Start with the equation of motion for a linear multi-degree of freedom system with base ground excitation:

Size: px
Start display at page:

Download "Start with the equation of motion for a linear multi-degree of freedom system with base ground excitation:"

Transcription

1 SE 80 Earthquake Enneern November 3, 00 STEP-BY-STEP PROCEDURE FOR SETTING UP A SPREADSHEET FOR USING NEWMARK S METHOD AND MODAL ANALYSIS TO SOLVE FOR THE RESPONSE OF A MULTI-DEGREE OF FREEDOM (MDOF) SYSTEM Start wth the equaton of moton for a lnear mult-deree of freedom system wth base round exctaton: mu& + cu& + ku = m& u& Usn Modal Analyss, we can rewrte the ornal coupled matrx equaton of moton as a set of un-coupled equatons. L & q + ζω q& + ω q & = u, =,,, NDOF M wth ntal condtons of d (t = 0) = d and v o (t = 0) = v o Note that total acceleraton or absolute acceleraton wll be q& & = && q + & u We can solve each one separately (as a SDOF system), and compute hstores of q and ther tme dervatves. To compute the system response, plu the q vector back nto u = Φq and et the u vector (and the same for the tme dervatves to et velocty and acceleraton). The beauty here s that there s no matrx operatons nvolved, snce the matrx equaton of moton has become a set of un-coupled equaton, each ncludn only one eneralzed coordnate q n. In the spreadsheet, we wll solve each mode n a separate worksheet. Step - Defne System Propertes and Intal Condtons for Frst Mode (A) Ben by settn up the cells for the Mass, Stffness, and Dampn of the SDOF System (F. ). These values are known. abs (B) Set up the cells for the modal partcpaton factor M These values must be determned n advance usn Modal Analyss. L and mode shape φ (F. ). (C) Calculate the Natural Frequency of the SDOF system usn the equaton Mchael Fraser

2 ω = K M (Equaton ) Note: If the system dampn s ven n terms of the Modal Dampn Rato ( ζ ) then the Dampn ( c ) can be calculated usn the equaton: C = ζ ω M (Equaton ) (D) Set up the cells for the Newmark Coeffcents α & β (F. ), whch wll allow for performn a) the Averae Acceleraton Method, use b) the Lnear Acceleraton Method, use α = and α = and β =. 4 β =. 6 (E) Set up cells (F. ) for the ntal dsplacement and velocty (d o and v o respectvely) Mchael Fraser

3 Equaton Equaton Fure : Spreadsheet After Completn Step Mchael Fraser 3

4 Step Set Up Columns for Solvn The Equaton of Moton Usn Newmark s Method Base Exctaton Appled Force Dvded By Mass Relatve Acceleraton Relatve Velocty Relatve Dsplacement Fure : Spreadsheet After Completn Step Place a cell (F. ) for the tme ncrement ( t). Place columns (F. ) for the tme, base exctaton, appled force dvded by mass, relatve acceleraton, relatve velocty, and relatve dsplacement. Mchael Fraser 4

5 Step 3 Enter the Tme t & Appled Force f(t) nto the Spreadsheet t + = t t (Equaton 3) (F. 3) + For the earthquake problem (acceleraton appled to base of the structure), the appled force dvded by the mass s calculated usn: f (t) M L && = u M (Equaton 4) (F. 3) d where, & u& s the appled base acceleraton at step. (Typcally ths s the base exctaton tme hstory) Check the unts of the nput moton fle. They must be compatble wth the unts of the mass, stffness, and dampn! Equaton 3 Equaton 4 Fure 3: Spreadsheet After Completn Step 3 Mchael Fraser 5

6 Step 4 Compute Intal Values of the Relatve Acceleraton, Relatve Velocty, Relatve Dsplacement, and Absolute Acceleraton (A) The Intal Relatve Dsplacement and Relatve Velocty are known from the ntal condtons (F. 4). q(t = 0) = (Equaton 5) d o q &(t = 0) = (Equaton 6) v o (B) The Intal Relatve Acceleraton (F. 4) s calculated usn L M & q (t = 0) = && u ζωv o ω d o (Equaton 7) Equaton 6 Equaton 7 Equaton 5 Fure 4: Spreadsheet After Completn Step 4 Mchael Fraser 6

