AMS 147 Computational Methods and Applications Lecture 17 Copyright by Hongyun Wang, UCSC

Size: px
Start display at page:

Download "AMS 147 Computational Methods and Applications Lecture 17 Copyright by Hongyun Wang, UCSC"

Transcription

1 Lecture 17 Copyright by Hongyun Wang, UCSC Recap: Solving linear system A x = b Suppose we are given the decomposition, A = L U. We solve (LU) x = b in 2 steps: *) Solve L y = b using the forward substitution Cost = N 2 *) Solve U x = y using the backward substitution Cost = N 2 Cost of the 2 steps = 2 N 2. LU decomposition: Cost = 2 3 N 3 The main cost of solving A x = b is in the LU decomposition. Numerical solution ˆ x can be viewed as the exact solution of a perturbed system A ˆx = b + b If the numerical method is bad, the perturbation may be very large An example to demonstrate the importance of pivoting (continued) Consider linear system a 1 x 1 + x 2 =1 x 1 + a 2 x 2 a 1 = 2 64, a 2 = 1, b 2 =1 Method #1: Gauss elimination without pivoting - 1 -

2 x ˆ 1 = 0 x ˆ 2 =1 Substituting the numerical solution into the original linear system, we have a 1 ˆx 1 + ˆx 2 = 1 ˆx 1 + a 2 ˆx 2 + ( 2) Large perturbation T can be viewed as the exact solution of a perturbed The numerical solution x ˆ = x ˆ 1, x ˆ 2 system. In this example, the numerical method (Gauss elimination without pivoting) is bad. As a result, the perturbation is very large relative to the machine precision. As we will see below, for a good numerical method, the perturbation is of the magnitude of machine precision. Method #2: Gauss elimination with pivoting "Pivoting" means we use the largest element to do the elimination. Elimination: Interchange row 1 and row 2, we have a a 2 b 2 1 a 2 b 2 a Add a 1 ( row 1) to ( row 2) 1 a 2 b 2 0 fl1 a 1 a 2 fl( 1 a 1 b 2 ) Let us calculate these floating point numbers. Notice that a 1 a 2 = 2 64 and a 1 b 2 = We have fl( 1 a 1 a 2 )= fl( )= 1 fl( 1 a 1 b)= fl( )= 1 Substitution: Row 2: fl( 1 a 1 a 2 )ˆx 2 = fl( 1 a 1 b 2 ) = 1 1 = 1 ==> ˆx 2 = fl 1 a b 1 fl 1 a 1 a 2-2 -

3 Row 1: ˆx 1 + a 2 ˆx 2 ==> x ˆ 1 a 2 x ˆ 2 =1 ( 1) = 2 ==> x ˆ 1 = 2 x ˆ 2 =1 Substituting the numerical solution into the original linear system, we obtain a 1 ˆx 1 + ˆx 2 = ˆx 1 + a 2 ˆx 2 Small perturbation The numerical solution ˆ x can be viewed as the exact solution of a perturbed system. For Gauss elimination with pivoting, the perturbed system is very close to the original system. Small perturbation is the character of good numerical methods. Error analysis in solving Ax = b Goal: to study the effect of round-off error. To prepare for the error analysis, we review vector norm and define matrix norm. Vector norm: x = ( x 1, x 2,, x N ) T N p p-norm: x p = x j j =1 1-norm: x 1 = x j N j =1 N 2 2-norm: x 2 = x j j =1 1 p 1 2 -norm: x = max j x j Matrix norm: A p = max x0 Ax p x p - 3 -

