THE CRYSTAL STRUCTURE OF LaNiSn

Size: px
Start display at page:

Download "THE CRYSTAL STRUCTURE OF LaNiSn"

Transcription

1 Philips J. Res. 39, 77-81, 1984 R1082 THE CRYSTAL STRUCTURE OF by J. L. C. DAAMS and K. H. J. BUSCHOW Philips Research boratories, 5600 JA Eindhoven, The Netherlands Abstract The crystal structure of the compound has been determined; it is found to be homotypic with the orthorhombic op12 (C23) structure. is isotypic with e-tisi and shows great resemblance with the structure of CeCu2. PACS numbers: Hg. 1. Introduetion The growing interest being shown in the study of ternary intermetallic compounds is due to particular properties of ternary compounds not found in binary intermetallics. These properties comprise, for instance, the occurrence of superconductivity and magnetic ordering in one and the same compound 1), the observation of huge values for the magneto-optical Kerr rotation 2) and a pronounced first-order spinflop transition with a transition hysteresis of more than 30 k Oe "), Ternary compounds have also attracted much attention from the theoretical point of view 4,5). The Cls-type Heusier compounds, in particular, were found to have unusual features in their band structure, leading to 1000/0spin polarization of the conduction electrons. In a previous investigation 6) the occurrence of Heusler-type compounds based on was studied. It was found that the combination of and 3d elements with rare earths did not lead to the formation of such ternary compounds, but that other ternary compounds were formed instead. In the present investigation we have studied the crystal structure of the compound. 2. Experimental procedures and results The sample was prepared by are melting in purified argon gas, followed by vacuum annealing for two weeks at 800 C. After annealing the sample was pulverized and stress released by heating in vacuum at 500 "C for three hours. X-ray diagrams were obtained by means of a Philips PW 1700 diffraction Philips Journalof Research Vol. 39 No

2 J. L. C. Daams and K. H. J. Buschow system. CuKa radiation was used in combination with a graphite monochromator. We indexed the X-ray diffraction diagram of on the basis of a primitive orthorhombic unit cell with the lattice constants a = Á,. b = Á and c = Á. From the systematic extinctions we derived TABLE I. Observed and calculated diffraction angles (J (in degrees) and intensities I (in arbitrary units) of the intermetallic compound. observed calculated h k (J I (J I Philips Jourooi of Research Vol.39 No

3 The crystal structure of Pnma (62) 7) as the most probable space group. In table I the indexing together with the observed reflecting angles are compared with the calculated angles. 3. Structure determination The crystal structure was determined by using the trial structure obtained by means of a cell-filling program 8). After seven refinement cycles we reached convergence with an ultimate reliability factor R = /0 based on intens i- ties. The atomic position parameters are: 4 in 4 (c) 4 in 4 (c) 4 in 4 (c) x = x = x = y = Y = y = z = z = z = The value of B occurring in the expression of the Debije-Waller temperature factor was found to be equal to cm 2 for the sites, cm" for the sites and ern" for the sites. Table I also gives a comparison of the observed intensities and the calculated intensities. In table IIthe interatomie distances up to 4 Á are given. A schematic representation of the structure is given in fig. 1, where the viewing direction is almost perpendicular to the (100) plane. TABLE II Number of neighbours and interatomie distances in. atom neighbour number distance (Á) Phlllps Journalof Research Vol.39 No

4 J. L. C. Daams and K. H. J. Buschow Fig. I. Schematic representation of the crystal structure of. 4. Discussion The formation of the compound is accompanied by a substantial contraction of the atomic volumes compared to the pure starting materials (36.9 A3, 10.9 A3 and 26.9 A3 for, and respectively). From the lattice constants of given above one finds a volume per unit cell equal to A3, which is more than 9070 smaller than the value calculated on the basis of the atomic volumes of the elements. The crystal structure of can be regarded as a distortion of the hexagonal -In structure 9). As in the other members of the R compounds, the distortion is relatively strong, due to the large difference in metallic radii between the constituent metal atoms. Our values for the lattice constants are in good agreement with those given by Dwight 10). Dwight reports that his value for a falls significantly below that expected on the basis of the linear relationship between the values of a and the radii of the R component in the remainder of the R compounds. By contrast, the a value found by us is in good agreement with the linear relationship mentioned. Closer inspection of Dwight's data showed that the values for a and c of are apparently interchanged in his plot, so that deviations from the linear behaviour remain restricted to the b and the c axis. If one compares the atomic positions found in the course of the present investigation for with those of TiSi 11,12) one notices substantial differences between the two compounds. Owing to this difference in the atomic position, a slight shift in coordination of the atoms in has taken place with respect to TiSi. In the latter compound the Ti, and Si atoms are coordinated by 15, 12 and 9 atoms respectively. As can be derived from the data listed in table Il, in the coordination of, and corresponds to 16, 10 and 10, respectively. These changes in coordination are in 80 Philips Journalof Research Vol. 39 No