7 (A) Step 5 Compute Incremental Values of the Relatve Acceleraton, Relatve Velocty, Relatve Dsplacement, and Absolute Acceleraton At Each Tme Step (F. 5) L t && u C q q K t ( β) q tq q M && + & && + & + + q & + = (Equaton 8) m * ( α) + && q tα q& = + q & && + q t + (Equaton 9) t q = & q ( β) + && q t β + q& + + t + q (Equaton 0) Where, the effectve mass, m* = M + C t α + K t β Equaton 9 Equaton 0 Equaton 8 Fure 5: Spreadsheet wth values for the Relatve Acceleraton, Relatve Velocty, and Relatve Dsplacement at Tme Step (B) Then, hhlht columns I, J, & K and rows 4 throuh to the last tme step (n ths example 4003) and Fll Down (Ctrl+D). See Fures 6 and 7. Mchael Fraser 7

8 Fure 6: Hhlhted Cells Mchael Fraser 8

9 Fure 7: Spreadsheet After Flln Down Columns I throuh K Mchael Fraser 9

10 Step 6 Create Addtonal Worksheet for Second Mode Make a copy of the st Mode worksheet by rht clckn on the st Mode tab and selectn Move or Copy (F. 8) Fure 8: Creatn a Copy of st Mode Worksheet Then check the box for Create a copy and clck on OK button (F. 9) Mchael Fraser 0

11 Fure 9: Creatn a Copy of st Mode Worksheet Rename ths worksheet by rht clckn on the st Mode () tab and selectn Rename. Rename ths worksheet nd Mode (F. 0) Enter the approprate values for M, K, C, L, φ, d o, and v o (F. 0). M Mchael Fraser

12 Fure 0: Worksheet for Second Mode Step 7 Repeat Step 6 for Addtonal Modes Step 8 Determne the Response at Each of the Floors Determne the Response of the frst floor usn the equatons: u = Φq u & = Φq& u & = Φq& For example for a DOF structure, the frst floor response s u u & & u u φ q + φq φ q& + φq& φ && q + φ & q = (Equaton ) = (Equaton ) = (Equaton 3) and the second floor response s φ q + φ q = (Equaton 4) Mchael Fraser

13 u & & u = & & (Equaton 5) = (Equaton 6) φ q + φ q φ && q + φ & q T The frst floor absolute acceleraton s & u = && u + & (Equaton 7) u T The second floor absolute acceleraton s u & = && u + & (Equaton 8) u Mchael Fraser 3

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project SE 8 Fnal Project Story Shear Frame u m Gven: u m L L m L L EI ω ω Solve for m Story Bendng Beam u u m L m L Gven: m L L EI ω ω Solve for m 3 3 Story Shear Frame u 3 m 3 Gven: L 3 m m L L L 3 EI ω ω ω

More information

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2.

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2. SE 8 Fnal Project Story Sear Frame Gven: EI ω ω Solve for Story Bendng Beam Gven: EI ω ω 3 Story Sear Frame Gven: L 3 EI ω ω ω 3 3 m 3 L 3 Solve for Solve for m 3 3 4 3 Story Bendng Beam Part : Determnng

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

MEEM 3700 Mechanical Vibrations

MEEM 3700 Mechanical Vibrations MEEM 700 Mechancal Vbratons Mohan D. Rao Chuck Van Karsen Mechancal Engneerng-Engneerng Mechancs Mchgan echnologcal Unversty Copyrght 00 Lecture & MEEM 700 Multple Degree of Freedom Systems (ext: S.S.

More information

Dynamics 4600:203 Homework 08 Due: March 28, Solution: We identify the displacements of the blocks A and B with the coordinates x and y,

Dynamics 4600:203 Homework 08 Due: March 28, Solution: We identify the displacements of the blocks A and B with the coordinates x and y, Dynamcs 46:23 Homework 8 Due: March 28, 28 Name: Please denote your answers clearly,.e., box n, star, etc., and wrte neatly. There are no ponts for small, messy, unreadable work... please use lots of paper.

More information

AMSC 660 Scientific Computing I. Term Project The Assignment

AMSC 660 Scientific Computing I. Term Project The Assignment AS 66 Scentfc omputn I Prof. O Leary Term Project The Assnment odeln of a Seat Suspenson System Greory J. Hemen Dec., 6 ure depcts a lumped parameter system that may be used to model the response of a

More information

where v means the change in velocity, and t is the

where v means the change in velocity, and t is the 1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more

More information

Solution of Equilibrium Equation in Dynamic Analysis. Mode Superposition. Dominik Hauswirth Method of Finite Elements II Page 1

Solution of Equilibrium Equation in Dynamic Analysis. Mode Superposition. Dominik Hauswirth Method of Finite Elements II Page 1 Soluton of Equlbrum Equaton n Dynamc Analyss Mode Superposton Domnk Hauswrth..7 Method of Fnte Elements II Page Contents. Mode Superposton: Idea and Equatons. Example 9.7 3. Modes 4. Include Dampng 5.

