian N. Daescu 2, and Zhuo Liu 1 1 School of Computational Science and Information

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

( )e ikx. ( ) = ˆq k

( )e ikx. ( ) = ˆq k ! Revised December 15, 2015 6:57 PM! 1 Chapter 13: Spectral Methods Copyright 2015, David A. Randall Introduction Assume that q( x,t) is real and integrable. If the domain is periodic, with period L, we

More information

Atmospheric Dynamics

Atmospheric Dynamics Atmospheric Dynamics the CAM-FV dynamical core Peter Hjort Lauritzen Atmospheric Modeling and Predictability Section Climate and Global Dynamics Division National Center for Atmospheric Research Community

More information

Poisson Equation in 2D

Poisson Equation in 2D A Parallel Strategy Department of Mathematics and Statistics McMaster University March 31, 2010 Outline Introduction 1 Introduction Motivation Discretization Iterative Methods 2 Additive Schwarz Method

More information

Using simplified vorticity equation,* by assumption 1 above: *Metr 430 handout on Circulation and Vorticity. Equations (4) and (5) on that handout

Using simplified vorticity equation,* by assumption 1 above: *Metr 430 handout on Circulation and Vorticity. Equations (4) and (5) on that handout Rossby Wave Equation A. Assumptions 1. Non-divergence 2. Initially, zonal flow, or nearly zonal flow in which u>>v>>w. 3. Initial westerly wind is geostrophic and does not vary along the x-axis and equations

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

3D-Transport of Precipitation

3D-Transport of Precipitation 3D-Transport of Precipitation Almut Gassmann DWD/FE 13 October 17, 2000 1 Current diagnostic scheme for gridscale precipitation The current scheme for gridscale precipitation assumes column equilibrium

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

Xueshun Shen Minghuan Wang Chinese Academy of Meteorological Sciences China Meteorological Administration Feng Xiao Tokyo Inst. of Tech.

Xueshun Shen Minghuan Wang Chinese Academy of Meteorological Sciences China Meteorological Administration Feng Xiao Tokyo Inst. of Tech. Application of a high-resolution conservative advection scheme to GRAPES meso-scale scale model Xueshun Shen Minghuan Wang Chinese Academy of Meteorological Sciences China Meteorological Administration

More information

Chapter 4. Nonlinear Hyperbolic Problems

Chapter 4. Nonlinear Hyperbolic Problems Chapter 4. Nonlinear Hyperbolic Problems 4.1. Introduction Reading: Durran sections 3.5-3.6. Mesinger and Arakawa (1976) Chapter 3 sections 6-7. Supplementary reading: Tannehill et al sections 4.4 and

More information

Reynolds Averaging. Let u and v be two flow variables (which might or might not be velocity components), and suppose that. u t + x uv ( ) = S u,

Reynolds Averaging. Let u and v be two flow variables (which might or might not be velocity components), and suppose that. u t + x uv ( ) = S u, ! Revised January 23, 208 7:7 PM! Reynolds Averaging David Randall Introduction It is neither feasible nor desirable to consider in detail all of the small-scale fluctuations that occur in the atmosphere.

More information

CAM-SE: Lecture I. Peter Hjort Lauritzen

CAM-SE: Lecture I. Peter Hjort Lauritzen CAM-SE: Lecture I Peter Hjort Lauritzen Atmospheric Modeling and Predictability Section Climate and Global Dynamics Laboratory National Center for Atmospheric Research 2nd WCRP Summer School on Climate

More information

Use of the GFDL Vortex Tracker

Use of the GFDL Vortex Tracker Use of the GFDL Vortex Tracker Tim Marchok NOAA / Geophysical Fluid Dynamics Laboratory WRF Tutorial for Hurricanes January 24, 2018 Outline History & description of the GFDL vortex tracker Inputs & Outputs

More information

Quasi-3D Multiscale Modeling Framework as a Physics Option in CAM-SE

Quasi-3D Multiscale Modeling Framework as a Physics Option in CAM-SE Quasi-3D Multiscale Modeling Framework as a Physics Option in CAM-SE Joon-Hee Jung, Celal S. Konor, Don Dazlich, David A. Randall, Department of Atmospheric Sciences, Colorado State University, USA Peter

More information

Potential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemes

Potential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemes QuarterlyJournalof theroyalmeteorologicalsociety Q. J. R. Meteorol. Soc. 141: 739 751, April 2015 A DOI:10.1002/qj.2389 Potential vorticity: Measuring consistency between GCM dynamical cores and tracer