5 The crystal structure of accordance with the metallic radii of the constituent elements. The and atoms are larger than the Ti and Si atoms, respectively. For the former atoms the coordination number has increased. By contrast, in is surrounded by larger atoms than in TiSi. For therefore the coordination number has decreased. However there is a more striking resemblance between the structure and the structure of CeCu2. CeCu2 has a bodycentered orthorhombic unit cell with lattice constants a = A, b = A and c = A, space group 74 Imma 12-14). REFERENCES I) J. R. Remeika, G. P. Espinosa, A. S. Cooper, H. Barz, J. M. Rowerll, D. B. McWan, J. H. Vandenberg, D. E. Moncton, Z. Fisk, L. D. Woolf, H. C. Hamaker, M. B. Maple, G. Shirane and W. Thomlinson, Solid State Commun. 34, 923 (1980). 2) P. G. van Engen, K. H. J. Buschow, R. J ongebreur and M. Erman, Appl. Phys. Lett. 42, 202 (1983). 3) T. T. M. Palstra, J. A. Mydosh, G. J. euwenhuys, F. R. de Boer and K. H. J. Buschow (to be published). 4) J. Kübler, A. R. Williams and C. B. Sommers, Phys, Rev. (B) 28,1745 (1983). 5) R. A. de Groot, F. M. Mueller, P. G. van Engen and K. H. J. Buschow, Phys, Rev. Lett. 50, 2024 (1983). 6) P.. G. van Engen, K. H. J. Buschow and M. Erman, J. Magn. Mat. 30, 374 (1983). 7) N. F. M. Henry and K. Lonsdale (eds), International tables for crystallography, Vol. 1, Kynoch Press, Birmingham, ) W. P. J. Fontein, J. M. M. Verbakei and J. H. N. van Vucht, Philips J. Res. 34, 238 (1979). 9) W. B. Pearson, The crystal chemistry and physics of metals and alloys, John Wiley and Sons Inc., New York, 1972; cf. p ) A. E. Dw ig h t, J. Less-Common Met. 93,411 (1983) 11) C. B. Shoemaker and D. P. Shoemaker, Acta Cryst. 18,900 (1965). 12) W. B. Pearson, A handbook of lattice spacings and structures of metals and alloys, Vol. 2, Pergamon Press, 1965; cf. p ) A. C. rson and D. T. Cromer, Acta Cryst, 14, 73 (1961). 14) E. Hovestreydt, N. Engel, K. Klepp, B. Chabot and E. Parthé, J. Less-Common Met. 85, 247 (1982). Phlllps Journalof Research Vol.39 No

THE MAGNETO-OPTICAL PROPERTIES OF HEUSLER ALLOYS OF THE TYPE Coz_xCuxMnSn

THE MAGNETO-OPTICAL PROPERTIES OF HEUSLER ALLOYS OF THE TYPE Coz_xCuxMnSn Philips J. Res. 42, 429-434, 1987 R 1165 THE MAGNETO-OPTICAL PROPERTIES OF HEUSLER ALLOYS OF THE TYPE Coz_xCuxMnSn by P.P.J. VAN ENGE~EN and K.H.J. BUSCHOW Philips Research Laboratories, 56 JA Eindhoven,

More information

FORMATION ENTHALPIES OF Gd-Pd AND Gd-Pt COMPOUNDS

FORMATION ENTHALPIES OF Gd-Pd AND Gd-Pt COMPOUNDS Philips J. Res. 41, 445-451,1986. R1140 FORMATION ENTHALPIES OF Gd-Pd AND Gd-Pt COMPOUNDS by C. COLINET*) and K. H. J. BUSCHOW **) *) Laboratoire de Thermodynamique et Physico-Chimie Métallurgique, ENSEEG,

More information

PHASE DIAGRAM AND MAGNETOCALORIC EFFECTS IN Ni 1-x Cr x MnGe 1.05

PHASE DIAGRAM AND MAGNETOCALORIC EFFECTS IN Ni 1-x Cr x MnGe 1.05 PHASE DIAGRAM AND MAGNETOCALORIC EFFECTS IN Ni 1-x Cr x MnGe 1.05 Anil Aryal 1, Abdiel Quetz 1, Sudip Pandey 1, Michael Eubank 1, Tapas Samanta 2, Igor Dubenko 1, Shane Stadler 2, and Naushad Ali 1 1 Department

More information

Structure of Crystalline Solids

Structure of Crystalline Solids Structure of Crystalline Solids Solids- Effect of IMF s on Phase Kinetic energy overcome by intermolecular forces C 60 molecule llotropes of Carbon Network-Covalent solid Molecular solid Does not flow

More information

Magnetism and Hall effect of the Heusler alloy Co 2 ZrSn synthesized by melt-spinning process

Magnetism and Hall effect of the Heusler alloy Co 2 ZrSn synthesized by melt-spinning process Journal of Magnetism and Magnetic Materials 299 (2006) 255 259 www.elsevier.com/locate/jmmm Magnetism and Hall effect of the Heusler alloy Co 2 ZrSn synthesized by melt-spinning process Wei Zhang a, Zhengnan

More information

arxiv: v1 [cond-mat.supr-con] 9 May 2013

arxiv: v1 [cond-mat.supr-con] 9 May 2013 Journal of the Physical Society of Japan LETTERS Superconductivity in Tetragonal LaPt 2 x Ge 2+x arxiv:135.224v1 [cond-mat.supr-con] 9 May 213 Satoki Maeda 1, Kazuaki Matano 1, Hiroki Sawaoka 1, Yoshihiko

More information

Magnetic Transition in the Kondo Lattice System CeRhSn 2. Z. Hossain 1, L.C. Gupta 2 and C. Geibel 1. Germany.