4 It follows directly from the definition that Ax p x p A p ==> Ax p A p x p We will use this result in the error analysis. Note: The definition does not give us a direct way of calculating the matrix norm. Fortunately we have explicit formulas for a few cases: a 11 a 1N A = a N1 a NN 1-norm: A 1 = max j N i =1 a ij 2-norm: A 2 = max j A T A j -norm: j ( A T A) denotes the j-th eigenvalue of matrix A T A. A = max i N j =1 a ij Notation for error analysis: x : the exact solution of Ax = b ˆ x : the numerical solution of Ax = b (the solution obtained using IEEE double precision) Numerical solution x ˆ can be viewed as the exact solution of a perturbed system A ˆx = b + b We write the numerical solution x ˆ as x ˆ = x + x Specific goal of the error analysis: to relate the relative perturbation to the relative error

5 To relate b b Relative perturbation to x. x Relative error We start with A ˆx = b + b. A ˆx = b + b ==> A( x+ x)= b + b ==> Ax+ A x = b + b (Using Ax= b) ==> A x = b (Multiplying by A 1 ) ==> x = A 1 b ==> x = A 1 b A 1 b (R1) On the other hand, starting with Ax= b, we have b = Ax ==> b = Ax A x (Dividing by b x ) ==> 1 x A 1 b (R2) Combining (R1) and (R2), we obtain x x A 1 A b b Definition: The condition number of matrix A is defined as cond( A) = A 1 A In terms of the condition number, we have - 5 -

6 x x Relative error in solution b cond( A) b Relative perturbation Note: When cond(a) is large (for example, cond( A) ), we say matrix A is ill-conditioned. When cond(a) is small (for example, cond( A) 10 6 ), we say matrix A is well-conditioned. Two causes for large error x x : b b ~ O( 1) If the numerical method is bad, then the relative perturbation is large. Consequently, the relative error in the solution is large. Remedy: use a good numerical method. cond ( A ) ~ O 1 If the system is ill conditioned, then the relative error in the solution is large even when we use a good numerical method. Two remedies: 1) use a higher precision 2) go back to the modeling process to formulate a well-conditioned system A geometric view an ill-conditioned system: [Draw two nearly perpendicular lines to show a well-conditioned system] [Draw two nearly parallel lines to show an ill-conditioned system] Solving sparse linear systems A u = b A is an N N matrix satisfying - 6 -

7 N is large (for example, N =10 6 ); Each row of A has only a few non-zero elements (for example, at most, 5 non-zero elements); A w can be calculated efficiently without using the matrix form of A. Example: The boundary value problem of 1-D Poisson equation: u xx = b x u( 0)= 0, u 1 The numerical grid We divide 0,1 ()= 0 [ ] into n subintervals. h = 1 n, x i = ih, i = 0, 1,, n Recall the numerical differentiation method for approximating the second derivative f ( x h ) + f x + h f x 2 f x Applying this to u xx = b( x), we obtain The numerical discretization: u i1 2u i + u i+1 = b i, i = 1, 2,, n 1 b i = b( x i ) u i = numerical approximation of u( x i ). The boundary condition: u 0 = 0, u n = 0 The numerical discretization has the form of a linear system Au = b u = u j,1 j n 1 { } { } b = b j,1 j n 1-7 -

8 A is an N N matrix satisfying N = (n 1), number of elements in u Each row of A has at most 3 non-zero elements For any vector w = { w j,1jn1}, A w is calculated efficiently without using the matrix form of A ( Aw ) i = w 2w + w i1 i i+1, 1 i n 1 w 0 = w n = 0 Note: For the 1-D problem, it is actually easy to write out the matrix form of A. 2 1 A = But working with the matrix form of A is not viable in 2-D or 3-D problems the matrix form of A is very complicated. The boundary value problem of 2-D Poisson equation: u xx + u yy = bx,y in [ 0,1] [ 0,1] ux,y = 0 on the boundary of [ 0,1] [ 0,1] [Draw the square to show the computational domain and the boundary]. The numerical grid We divide 0,1 [ ] into n subintervals. h = 1 n, x i = ih, i = 0, 1,, n y j = jh, j = 0, 1,, n The numerical discretization: u i1 j 2u ij + u i+1 j b ij = bx i, y j + u ij1 2u ij + u ij+1 = b ij, 1 i, j n 1-8 -