More information

Lecture 1d: Satellite Orbits

Lecture 1d: Satellite Orbits Lecture 1d: Satellite Orbits Outline 1. Newton s Laws of Motion 2. Newton s Law of Universal Gravitation 3. Kepler s Laws 4. Putting Newton and Kepler s Laws together and applying them to the Earth-satellite

More information

Tracer transport in a sea of vortices

Tracer transport in a sea of vortices Tracer transport in a sea of vortices A. Provenzale ISAC-CNR, Torino and CIMA, Savona, Italy Work done with: Annalisa Bracco, Jost von Hardenberg, Claudia Pasquero A. Babiano, E. Chassignet, Z. Garraffo,

More information

Finite volume method for CFD

Finite volume method for CFD Finite volume method for CFD Indo-German Winter Academy-2007 Ankit Khandelwal B-tech III year, Civil Engineering IIT Roorkee Course #2 (Numerical methods and simulation of engineering Problems) Mentor:

More information

ATS 421/521. Climate Modeling. Spring 2015

ATS 421/521. Climate Modeling. Spring 2015 ATS 421/521 Climate Modeling Spring 2015 Lecture 9 Hadley Circulation (Held and Hou, 1980) General Circulation Models (tetbook chapter 3.2.3; course notes chapter 5.3) The Primitive Equations (tetbook

More information

An Overview of HPC at the Met Office

An Overview of HPC at the Met Office An Overview of HPC at the Met Office Paul Selwood Crown copyright 2006 Page 1 Introduction The Met Office National Weather Service for the UK Climate Prediction (Hadley Centre) Operational and Research

More information

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007.

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007. 1 0. CHEMICAL TRACER MODELS: AN INTRODUCTION Concentrations of chemicals in the atmosphere are affected by four general types of processes: transport, chemistry, emissions, and deposition. 3-D numerical

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

The Advanced Research WRF (ARW) Dynamics Solver

The Advanced Research WRF (ARW) Dynamics Solver Dynamics: Introduction The Advanced Research WRF (ARW) Dynamics Solver 1. What is a dynamics solver? 2. Variables and coordinates 3. Equations 4. Time integration scheme 5. Grid staggering 6. Advection

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Spherical Harmonics and Related Topics. David Randall 2 S = 0, r 2 r r S 2. S = r n Y n

Spherical Harmonics and Related Topics. David Randall 2 S = 0, r 2 r r S 2. S = r n Y n ! Revised April 10, 2017 1:32 PM! 1 Spherical Harmonics and Related Topics David Randall The spherical surface harmonics are convenient functions for representing the distribution of geophysical quantities

More information

Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation

Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation 8 March, 2011 Jonathon Wright Department of Applied Mathematics & Theoretical Physics University of Cambridge

More information

LONGITUDE AND LATITUDE. Semi great circles joining the true or geographic poles of the earth (true meridians).

LONGITUDE AND LATITUDE. Semi great circles joining the true or geographic poles of the earth (true meridians). MERIDIANS OF LONGITUDE LONGITUDE AND LATITUDE Semi great circles joining the true or geographic poles of the earth (true meridians). They are measured from 0 to 180 degrees East and West of the PRIME MERIDIAN,

More information

Week 7: Integration: Special Coordinates

Week 7: Integration: Special Coordinates Week 7: Integration: Special Coordinates Introduction Many problems naturally involve symmetry. One should exploit it where possible and this often means using coordinate systems other than Cartesian coordinates.

More information

Model Order Reduction via Matlab Parallel Computing Toolbox. Istanbul Technical University

Model Order Reduction via Matlab Parallel Computing Toolbox. Istanbul Technical University Model Order Reduction via Matlab Parallel Computing Toolbox E. Fatih Yetkin & Hasan Dağ Istanbul Technical University Computational Science & Engineering Department September 21, 2009 E. Fatih Yetkin (Istanbul

More information

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club Model description of AGCM5 of GFD-Dennou-Club edition SWAMP project, GFD-Dennou-Club Mar 01, 2006 AGCM5 of the GFD-DENNOU CLUB edition is a three-dimensional primitive system on a sphere (Swamp Project,

More information

A high-order fully explicit incremental-remap -based semi-lagrangian shallow-water model