Magnetic Transition in the Kondo Lattice System CeRhSn 2. Z. Hossain 1, L.C. Gupta 2 and C. Geibel 1. Germany. Magnetic Transition in the Kondo Lattice System CeRhSn 2 Z. Hossain 1, L.C. Gupta 2 and C. Geibel 1 1 Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany. 2

More information

Structure and magnetic transition of LaFe 13 x Si x compounds

Structure and magnetic transition of LaFe 13 x Si x compounds INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (2003) 7385 7394 PII: S0953-8984(03)65192-1 Structure and magnetic transition of LaFe 13 x Si x compounds

More information

X-ray studies on the thermal expansion of copper indium disulphide

X-ray studies on the thermal expansion of copper indium disulphide l'ram~t)a, Vol. 16, No. 4, April 1981, pp. 281-286. ~ Primed in India. X-ray studies on the thermal expansion of copper indium disulphide P KISTAIAH, Y C VENUDHAR, K SATHYANARAYANA MURTHY, LEELA IYENGAR

More information

PREDICTION OF THE CRYSTAL STRUCTURE OF BYNARY AND TERNARY INORGANIC COMPOUNDS USING SYMMETRY RESTRICTIONS AND POWDER DIFFRACTION DATA

PREDICTION OF THE CRYSTAL STRUCTURE OF BYNARY AND TERNARY INORGANIC COMPOUNDS USING SYMMETRY RESTRICTIONS AND POWDER DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 116 PREDICTION OF THE CRYSTAL STRUCTURE OF BYNARY AND TERNARY INORGANIC COMPOUNDS USING SYMMETRY RESTRICTIONS

More information

state, spin-gap and a Böse-Einstein condensation under high fields. (CuBr)LaNb 2 O 7 shows a collinear antiferromagnetic order, (CuBr)Sr 2 Nb 3 O 10 h

state, spin-gap and a Böse-Einstein condensation under high fields. (CuBr)LaNb 2 O 7 shows a collinear antiferromagnetic order, (CuBr)Sr 2 Nb 3 O 10 h Cédric Tassel (Doctor Course student : 3 rd Kageyama) Department of Chemistry Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan. year)(supervised by Professor Hiroshi Proposal number:

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

X-Ray and Mössbauer Spectra and Electronic Structure of ScFe 2 Si 2 Compound

X-Ray and Mössbauer Spectra and Electronic Structure of ScFe 2 Si 2 Compound Journal of Materials Science and Engineering B 5 (1-2) (2015) 42-49 doi: 10.17265/2161-6221/2015.1-2.004 D DAVID PUBLISHING X-Ray and Mössbauer Spectra and Electronic Structure of ScFe 2 Si 2 Compound

More information

CRYSTAL STRUCTURE OF Κ3Νa(SeO4)2 AT 340 Κ T. FUKAMI*

CRYSTAL STRUCTURE OF Κ3Νa(SeO4)2 AT 340 Κ T. FUKAMI* Vol. 94 (1998) ACtA PHYSICA POLONICA A Νο. 5-6 CRYSTAL STRUCTURE OF Κ3Νa(SeO4)2 AT 340 Κ T. FUKAMI* Department of Physics and Earth Sciences, Faculty of Science University of the Ryukyus, Okinawa 903-0213,

More information

Magnetic Properties and Scaling Behavior in Perovskite like La 0.7 (Ba 1-x Pb x ) 0.3 CoO 3 System

Magnetic Properties and Scaling Behavior in Perovskite like La 0.7 (Ba 1-x Pb x ) 0.3 CoO 3 System Mat. Res. Soc. Symp. Proc. Vol. 674 21 Materials Research Society Magnetic Properties and Scaling Behavior in Perovskite like La.7 (Ba 1-x Pb x ).3 CoO 3 System Chiung-Hsiung Chen, Ting-Sheng Huang and

More information

Magnetic properties and magnetic entropy changes of La 1 x Pr x Fe 11.5 Si 1.5 compounds with 0 x 0.5

Magnetic properties and magnetic entropy changes of La 1 x Pr x Fe 11.5 Si 1.5 compounds with 0 x 0.5 Vol 16 No 12, December 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(12)/3848-05 Chinese Physics and IOP Publishing Ltd Magnetic properties and magnetic entropy changes of La 1 x Pr x Fe 11.5 Si 1.5 compounds

More information

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules.

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules. organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Methyl acetoacetate at 150 K Howard A. Shallard-Brown,* David J. Watkin and Andrew R. Cowley Chemical Crystallography

More information

Correlations among magnetic, magnetocaloric and magneto-transport properties in HoNiSi

Correlations among magnetic, magnetocaloric and magneto-transport properties in HoNiSi Correlations among magnetic, magnetocaloric and magneto-transport properties in HoNiSi Sachin Gupta and K. G. Suresh* Department of Physics, Indian Institute of Technology Bombay, Mumbai-400076, India

More information

New materials for high- efficiency spin-polarized. polarized electron source

New materials for high- efficiency spin-polarized. polarized electron source New materials for high- efficiency spin-polarized polarized electron source A. Janotti Metals and Ceramics Division, Oak Ridge National Laboratory, TN In Collaboration with S.-H. Wei, National Renewable

More information

The Phase Problem of X-ray Crystallography

The Phase Problem of X-ray Crystallography 163 The Phase Problem of X-ray Crystallography H.A. Hauptman Hauptman-Woodward Medical Research Institute, Inc. 73 High Street Buffalo, NY, USA hauptman@hwi.buffalo.edu ABSTRACT. The intensities of a sufficient