9 u ij = numerical approximation of ux ( i, y j ). The boundary condition: u 0 j = 0, u nj = 0, u i 0 = 0, u in = 0, 1 i, j n 1 The numerical discretization has the form of a linear system Au = b { } { } u = u ij,1i, j n 1 b = b ij,1i, j n 1 A is an N N matrix satisfying N = (n 1) 2, number of elements in u. Each row of A has at most 5 non-zero elements. For any vector w = { w ij,1i, j ( n 1) }, Aw is calculated efficiently without using the matrix form of A ( Aw ) ij = w i1 j + w i+1 j + w ij1 + w ij+1 4 w ij, 1 i, j ( n 1) w 0 j = 0, w nj = 0, w i 1 = 0, w in = 0, 1 i, j n 1-9 -

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations 1 Fundamentals Consider the set of linear algebraic equations n a ij x i b i represented by Ax b j with [A b ] [A b] and (1a) r(a) rank of A (1b) Then Axb has a solution iff

More information

Let x be an approximate solution for Ax = b, e.g., obtained by Gaussian elimination. Let x denote the exact solution. Call. r := b A x.

Let x be an approximate solution for Ax = b, e.g., obtained by Gaussian elimination. Let x denote the exact solution. Call. r := b A x. ESTIMATION OF ERROR Let x be an approximate solution for Ax = b, e.g., obtained by Gaussian elimination. Let x denote the exact solution. Call the residual for x. Then r := b A x r = b A x = Ax A x = A

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems.

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems. COURSE 9 4 Numerical methods for solving linear systems Practical solving of many problems eventually leads to solving linear systems Classification of the methods: - direct methods - with low number of

More information

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark DM559 Linear and Integer Programming LU Factorization Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides by Lieven Vandenberghe, UCLA] Outline

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

Topics. Review of lecture 2/11 Error, Residual and Condition Number. Review of lecture 2/16 Backward Error Analysis The General Case 1 / 22

Topics. Review of lecture 2/11 Error, Residual and Condition Number. Review of lecture 2/16 Backward Error Analysis The General Case 1 / 22 Topics Review of lecture 2/ Error, Residual and Condition Number Review of lecture 2/6 Backward Error Analysis The General Case / 22 Theorem (Calculation of 2 norm of a symmetric matrix) If A = A t is

More information

Scientific Computing

Scientific Computing Scientific Computing Direct solution methods Martin van Gijzen Delft University of Technology October 3, 2018 1 Program October 3 Matrix norms LU decomposition Basic algorithm Cost Stability Pivoting Pivoting

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b AM 205: lecture 7 Last time: LU factorization Today s lecture: Cholesky factorization, timing, QR factorization Reminder: assignment 1 due at 5 PM on Friday September 22 LU Factorization LU factorization

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

lecture 2 and 3: algorithms for linear algebra

lecture 2 and 3: algorithms for linear algebra lecture 2 and 3: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 27, 2018 Solving a system of linear equations

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

lecture 3 and 4: algorithms for linear algebra

lecture 3 and 4: algorithms for linear algebra lecture 3 and 4: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 30, 2016 Solving a system of linear equations

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.2: LU and Cholesky Factorizations 2 / 82 Preliminaries 3 / 82 Preliminaries

More information

Numerical Algorithms. IE 496 Lecture 20

Numerical Algorithms. IE 496 Lecture 20 Numerical Algorithms IE 496 Lecture 20 Reading for This Lecture Primary Miller and Boxer, Pages 124-128 Forsythe and Mohler, Sections 1 and 2 Numerical Algorithms Numerical Analysis So far, we have looked

More information

Review Questions REVIEW QUESTIONS 71

Review Questions REVIEW QUESTIONS 71 REVIEW QUESTIONS 71 MATLAB, is [42]. For a comprehensive treatment of error analysis and perturbation theory for linear systems and many other problems in linear algebra, see [126, 241]. An overview of