A high-order fully explicit incremental-remap -based semi-lagrangian shallow-water model INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 0000; 00:1 33 Published online in Wiley InterScience (www.interscience.wiley.com). A high-order fully explicit incremental-remap

More information

Chapter 1 Test on Geography Skills

Chapter 1 Test on Geography Skills Name Score Chapter 1 Test on Geography Skills Part 1 Matching (14 pts.) Match each term in Column B with its correct definition in Column A by clearly writing the number in the blank space provided. Two

More information

Latest thoughts on stochastic kinetic energy backscatter - good and bad

Latest thoughts on stochastic kinetic energy backscatter - good and bad Latest thoughts on stochastic kinetic energy backscatter - good and bad by Glenn Shutts DARC Reading University May 15 2013 Acknowledgments ECMWF for supporting this work Martin Leutbecher Martin Steinheimer

More information

On simplifying incremental remap -based transport schemes

On simplifying incremental remap -based transport schemes On simplifying incremental remap -based transport schemes Peter H. Lauritzen a,, Christoph Erath b, Rashmi Mittal c a Climate and Global Dynamics Division, National Center for Atmospheric Research, P.O.

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini Numerical approximation for optimal control problems via MPC and HJB Giulia Fabrini Konstanz Women In Mathematics 15 May, 2018 G. Fabrini (University of Konstanz) Numerical approximation for OCP 1 / 33

More information

A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations

A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations A Nodal High-Order Discontinuous Galerkin Dynamical Core for Climate Simulations Institute for Mathematics Applied to the Geosciences (IMAGe) National Center for Atmospheric Research (NCAR) Boulder CO

More information

PFTOOL - Precipitation forecast toolbox

PFTOOL - Precipitation forecast toolbox PFTOOL - Precipitation forecast toolbox Semi-Lagrangian Mass-Integrating Transport Algorithm using the GME Grid within NUMEX Numerical experiments for the GME Sabine Pott Wolfgang Joppich Outline Motivation

More information

Chapter 5. Methods for Solving Elliptic Equations

Chapter 5. Methods for Solving Elliptic Equations Chapter 5. Methods for Solving Elliptic Equations References: Tannehill et al Section 4.3. Fulton et al (1986 MWR). Recommended reading: Chapter 7, Numerical Methods for Engineering Application. J. H.

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 1. Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere,

More information

Smoothed Particle Hydrodynamics (SPH) 4. May 2012

Smoothed Particle Hydrodynamics (SPH) 4. May 2012 Smoothed Particle Hydrodynamics (SPH) 4. May 2012 Calculating density SPH density estimator Weighted summation over nearby particles: ρ(r) = N neigh b=1 m bw (r r b, h) W weight function with dimension

More information

Computational challenges in Numerical Weather Prediction

Computational challenges in Numerical Weather Prediction Computational challenges in Numerical Weather Prediction Mike Cullen Oxford 15 September 2008 Contents This presentation covers the following areas Historical background Current challenges Why does it

More information

2. Outline of the MRI-EPS

2. Outline of the MRI-EPS 2. Outline of the MRI-EPS The MRI-EPS includes BGM cycle system running on the MRI supercomputer system, which is developed by using the operational one-month forecasting system by the Climate Prediction

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0 ! Revised Friday, April 19, 2013! 1 Inertial Stability and Instability David Randall Introduction Inertial stability and instability are relevant to the atmosphere and ocean, and also in other contexts

More information

Analytical Modeling of Laser Moving Sources

Analytical Modeling of Laser Moving Sources Analytical Modeling of Laser Moving Sources Contains: Heat flow equation Analytic model in one dimensional heat flow Heat source modeling Point heat source Line heat source Plane heat source Surface heat

More information

Chapter 17. Finite Volume Method The partial differential equation

Chapter 17. Finite Volume Method The partial differential equation Chapter 7 Finite Volume Method. This chapter focusses on introducing finite volume method for the solution of partial differential equations. These methods have gained wide-spread acceptance in recent

More information

Solve the set of equations using the decomposition method and AX=B:

Solve the set of equations using the decomposition method and AX=B: PROBLEM 1.1 STATEMENT Solve the set of equations using the decomposition method and AX=B: 5x 1 + 3x 2 + 4x 3 = 12 6x 1 + 3x 2 + 4x 3 = 15 7x 1 + 9x 2 + 2x 3 = 10 PROBLEM 1.2 STATEMENT 1 4 5 3 4 5 If A

More information

Earth-Mars Halo to Halo Low Thrust

Earth-Mars Halo to Halo Low Thrust Earth-Mars Halo to Halo Low Thrust Manifold Transfers P. Pergola, C. Casaregola, K. Geurts, M. Andrenucci New Trends in Astrodynamics and Applications V 3 June / -2 July, 28 Milan, Italy Outline o Introduction

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

AB 1: Find lim. x a.