More information

arxiv: v1 [cond-mat.supr-con] 4 Jan 2014

arxiv: v1 [cond-mat.supr-con] 4 Jan 2014 Conventional Superconductivity properties of the ternary boron-nitride Nb 2 BN O. V. Cigarroa 1, S. T. Renosto 1, A. J. S. Machado 1 1 Escola de Engenharia de Lorena, Universidade de São Paulo, P.O. Box

More information

FLUORESCENCE OF Eu2+-ACTIVATED ALKALINE-EARTH ALUMINATES

FLUORESCENCE OF Eu2+-ACTIVATED ALKALINE-EARTH ALUMINATES R662 Philips Res. Repts 23, 201-206,1968 FLUORESCENCE OF Eu2+-ACTIVATED ALKALINE-EARTH ALUMINATES by G. BLASSE and A. BRIL Abstract The fluorescence of Eu 2 + -activated aluminates with the general formulae

More information

Technology, 100 Pingleyuan, Chaoyang District, Beijing , China

Technology, 100 Pingleyuan, Chaoyang District, Beijing , China Temperature, magnetic field, and pressure dependence of the crystal and magnetic structures of the magnetocaloric compound Mn 1.1 Fe 0.9 (P 0.8 Ge 0.2 ) D. M. Liu 1, Q. Z. Huang 2, M. Yue 1, J. W. Lynn

More information

Supplementary Figure 1: Crystal structure of CRCA viewed along the crystallographic b -direction.

Supplementary Figure 1: Crystal structure of CRCA viewed along the crystallographic b -direction. Supplementary Figure 1: Crystal structure of CRCA viewed along the crystallographic b-direction. Open arrows compare the direction and relative amplitudes of the (total) theoretical polarization vector

More information

STRUCTURES OF MERCURY MERCAPTIDES

STRUCTURES OF MERCURY MERCAPTIDES STRUCTURES OF MERCURY MERCAPTIDES PART 11. X-RAY STRUCTURAL ANALYSIS OF MERCURY ETHYLMERCAPTIDE D. C. BRADLEY~ AND N. R. KUNCHUR~ Department of Chemistry, University of Western Ontario, London, Ontario

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 18 Nov 2005

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 18 Nov 2005 Investigation of Co 2 FeSi, Wurmehl et al Investigation of Co 2 FeSi: The Heusler compound with Highest Curie Temperature and Magnetic Moment. arxiv:cond-mat/0511462v1 [cond-mat.mtrl-sci] 18 Nov 2005 Sabine

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

Phys 460 Describing and Classifying Crystal Lattices

Phys 460 Describing and Classifying Crystal Lattices Phys 460 Describing and Classifying Crystal Lattices What is a material? ^ crystalline Regular lattice of atoms Each atom has a positively charged nucleus surrounded by negative electrons Electrons are

More information

Novel charge density wave transition in crystals of R 5 Ir 4 Si 10

Novel charge density wave transition in crystals of R 5 Ir 4 Si 10 PRAMANA c Indian Academy of Sciences Vol. 58, Nos 5 & 6 journal of May & June 2002 physics pp. 827 837 Novel charge density wave transition in crystals of R 5 Ir 4 Si 10 S RAMAKRISHNAN Tata Institute of

More information

Neutron Powder Diffraction Theory and Instrumentation

Neutron Powder Diffraction Theory and Instrumentation NTC, Taiwen Aug. 31, 212 Neutron Powder Diffraction Theory and Instrumentation Qingzhen Huang (qing.huang@nist.gov) NIST Center for Neutron Research (www.ncnr.nist.gov) Definitions E: energy; k: wave vector;

More information

1 Review of semiconductor materials and physics

1 Review of semiconductor materials and physics Part One Devices 1 Review of semiconductor materials and physics 1.1 Executive summary Semiconductor devices are fabricated using specific materials that offer the desired physical properties. There are

More information

N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, Warszawa, Poland

N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, Warszawa, Poland Ab initio studies of Co 2 FeAl 1-x Si x Heusler alloys N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa, Poland Abstract We present results

More information

Structural and thermal properties of Fe 2 (Zr,Nb) system in C15, C14 and C36 Laves phases: First-Principles study

Structural and thermal properties of Fe 2 (Zr,Nb) system in C15, C14 and C36 Laves phases: First-Principles study Structural and thermal properties of Fe 2 (Zr,Nb) system in, and Laves phases: First-Principles study L. RABAHI 1, D. BRADAI 2 and A. KELLOU 3 1 Centre National de Recherche en Soudage et Contrôle, Route

More information

Discovery of spin-vortex-crystal magnetic order in Ni- and Co- doped CaKFe 4 As 4

Discovery of spin-vortex-crystal magnetic order in Ni- and Co- doped CaKFe 4 As 4 Discovery of spin-vortex-crystal magnetic order in Ni- and Co- doped CaKFe 4 As 4 Paul C. Canfield Department of Physics Ames Laboratory Iowa State University Physics 590 B Fall 2018 Ames Lab and Iowa

More information

Incommensurate Magnetic Order in PrNiAl 4

Incommensurate Magnetic Order in PrNiAl 4 Incommensurate Magnetic Order in PrNiAl 4 R. White a, W.D. Hutchison a, M. Avdeev b and K. Nishimura c a School of Physical, Environmental and Mathematical Sciences, The University of New South Wales,