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 3 Chapter 10 LU Factorization PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD Mathematical Question we are interested in answering numerically How to solve the following linear system for x Ax = b? where A is an n n invertible matrix and b is vector of length n. Notation: x denote

More information

ESTIMATION OF ERROR. r = b Abx a quantity called the residual for bx. Then

ESTIMATION OF ERROR. r = b Abx a quantity called the residual for bx. Then ESTIMATION OF ERROR Let bx denote an approximate solution for Ax = b; perhaps bx is obtained by Gaussian elimination. Let x denote the exact solution. Then introduce r = b Abx a quantity called the residual

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix EE507 - Computational Techniques for EE 7. LU factorization Jitkomut Songsiri factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization

More information

14.2 QR Factorization with Column Pivoting

14.2 QR Factorization with Column Pivoting page 531 Chapter 14 Special Topics Background Material Needed Vector and Matrix Norms (Section 25) Rounding Errors in Basic Floating Point Operations (Section 33 37) Forward Elimination and Back Substitution

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations Solving Linear Systems of Equations Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

AMSC/CMSC 466 Problem set 3

AMSC/CMSC 466 Problem set 3 AMSC/CMSC 466 Problem set 3 1. Problem 1 of KC, p180, parts (a), (b) and (c). Do part (a) by hand, with and without pivoting. Use MATLAB to check your answer. Use the command A\b to get the solution, and

More information

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 4 Linear Systems Ax = b A is n n matrix, b is given n-vector, x is unknown solution n-vector. A n n is non-singular

More information

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. CE 60: Numerical Methods Lecture 7 Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. Drawback in Elimination Methods There are various drawbacks

More information

Computational Methods. Systems of Linear Equations

Computational Methods. Systems of Linear Equations Computational Methods Systems of Linear Equations Manfred Huber 2010 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 GENE H GOLUB Issues with Floating-point Arithmetic We conclude our discussion of floating-point arithmetic by highlighting two issues that frequently

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

Lecture 9. Errors in solving Linear Systems. J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico

Lecture 9. Errors in solving Linear Systems. J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico Lecture 9 Errors in solving Linear Systems J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico J. Chaudhry (Zeb) (UNM) Math/CS 375 1 / 23 What we ll do: Norms and condition

More information

Scientific Computing: Dense Linear Systems

Scientific Computing: Dense Linear Systems Scientific Computing: Dense Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 February 9th, 2012 A. Donev (Courant Institute)

More information

6 Linear Systems of Equations

6 Linear Systems of Equations 6 Linear Systems of Equations Read sections 2.1 2.3, 2.4.1 2.4.5, 2.4.7, 2.7 Review questions 2.1 2.37, 2.43 2.67 6.1 Introduction When numerically solving two-point boundary value problems, the differential

More information

Roundoff Analysis of Gaussian Elimination

Roundoff Analysis of Gaussian Elimination Jim Lambers MAT 60 Summer Session 2009-0 Lecture 5 Notes These notes correspond to Sections 33 and 34 in the text Roundoff Analysis of Gaussian Elimination In this section, we will perform a detailed error

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

Chapter 2 - Linear Equations

Chapter 2 - Linear Equations Chapter 2 - Linear Equations 2. Solving Linear Equations One of the most common problems in scientific computing is the solution of linear equations. It is a problem in its own right, but it also occurs

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Last time, we found that solving equations such as Poisson s equation or Laplace s equation on a grid is equivalent to solving a system of linear equations. There are many other

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations 1 Solving Linear Systems of Equations Many practical problems could be reduced to solving a linear system of equations formulated as Ax = b This chapter studies the computational issues about directly

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

1.Chapter Objectives

1.Chapter Objectives LU Factorization INDEX 1.Chapter objectives 2.Overview of LU factorization 2.1GAUSS ELIMINATION AS LU FACTORIZATION 2.2LU Factorization with Pivoting 2.3 MATLAB Function: lu 3. CHOLESKY FACTORIZATION 3.1

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 2. Systems

More information

Linear System of Equations

Linear System of Equations Linear System of Equations Linear systems are perhaps the most widely applied numerical procedures when real-world situation are to be simulated. Example: computing the forces in a TRUSS. F F 5. 77F F.