More information

Identification of Instantaneous Modal Parameters of A Nonlinear Structure Via Amplitude-Dependent ARX Model

Identification of Instantaneous Modal Parameters of A Nonlinear Structure Via Amplitude-Dependent ARX Model Identfcaton of Instantaneous Modal Parameters of A Nonlnear Structure Va Ampltude-Dependent ARX Model We Chh Su(NCHC), Chung Shann Huang(NCU), Chng Yu Lu(NCU) Outlne INRODUCION MEHODOLOGY NUMERICAL VERIFICAION

More information

Lesson 5: Kinematics and Dynamics of Particles

Lesson 5: Kinematics and Dynamics of Particles Lesson 5: Knematcs and Dynamcs of Partcles hs set of notes descrbes the basc methodology for formulatng the knematc and knetc equatons for multbody dynamcs. In order to concentrate on the methodology and

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Analytical Chemistry Calibration Curve Handout

Analytical Chemistry Calibration Curve Handout I. Quck-and Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Handout # 6 (MEEN 617) Numerical Integration to Find Time Response of SDOF mechanical system. and write EOM (1) as two first-order Eqs.

Handout # 6 (MEEN 617) Numerical Integration to Find Time Response of SDOF mechanical system. and write EOM (1) as two first-order Eqs. Handout # 6 (MEEN 67) Numercal Integraton to Fnd Tme Response of SDOF mechancal system State Space Method The EOM for a lnear system s M X + DX + K X = F() t () t = X = X X = X = V wth ntal condtons, at

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

Lecture 8 Modal Analysis

Lecture 8 Modal Analysis Lecture 8 Modal Analyss 16.0 Release Introducton to ANSYS Mechancal 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overvew In ths chapter free vbraton as well as pre-stressed vbraton analyses n Mechancal

More information

SPANC -- SPlitpole ANalysis Code User Manual

SPANC -- SPlitpole ANalysis Code User Manual Functonal Descrpton of Code SPANC -- SPltpole ANalyss Code User Manual Author: Dale Vsser Date: 14 January 00 Spanc s a code created by Dale Vsser for easer calbratons of poston spectra from magnetc spectrometer

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

THREE-DIMENSION DYNAMIC SOIL-STRUCTURE INTERACTION ANALYSIS USING THE SUBSTRUCTURE METHOD IN THE TIME DOMAIN

THREE-DIMENSION DYNAMIC SOIL-STRUCTURE INTERACTION ANALYSIS USING THE SUBSTRUCTURE METHOD IN THE TIME DOMAIN The 4 th October 2-7 2008 Bejng Chna THREE-DIENSION DYNAIC SOIL-STRUCTURE INTERACTION ANALYSIS USING THE SUBSTRUCTURE ETHOD IN THE TIE DOAIN X..Yang Y.Chen and B.P.Yang 2 Assocate Professor aculty of Constructon

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

Assessment of Site Amplification Effect from Input Energy Spectra of Strong Ground Motion

Assessment of Site Amplification Effect from Input Energy Spectra of Strong Ground Motion Assessment of Ste Amplfcaton Effect from Input Energy Spectra of Strong Ground Moton M.S. Gong & L.L Xe Key Laboratory of Earthquake Engneerng and Engneerng Vbraton,Insttute of Engneerng Mechancs, CEA,

More information

Modeling of Dynamic Systems

Modeling of Dynamic Systems Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how

More information

DESIGN ANALYSIS OF A RUBBER MOUNT SYSTEM FOR A PUSH- TYPE CENTRIFUGE Carl Nel

DESIGN ANALYSIS OF A RUBBER MOUNT SYSTEM FOR A PUSH- TYPE CENTRIFUGE Carl Nel ICSV4 Carns Australa 9-2 Jul, 27 DESIGN ANALYSIS OF A RUBBER MOUNT SYSTEM FOR A PUSH- TYPE CENTRIFUGE Carl Nel School of Mechancal Enneern, North-West Unverst Potchefstroom, South Afrca carlbnel@netactve.co.a

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp. Clck to Vew Mathcad Document 2011 Knovel Corp. Buldng Structural Desgn. homas P. Magner, P.E. 2011 Parametrc echnology Corp. Chapter 3: Renforced Concrete Slabs and Beams 3.2 Renforced Concrete Beams -