More information

INVESTIGATION OF COMPRESSION AND THERMAL EXPANSION OF a-mnte USING A CUBIC-ANVIL X-RAY DIFFRACTION PRESS

INVESTIGATION OF COMPRESSION AND THERMAL EXPANSION OF a-mnte USING A CUBIC-ANVIL X-RAY DIFFRACTION PRESS INVESTIGATION OF COMPRESSION AND THERMAL EXPANSION OF a-mnte USING A CUBIC-ANVIL X-RAY DIFFRACTION PRESS W.Paszkowicz, E.Dynowska and T.Peun* Institute of Physics, Polish Academy of Sciences, al. Lotnikow

More information

Helpful resources for all X ray lectures Crystallization http://www.hamptonresearch.com under tech support: crystal growth 101 literature Spacegroup tables http://img.chem.ucl.ac.uk/sgp/mainmenu.htm Crystallography

More information

熊本大学学術リポジトリ. Kumamoto University Repositor

熊本大学学術リポジトリ. Kumamoto University Repositor 熊本大学学術リポジトリ Kumamoto University Repositor Title Structural Phase Transition in (NMe Author(s) Yagi, Kenichiro; Terauchi, Hikaru; Noritaka; Ueda, Kazumasa; Sugimoto, CitationJournal of the Physical Society

More information

Half-metallicity in Rhodium doped Chromium Phosphide: An ab-initio study

Half-metallicity in Rhodium doped Chromium Phosphide: An ab-initio study Half-metallicity in Rhodium doped Chromium Phosphide: An ab-initio study B. Amutha 1,*, R. Velavan 1 1 Department of Physics, Bharath Institute of Higher Education and Research (BIHER), Bharath University,

More information

Magnetic properties and magnetocaloric effect in layered NdMn1.9Ti0.1Si2

Magnetic properties and magnetocaloric effect in layered NdMn1.9Ti0.1Si2 University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 214 Magnetic properties and magnetocaloric effect in layered

More information

Coexistence of Ferromagnetic and Glassy States in Mechanically Milled GdAl 2

Coexistence of Ferromagnetic and Glassy States in Mechanically Milled GdAl 2 Coexistence of Ferromagnetic and Glassy States in Mechanically Milled GdAl 2 C. Stark and P.M. Shand Physics Department University of Northern Iowa Cedar Falls, Iowa 50614-0150 USA T.M. Pekarek Department

More information

Bonding and Elastic Properties in Ti 2 AC (A = Ga or Tl)

Bonding and Elastic Properties in Ti 2 AC (A = Ga or Tl) Printed in the Republic of Korea http://dx.doi.org/10.5012/jkcs.2013.57.1.35 Bonding and Elastic Properties in Ti 2 AC (A = Ga or Tl) Dae-Bok Kang* Department of Chemistry, Kyungsung University, Busan

More information

X-RAY DIFFUSE SCATTERING. Prof. R.J. Birgeneau Dr. A.R. Kortan Dr. P.W. Stephens*

X-RAY DIFFUSE SCATTERING. Prof. R.J. Birgeneau Dr. A.R. Kortan Dr. P.W. Stephens* VII. X-RAY DIFFUSE SCATTERING Academic and Research Staff Prof. R.J. Birgeneau Dr. A.R. Kortan Dr. P.W. Stephens* Graduate Students G. Aeppli P.A. Heiney S.G.J. Mochrie J.A. Collett M.C. Kaplan B.M. Ocko

More information

wavenumbers (cm -1 )

wavenumbers (cm -1 ) Supporting Information for Facile Synthesis of Highly Crystalline, Covalently Linked Porous Boronate Network R. William Tilford, William R. Gemmill, Hans-Conrad zur Loye and John J. Lavigne* FTIR Analysis

More information

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 96 THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS

More information

Ferromagnetic and spin-glass properties of single-crystalline U 2 NiSi 3

Ferromagnetic and spin-glass properties of single-crystalline U 2 NiSi 3 Materials Science-Poland, Vol. 25, No. 4, 2007 Ferromagnetic and spin-glass properties of single-crystalline U 2 NiSi 3 * M. SZLAWSKA **, A. PIKUL, D. KACZOROWSKI Institute of Low Temperature and Structure

More information

High-resolution atomic distribution functions of disordered materials by high-energy x-ray diffraction

High-resolution atomic distribution functions of disordered materials by high-energy x-ray diffraction High-resolution atomic distribution functions of disordered materials by high-energy x-ray diffraction V. Petkov a,*, S. J.L. Billinge a, S. D. Shastri b and B. Himmel c a Department of Physics and Astronomy

More information

NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System

NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System Mater. Res. Soc. Symp. Proc. Vol. 837 2005 Materials Research Society N3.6.1 NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System R. C. Bowman, Jr. 1, S.-J. Hwang 2, C. C. Ahn

More information

Suggested Reading. Pages in Engler and Randle

Suggested Reading. Pages in Engler and Randle The Structure Factor Suggested Reading Pages 303-312312 in DeGraef & McHenry Pages 59-61 in Engler and Randle 1 Structure Factor (F ) N i1 1 2 i( hu kv lw ) F fe i i j i Describes how atomic arrangement

More information

Magnetization reversal and ferrimagnetism in Pr 1 x Nd x MnO 3

Magnetization reversal and ferrimagnetism in Pr 1 x Nd x MnO 3 Bull. Mater. Sci., Vol. 37, No. 4, June 2014, pp. 809 813. Indian Academy of Sciences. Magnetization reversal and ferrimagnetism in Pr 1 x Nd x MnO 3 SANJAY BISWAS, MOMIN HOSSAIN KHAN and SUDIPTA PAL*