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

Gaussian Elimination and Back Substitution

Gaussian Elimination and Back Substitution Jim Lambers MAT 610 Summer Session 2009-10 Lecture 4 Notes These notes correspond to Sections 31 and 32 in the text Gaussian Elimination and Back Substitution The basic idea behind methods for solving

More information

Name: INSERT YOUR NAME HERE. Due to dropbox by 6pm PDT, Wednesday, December 14, 2011

Name: INSERT YOUR NAME HERE. Due to dropbox by 6pm PDT, Wednesday, December 14, 2011 AMath 584 Name: INSERT YOUR NAME HERE Take-home Final UWNetID: INSERT YOUR NETID Due to dropbox by 6pm PDT, Wednesday, December 14, 2011 The main part of the assignment (Problems 1 3) is worth 80 points.

More information

5 Solving Systems of Linear Equations

5 Solving Systems of Linear Equations 106 Systems of LE 5.1 Systems of Linear Equations 5 Solving Systems of Linear Equations 5.1 Systems of Linear Equations System of linear equations: a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +

More information

CS 257: Numerical Methods

CS 257: Numerical Methods CS 57: Numerical Methods Final Exam Study Guide Version 1.00 Created by Charles Feng http://www.fenguin.net CS 57: Numerical Methods Final Exam Study Guide 1 Contents 1 Introductory Matter 3 1.1 Calculus

More information

Direct Methods for solving Linear Equation Systems

Direct Methods for solving Linear Equation Systems REVIEW Lecture 5: Systems of Linear Equations Spring 2015 Lecture 6 Direct Methods for solving Linear Equation Systems Determinants and Cramer s Rule Gauss Elimination Algorithm Forward Elimination/Reduction

More information

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 18th,

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

A Review of Matrix Analysis

A Review of Matrix Analysis Matrix Notation Part Matrix Operations Matrices are simply rectangular arrays of quantities Each quantity in the array is called an element of the matrix and an element can be either a numerical value

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

AM205: Assignment 2. i=1

AM205: Assignment 2. i=1 AM05: Assignment Question 1 [10 points] (a) [4 points] For p 1, the p-norm for a vector x R n is defined as: ( n ) 1/p x p x i p ( ) i=1 This definition is in fact meaningful for p < 1 as well, although

More information

Error Analysis for Solving a Set of Linear Equations

Error Analysis for Solving a Set of Linear Equations Error Analysis for Solving a Set of Linear Equations We noted earlier that the solutions to an equation Ax = b depends significantly on the matrix A. In particular, a unique solution to Ax = b exists if

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

MIDTERM. b) [2 points] Compute the LU Decomposition A = LU or explain why one does not exist.

MIDTERM. b) [2 points] Compute the LU Decomposition A = LU or explain why one does not exist. MAE 9A / FALL 3 Maurício de Oliveira MIDTERM Instructions: You have 75 minutes This exam is open notes, books No computers, calculators, phones, etc There are 3 questions for a total of 45 points and bonus

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS We want to solve the linear system a, x + + a,n x n = b a n, x + + a n,n x n = b n This will be done by the method used in beginning algebra, by successively eliminating unknowns

More information

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 26 (LU Factorization) May 30 th, 2013 The material in these lectures is partly taken from the books: Elementary Numerical Analysis,

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

G1110 & 852G1 Numerical Linear Algebra

G1110 & 852G1 Numerical Linear Algebra The University of Sussex Department of Mathematics G & 85G Numerical Linear Algebra Lecture Notes Autumn Term Kerstin Hesse (w aw S w a w w (w aw H(wa = (w aw + w Figure : Geometric explanation of the