AB 1: Find lim. x a. AB 1: Find lim x a f ( x) AB 1 Answer: Step 1: Find f ( a). If you get a zero in the denominator, Step 2: Factor numerator and denominator of f ( x). Do any cancellations and go back to Step 1. If you

More information

Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation

Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation Jemma Shipton Department of Atmospheric, Oceanic and Planetary Physics, University

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

CH 4 Motion in two and three Dimensions

CH 4 Motion in two and three Dimensions CH 4 Motion in two and three Dimensions I. Position and Displacement: A. Position: 1. The position of a particle can be described by a position vector, with respect to a reference origin. B. Displacement

More information

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016 Numerical Modelling in Fortran: day 10 Paul Tackley, 2016 Today s Goals 1. Useful libraries and other software 2. Implicit time stepping 3. Projects: Agree on topic (by final lecture) (No lecture next

More information

Data Assimilation into a Primitive-Equation Model with a Parallel Ensemble Kalman Filter

Data Assimilation into a Primitive-Equation Model with a Parallel Ensemble Kalman Filter 1971 Data Assimilation into a Primitive-Equation Model with a Parallel Ensemble Kalman Filter CHRISTIAN L. KEPPENNE NASA Seasonal to Interannual Prediction Project, Goddard Space Flight Center, Greenbelt,

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Module 2: Mapping Topic 2 Content: Determining Latitude and Longitude Notes

Module 2: Mapping Topic 2 Content: Determining Latitude and Longitude Notes Introduction In order to more easily locate points on a globe or map, cartographers designed a system of imaginary vertical lines (also called parallels) and horizontal lines (also called meridians) that

More information

Linear model for investigation of nonlinear NWP model accuracy. Marko Zirk, University of Tartu

Linear model for investigation of nonlinear NWP model accuracy. Marko Zirk, University of Tartu Linear model for investigation of nonlinear NWP model accuracy Marko Zirk, University of Tartu Introduction A method for finding numerical solution of non-hydrostatic linear equations of atmospheric dynamics

More information

THE IMPACT OF SATELLITE-DERIVED WINDS ON GFDL HURRICANE MODEL FORECASTS

THE IMPACT OF SATELLITE-DERIVED WINDS ON GFDL HURRICANE MODEL FORECASTS THE IMPACT OF SATELLITE-DERIVED WINDS ON GFDL HURRICANE MODEL FORECASTS Brian J. Soden 1 and Christopher S. Velden 2 1) Geophysical Fluid Dynamics Laboratory National Oceanic and Atmospheric Administration

More information

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self Problem : Units : Q-a Mathematically exress the relationshi between the different units of the hysical variables: i) Temerature: ) Fahrenheit and Celsius; 2) Fahrenheit and Kelvin ii) Length: ) foot and

More information

Update on CAM and the AMWG. Recent activities and near-term priorities. by the AMWG

Update on CAM and the AMWG. Recent activities and near-term priorities. by the AMWG Update on CAM and the AMWG. Recent activities and near-term priorities. by the AMWG The CAM family Model CAM3 CCSM3 CAM4 CCSM4 CAM5 (CAM5.1) CESM1.0 (CESM1.0.3) CAM5.2 CESM1.1 Release Jun 2004 Apr 2010

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Exam 4 Review 1. Trig substitution

More information

What is a flux? The Things We Does Know

What is a flux? The Things We Does Know What is a flux? Finite Volume methods (and others) (are based on ensuring conservation by computing the flux through the surfaces of a polyhedral box. Either the normal component of the flux is evaluated

More information

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise:

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise: Math 2250-004 Week 4 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information

Swedish Meteorological and Hydrological Institute

Swedish Meteorological and Hydrological Institute Swedish Meteorological and Hydrological Institute Norrköping, Sweden 1. Summary of highlights HIRLAM at SMHI is run on a CRAY T3E with 272 PEs at the National Supercomputer Centre (NSC) organised together

More information