More information

Doping-induced valence change in Yb 5 Ge 4 x (Sb, Ga) x : (x 1)

Doping-induced valence change in Yb 5 Ge 4 x (Sb, Ga) x : (x 1) Hyperfine Interact (2012) 208:59 63 DOI 10.1007/s10751-011-0415-4 Doping-induced valence change in Yb 5 Ge 4 x (Sb, Ga) x : (x 1) D. H. Ryan N. R. Lee-Hone J. M. Cadogan Published online: 26 October 2011

More information

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution Intensity (a.u.) Y Obs Y Cal Y Obs - Y Cal Bragg position Cc 20 40 60 80 100 2 ( º ) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution X-ray diffraction

More information

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 2-[(Dimethylamino)(phenyl)methyl]benzoic acid Yvette L. Dann, Andrew R. Cowley and Harry L. Anderson* University

More information

The crystal structure of BiOCI

The crystal structure of BiOCI Zeitschrift fur Kristallographie 205, 35-40 (1993) COby R. Oldenbourg Verlag, Munchen 1993-0044-2968/93 $ 3.00+0.00 The crystal structure of BiO K. G. Keramidas, G. P. Voutsas, and P. 1. Rentzeperis Applied

More information

organic papers Malonamide: an orthorhombic polymorph Comment

organic papers Malonamide: an orthorhombic polymorph Comment organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Malonamide: an orthorhombic polymorph Gary S. Nichol and William Clegg* School of Natural Sciences (Chemistry), Bedson

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

Reduction of hysteresis losses in the magnetic refrigerant La0.8Ce0.2Fe11.4Si1.6 by the addition of boron

Reduction of hysteresis losses in the magnetic refrigerant La0.8Ce0.2Fe11.4Si1.6 by the addition of boron University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2011 Reduction of hysteresis losses in the magnetic refrigerant La0.8Ce0.2Fe11.4Si1.6

More information

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Arturas Vailionis 1, Wolter Siemons 1,2, Gertjan Koster 1 1 Geballe Laboratory for

More information

OBSERVATION OF Se 77 SUPERHYPERFINE STRUCTURE ON THE ELECTRON-PARAMAGNETIC RESONANCE OF Fe3+ (3d S ) IN CUBIC ZnSe

OBSERVATION OF Se 77 SUPERHYPERFINE STRUCTURE ON THE ELECTRON-PARAMAGNETIC RESONANCE OF Fe3+ (3d S ) IN CUBIC ZnSe R540 Philips Res. Repts 20, 206-212, 1965 OBSERVATION OF Se 77 SUPERHYPERFINE STRUCTURE ON THE ELECTRON-PARAMAGNETIC RESONANCE OF Fe3+ (3d S ) IN CUBIC ZnSe by J. DIELEMAN Abstract The electron-paramagnetic-resonance

More information

Observation of giant magnetocaloric effect in HoCoSi

Observation of giant magnetocaloric effect in HoCoSi Materials Letters 113, 195 (2013) Observation of giant magnetocaloric effect in ocosi Sachin Gupta and K.G. Suresh * Department of Physics, Indian Institute of Technology Bombay, Mumbai-400076, India Abstract

More information

Local Electronic Structures and Chemical Bonds in Zr-Based Metallic Glasses

Local Electronic Structures and Chemical Bonds in Zr-Based Metallic Glasses Materials Transactions, Vol. 45, No. 4 (2004) pp. 1172 to 1176 Special Issue on Bulk Amorphous, Nano-Crystalline and Nano-Quasicrystalline Alloys-V #2004 The Japan Institute of Metals Local Electronic

More information

Structure and Curie temperature of Y 2 Fe 17 x Cr x

Structure and Curie temperature of Y 2 Fe 17 x Cr x Vol. 46 No. 4 SCIENCE IN CHINA (Series G) August 2003 Structure and Curie temperature of Y 2 Fe 17 x Cr x HAO Shiqiang ( ) 1 & CHEN Nanxian ( ) 1,2 1. Department of Physics, Tsinghua University, Beijing

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Dichloridotris(trimethylphosphine)- nickel(ii) Ruixia Cao, Qibao Wang and Hongjian Sun* School of Chemistry

More information

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland Charge Transfer Pathways in Three Isomers of Naphthalene-Bridged Organic Mixed Valence Compounds Hauke C. Schmidt, Mariana Spulber, Markus Neuburger, Cornelia G. Palivan, Markus Meuwly,* and Oliver S.

More information

Hardness Prediction and First Principle Study of Re-123(Re = Y, Eu, Pr, Gd) Superconductors

Hardness Prediction and First Principle Study of Re-123(Re = Y, Eu, Pr, Gd) Superconductors 316 Bull. Korean Chem. Soc. 29, Vol. 3, No. 12 Weiwei Liu et al. DOI 1.512/bkcs.29.3.12.316 Hardness Prediction and First Principle Study of Re-123(Re = Y, Eu, Pr, Gd Superconductors Weiwei Liu,, Y. P.