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

( ), λ. ( ) =u z. ( )+ iv z

( ), λ. ( ) =u z. ( )+ iv z AMS 212B Perturbation Metho Lecture 18 Copyright by Hongyun Wang, UCSC Method of steepest descent Consider the integral I = f exp( λ g )d, g C =u + iv, λ We consider the situation where ƒ() and g() = u()

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #1 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Linear Systems of n equations for n unknowns

Linear Systems of n equations for n unknowns Linear Systems of n equations for n unknowns In many application problems we want to find n unknowns, and we have n linear equations Example: Find x,x,x such that the following three equations hold: x

More information

Jim Lambers MAT 610 Summer Session Lecture 2 Notes

Jim Lambers MAT 610 Summer Session Lecture 2 Notes Jim Lambers MAT 610 Summer Session 2009-10 Lecture 2 Notes These notes correspond to Sections 2.2-2.4 in the text. Vector Norms Given vectors x and y of length one, which are simply scalars x and y, the

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Lecture Note 2: The Gaussian Elimination and LU Decomposition

Lecture Note 2: The Gaussian Elimination and LU Decomposition MATH 5330: Computational Methods of Linear Algebra Lecture Note 2: The Gaussian Elimination and LU Decomposition The Gaussian elimination Xianyi Zeng Department of Mathematical Sciences, UTEP The method

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 2. Systems of Linear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 2. Systems of Linear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 2 Systems of Linear Equations Copyright c 2001. Reproduction permitted only for noncommercial,

More information

CS227-Scientific Computing. Lecture 4: A Crash Course in Linear Algebra

CS227-Scientific Computing. Lecture 4: A Crash Course in Linear Algebra CS227-Scientific Computing Lecture 4: A Crash Course in Linear Algebra Linear Transformation of Variables A common phenomenon: Two sets of quantities linearly related: y = 3x + x 2 4x 3 y 2 = 2.7x 2 x

More information

Engineering Computation

Engineering Computation Engineering Computation Systems of Linear Equations_1 1 Learning Objectives for Lecture 1. Motivate Study of Systems of Equations and particularly Systems of Linear Equations. Review steps of Gaussian

More information

LECTURES IN BASIC COMPUTATIONAL NUMERICAL ANALYSIS

LECTURES IN BASIC COMPUTATIONAL NUMERICAL ANALYSIS Ax = b Z b a " 1 f(x) dx = h 2 (f X 1 + f n )+ f i #+ O(h 2 ) n 1 i=2 LECTURES IN BASIC COMPUTATIONAL NUMERICAL ANALYSIS x (m+1) = x (m) J(x (m) ) 1 F (x (m) ) p n (x) = X n+1 i=1 " n+1 Y j=1 j6=i # (x

More information

The Behavior of Algorithms in Practice 2/21/2002. Lecture 4. ɛ 1 x 1 y ɛ 1 x 1 1 = x y 1 1 = y 1 = 1 y 2 = 1 1 = 0 1 1

The Behavior of Algorithms in Practice 2/21/2002. Lecture 4. ɛ 1 x 1 y ɛ 1 x 1 1 = x y 1 1 = y 1 = 1 y 2 = 1 1 = 0 1 1 8.409 The Behavior of Algorithms in Practice //00 Lecture 4 Lecturer: Dan Spielman Scribe: Matthew Lepinski A Gaussian Elimination Example To solve: [ ] [ ] [ ] x x First factor the matrix to get: [ ]

More information

Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer Homework 3 Due: Tuesday, July 3, 2018

Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer Homework 3 Due: Tuesday, July 3, 2018 Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer 28. (Vector and Matrix Norms) Homework 3 Due: Tuesday, July 3, 28 Show that the l vector norm satisfies the three properties (a) x for x

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

Solving linear systems (6 lectures)

Solving linear systems (6 lectures) Chapter 2 Solving linear systems (6 lectures) 2.1 Solving linear systems: LU factorization (1 lectures) Reference: [Trefethen, Bau III] Lecture 20, 21 How do you solve Ax = b? (2.1.1) In numerical linear

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Decompositions, numerical aspects Gerard Sleijpen and Martin van Gijzen September 27, 2017 1 Delft University of Technology Program Lecture 2 LU-decomposition Basic algorithm Cost

More information

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects Numerical Linear Algebra Decompositions, numerical aspects Program Lecture 2 LU-decomposition Basic algorithm Cost Stability Pivoting Cholesky decomposition Sparse matrices and reorderings Gerard Sleijpen

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

Numerical Analysis Fall. Gauss Elimination

Numerical Analysis Fall. Gauss Elimination Numerical Analysis 2015 Fall Gauss Elimination Solving systems m g g m m g x x x k k k k k k k k k 3 2 1 3 2 1 3 3 3 2 3 2 2 2 1 0 0 Graphical Method For small sets of simultaneous equations, graphing

More information

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems Iterative Methods for Linear Systems 1. Introduction: Direct solvers versus iterative solvers In many applications we have to solve a linear system Ax = b with A R n n and b R n given. If n is large the

More information

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014 Lecture 7 Gaussian Elimination with Pivoting David Semeraro University of Illinois at Urbana-Champaign February 11, 2014 David Semeraro (NCSA) CS 357 February 11, 2014 1 / 41 Naive Gaussian Elimination

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations Linear Equations: a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1 a + a + a + a +... + a = c 21 2 2 23 3 24 4 2n n 2 a + a + a + a +... + a = c 31 1 32 2 33 3 34 4 3n n

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

Linear Algebra. Solving Linear Systems. Copyright 2005, W.R. Winfrey

Linear Algebra. Solving Linear Systems. Copyright 2005, W.R. Winfrey Copyright 2005, W.R. Winfrey Topics Preliminaries Echelon Form of a Matrix Elementary Matrices; Finding A -1 Equivalent Matrices LU-Factorization Topics Preliminaries Echelon Form of a Matrix Elementary

More information

Dense LU factorization and its error analysis

Dense LU factorization and its error analysis Dense LU factorization and its error analysis Laura Grigori INRIA and LJLL, UPMC February 2016 Plan Basis of floating point arithmetic and stability analysis Notation, results, proofs taken from [N.J.Higham,

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

MODEL ANSWERS TO THE THIRD HOMEWORK

MODEL ANSWERS TO THE THIRD HOMEWORK MODEL ANSWERS TO THE THIRD HOMEWORK 1 (i) We apply Gaussian elimination to A First note that the second row is a multiple of the first row So we need to swap the second and third rows 1 3 2 1 2 6 5 7 3

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

Intel Math Kernel Library (Intel MKL) LAPACK

Intel Math Kernel Library (Intel MKL) LAPACK Intel Math Kernel Library (Intel MKL) LAPACK Linear equations Victor Kostin Intel MKL Dense Solvers team manager LAPACK http://www.netlib.org/lapack Systems of Linear Equations Linear Least Squares Eigenvalue

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 9

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 9 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 9 GENE H GOLUB 1 Error Analysis of Gaussian Elimination In this section, we will consider the case of Gaussian elimination and perform a detailed

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 2 Systems of Linear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Gaussian Elimination for Linear Systems

Gaussian Elimination for Linear Systems Gaussian Elimination for Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University October 3, 2011 1/56 Outline 1 Elementary matrices 2 LR-factorization 3 Gaussian elimination

More information

4.2 Floating-Point Numbers

4.2 Floating-Point Numbers 101 Approximation 4.2 Floating-Point Numbers 4.2 Floating-Point Numbers The number 3.1416 in scientific notation is 0.31416 10 1 or (as computer output) -0.31416E01..31416 10 1 exponent sign mantissa base

More information