More information

BF 3 -doped polyaniline: A novel conducting polymer

BF 3 -doped polyaniline: A novel conducting polymer PRAMANA c Indian Academy of Sciences Vol. 67, No. 1 journal of July 2006 physics pp. 135 139 BF 3 -doped polyaniline: A novel conducting polymer DEBANGSHU CHAUDHURI and D D SARMA Solid State and Structural

More information

Structure analysis of Zn-Mg-Ho icosahedral quasicrystal by modified Rietveld method using ellipsoid and sphere windows

Structure analysis of Zn-Mg-Ho icosahedral quasicrystal by modified Rietveld method using ellipsoid and sphere windows Structure analysis of Zn-Mg-Ho icosahedral quasicrystal by modified Rietveld method using ellipsoid and sphere windows Tsutomu Ishimasa a, *, Kei Oyamada a, Yasuomi Arichika b, Eiji Nishibori c, Masaki

More information

Department' of Inorganic Chemistry, Technical University, Budapest Received Apdl 15, 1972 Presented by dr. J. NAGY. Introduction

Department' of Inorganic Chemistry, Technical University, Budapest Received Apdl 15, 1972 Presented by dr. J. NAGY. Introduction CRYSTAL STRUCTURE OF TETRAPHENYLSILANE, C 24 H 20 Si By L. P_'\RKANYI and K. SASV_'\RI* Department' of Inorganic Chemistry, Technical University, Budapest Received Apdl 15, 1972 Presented by dr. J. NAGY

More information

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors:

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors: Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite

More information

Ichiro Takeuchi University of Maryland

Ichiro Takeuchi University of Maryland High-throughput Experimentation and Machine Learning for Materials Discovery 55 Å 45 Å 35Å Ferroelectric library t s (Å) 25 Å 20 Å 15 Å 10 Å 5 Å No impurity Ti (3 Å) Ti (6 Å) Ti (9 Å) Cu (3 Å) Cu (6Å)

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation.

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation. Symmetry a. Two-fold rotation = 30 o /2 rotation a. Two-fold rotation = 30 o /2 rotation Operation Motif = the symbol for a two-fold rotation EESC 2100: Mineralogy 1 a. Two-fold rotation = 30 o /2 rotation

More information

Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study

Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study J. Pure Appl. & Ind. Phys. Vol.2 (3), 278-285 (2012) Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study I. B. SHAMEEM BANU Department of Physics, B.S. Abdur Rahman

More information

Effect of randomness on anomalous Hall coefficient in antiferromagnet U 2 PdGa 3

Effect of randomness on anomalous Hall coefficient in antiferromagnet U 2 PdGa 3 Materials Science-Poland, Vol. 26, No. 4, 2008 Effect of randomness on anomalous Hall coefficient in antiferromagnet U 2 PdGa 3 V. H. TRAN * Institute of Low Temperature and Structure Research, Polish

More information

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 261 RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES G. Kimmel

More information

Mal. Res. Soc. Symp. Proc. Vol Materials Research Society

Mal. Res. Soc. Symp. Proc. Vol Materials Research Society 91 MOLECULAR-DYNAMICS SIMULATION OF THIN-FILM GROWTH MATTHIAS SCHNEIDER,* IVAN K. SCHULLER,* AND A. RAHMAN Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 Supercomputer Institute,

More information

electronic reprint 5,12-Bis(4-tert-butylphenyl)-6,11-diphenylnaphthacene

electronic reprint 5,12-Bis(4-tert-butylphenyl)-6,11-diphenylnaphthacene Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson 5,12-Bis(4-tert-butylphenyl)-6,11-diphenylnaphthacene Götz Schuck, Simon Haas, Arno F. Stassen,

More information

Uranium Intermetallics in High Magnetic Fields: Neutron Diffraction Experiments

Uranium Intermetallics in High Magnetic Fields: Neutron Diffraction Experiments Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 1 Proceedings of the CSMAG 07 Conference, Košice, July 9 12, 2007 Uranium Intermetallics in High Magnetic Fields: Neutron Diffraction Experiments K. Prokeš Hahn

More information

The crystal structure of pierrotite, TI2(Sb, As). OS16

The crystal structure of pierrotite, TI2(Sb, As). OS16 Zeitschrift für KristalIographie 165, 209-215 (1983) g by R. Oldenbourg Verlag, München 1983 The crystal structure of pierrotite, TI2(Sb, As). OS16 P. Engel, M. Gostojié Laboratorium für KristalIographie,

More information

Introduction to Twinning

Introduction to Twinning S.Parsons@ed.ac.uk Introduction to Twinning Simon Parsons School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK. Introduction Although twinning has

More information

Tables of crystallographic properties of magnetic space groups

Tables of crystallographic properties of magnetic space groups Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673 Editor: D. Schwarzenbach Tables of crystallographic properties of magnetic space groups D. B. Litvin Acta Cryst. (2008). A64,

More information

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Information for Iron Complexes of a Bidentate Picolyl HC Ligand: Synthesis,

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012267 TITLE: Exchange Coupling and Spin-Flip Transition of CoFe204/alpha-Fe2O3 Bilayered Films DISTRIBUTION: Approved for public

More information

High T C copper oxide superconductors and CMR:

High T C copper oxide superconductors and CMR: High T C copper oxide superconductors and CMR: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite slabs with rock salt slabs. First

More information

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds Supporting Information Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds Reinald Fischer, Jens Langer, Sven Krieck, Helmar Görls, Matthias Westerhausen*

More information

The effect of light impurities on the binding energy of hydrogen in magnesium metal and magnesium hydride

The effect of light impurities on the binding energy of hydrogen in magnesium metal and magnesium hydride The effect of light impurities on the binding energy of hydrogen in magnesium metal and magnesium hydride Finnbogi Óskarsson Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland

More information

Supporting information. Contents

Supporting information. Contents Qi Jiang, Chunhua Hu and Michael D. Ward* Contribution from the Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003-6688 Supporting

More information

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and

More information

TILES, TILES, TILES, TILES, TILES, TILES

TILES, TILES, TILES, TILES, TILES, TILES 3.012 Fund of Mat Sci: Structure Lecture 15 TILES, TILES, TILES, TILES, TILES, TILES Photo courtesy of Chris Applegate. Homework for Fri Nov 4 Study: Allen and Thomas from 3.1.1 to 3.1.4 and 3.2.1, 3.2.4

More information

Experimental and theoretical investigations on magnetic and related properties of ErRuSi

Experimental and theoretical investigations on magnetic and related properties of ErRuSi Experimental and theoretical investigations on magnetic and related properties of ErRuSi Sachin Gupta, 1 A. Das, 2 K. G. Suresh, 1,* A. Hoser 3, Yu.V. Knyazev, 4 Yu. I. Kuz'min, 4 and A. V. Lukoyanov 4,5

More information

Geometric formula for prism deflection

Geometric formula for prism deflection PRAMANA c Indian Academy of Sciences Vol. 63, No. 2 journal of August 2004 physics pp. 381 385 Geometric formula for prism deflection APOORVA G WAGH and VEER CHAND RAKHECHA Solid State Physics Division,

More information

FTIR absorption study of hydroxyl ions in KHo(WO 4 ) 2 single crystals

FTIR absorption study of hydroxyl ions in KHo(WO 4 ) 2 single crystals Cryst. Res. Technol. 40, No. 4/5, 444 448 (2005) / DOI 10.1002/crat.200410364 FTIR absorption study of hydroxyl ions in KHo(WO 4 ) 2 single crystals L. Kovács* 1, M.T. Borowiec 2, A. Majchrowski 3, A.

More information

Supporting Information

Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany On the polymorphism of aspirin Andrew D. Bond, Roland Boese and Gautam R. Desiraju S1. Comparison of the form I and PZ structures S2. Transforming the unit cells

More information

Anomalous magnetocaloric effect and magnetoresistance in Ho Ni,Fe 2 compounds

Anomalous magnetocaloric effect and magnetoresistance in Ho Ni,Fe 2 compounds Anomalous magnetocaloric effect and magnetoresistance in Ho Ni,Fe 2 compounds Niraj K. Singh, S. Agarwal, and K. G. Suresh* Department of Physics, Indian Institute of Technology Bombay, India-400076 R.

More information

Structural and magnetic characterization of the new GdMn 1-x. O 3 perovskite material

Structural and magnetic characterization of the new GdMn 1-x. O 3 perovskite material Journal of Physics: Conference Series PAPER OPEN ACCESS Structural and magnetic characterization of the new GdMn 1-x Fe x O 3 perovskite material To cite this article: J A Cardona Vasquez et al 2016 J.

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Structural Characterization of Substituted Calcium Titanate Compounds Ca 1-X La X Ti 1-x Fe x O 3

Structural Characterization of Substituted Calcium Titanate Compounds Ca 1-X La X Ti 1-x Fe x O 3 Egypt. J. Solids, Vol. (27), No. (2), (2004) 213 Structural Characterization of Substituted Calcium Titanate Compounds Ca 1-X La X Ti 1-x Fe x O 3 A.M. Moustafa 1, I.S Ahmed Farag 1 and L.M. Salah 2 1

More information

SYNTHESIS AND CHARACTERIZATION OF CARBON-COATED Ni 1 x Cu x FERROMAGNETIC NANOPARTICLES FOR SELF-REGULATING MAGNETIC HYPERTHERMIA

SYNTHESIS AND CHARACTERIZATION OF CARBON-COATED Ni 1 x Cu x FERROMAGNETIC NANOPARTICLES FOR SELF-REGULATING MAGNETIC HYPERTHERMIA Armenian Journal of Physics, 2013, vol. 6, issue 1, pp. 61-65 SYNTHESIS AND HARATERIZATION OF ARBON-OATED Ni 1 x u x FERROMAGNETI NANOPARTILES FOR SELF-REGULATING MAGNETI HYPERTHERMIA A. S. MANUKYAN 1*,

More information

First Principles Calculation of Defect and Magnetic Structures in FeCo

First Principles Calculation of Defect and Magnetic Structures in FeCo Materials Transactions, Vol. 47, No. 11 (26) pp. 2646 to 26 Special Issue on Advances in Computational Materials Science and Engineering IV #26 The Japan Institute of Metals First Principles Calculation

More information

Structural Study of [Nd 0.5 (Ca 0.25 Ba 0.25 ) MnO 3 ] and [Nd 0.5 (Ca 0.25 Sr 0.25 )MnO 3 ] Perovskites at Room Temperature

Structural Study of [Nd 0.5 (Ca 0.25 Ba 0.25 ) MnO 3 ] and [Nd 0.5 (Ca 0.25 Sr 0.25 )MnO 3 ] Perovskites at Room Temperature Egypt. J. Sol., Vol. (24), No. (1), (2001) 33 Structural Study of [Nd 0.5 (Ca 0.25 Ba 0.25 ) MnO 3 ] and [Nd 0.5 (Ca 0.25 Sr 0.25 )MnO 3 ] Perovskites at Room Temperature F. F. Hanna Faculty of Petroleum

More information