More information

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g SPH3UW Unt.5 Projectle Moton Pae 1 of 10 Note Phc Inventor Parabolc Moton curved oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object,

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSED-BOOK

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

( ) = : a torque vector composed of shoulder torque and elbow torque, corresponding to

( ) = : a torque vector composed of shoulder torque and elbow torque, corresponding to Supplementary Materal for Hwan EJ, Donchn O, Smth MA, Shamehr R (3 A Gan-Fel Encon of Lmb Poston an Velocty n the Internal Moel of Arm Dynamcs. PLOS Boloy, :9-. Learnn of ynamcs usn bass elements he nternal

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012 Effects of Ignorng Correlatons When Computng Sample Ch-Square John W. Fowler February 6, 0 It can happen that ch-square must be computed for a sample whose elements are correlated to an unknown extent.

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

For the three forces. find: (a) the resultant force R~ (a) (b) the magnitude of the resultant force. Three coplanar forces, A

For the three forces. find: (a) the resultant force R~ (a) (b) the magnitude of the resultant force. Three coplanar forces, A WorkSHEE 8. Vector applcatons ame: or the three forces, and, fnd: the resultant force R R the mantude of the resultant force. R hree coplanar forces,, B and C have mantudes of 8, 6 and 9 respectvely. nd

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient 58:080 Expermental Engneerng 1 OBJECTIVE Lab 2e Thermal System Response and Effectve Heat Transfer Coeffcent Warnng: though the experment has educatonal objectves (to learn about bolng heat transfer, etc.),

More information

Lesson 4: Relative motion, Forces, Newton s laws (sections )

Lesson 4: Relative motion, Forces, Newton s laws (sections ) Lesson 4: Relate moton, Forces, Newton s laws (sectons 3.6-4.4) We start wth a projectle problem. A olf ball s ht from the round at 35 m/s at an anle of 55º. The round s leel.. How lon s the ball n the

More information

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Km Gak Unverst Tun Hussen Onn Malaysa Kek Se Long Unverst Tun Hussen Onn Malaysa Rosmla Abdul-Kahar

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

1 Derivation of Point-to-Plane Minimization

1 Derivation of Point-to-Plane Minimization 1 Dervaton of Pont-to-Plane Mnmzaton Consder the Chen-Medon (pont-to-plane) framework for ICP. Assume we have a collecton of ponts (p, q ) wth normals n. We want to determne the optmal rotaton and translaton

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 48/58 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 48/58 7. Robot Dynamcs 7.5 The Equatons of Moton Gven that we wsh to fnd the path q(t (n jont space) whch mnmzes the energy

More information

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point. Four bar lnkages 1 Four Bar Lnkages n Two Dmensons lnk has fed length and s oned to other lnks and also possbly to a fed pont. The relatve velocty of end B wth regard to s gven by V B = ω r y v B B = +y

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

ECEN 667 Power System Stability Lecture 21: Modal Analysis

ECEN 667 Power System Stability Lecture 21: Modal Analysis ECEN 667 Power System Stablty Lecture 21: Modal Analyss Prof. Tom Overbye Dept. of Electrcal and Computer Engneerng Texas A&M Unversty, overbye@tamu.edu 1 Announcements Read Chapter 8 Homework 7 s posted;

More information

Mode decomposition method for non-classically damped structures using. acceleration responses

Mode decomposition method for non-classically damped structures using. acceleration responses ICCM5, 4-7 th July, Auckland, NZ Mode decomposton method for non-classcally damped structures usng acceleraton responses J.-S. Hwang¹, *S.-H. Shn, and H. Km Department of Archtectural Engneerng, Chonnam

More information

PHYS 1441 Section 001 Lecture #15 Wednesday, July 8, 2015

PHYS 1441 Section 001 Lecture #15 Wednesday, July 8, 2015 PHYS 1441 Secton 001 Lecture #15 Wednesday, July 8, 2015 Concept of the Center of Mass Center of Mass & Center of Gravty Fundamentals of the Rotatonal Moton Rotatonal Knematcs Equatons of Rotatonal Knematcs

More information

Other Uncertainty Analysis Methods

Other Uncertainty Analysis Methods Chapter 9 Other Uncertant Analss Methods Chapter 9 Other Uncertant Analss Methods 9. Introducton In Chapter 7, we have dscussed relablt analss methods FORM and SORM. Both of the methods can provde reasonabl

More information

NON LINEAR ANALYSIS OF STRUCTURES ACCORDING TO NEW EUROPEAN DESIGN CODE

NON LINEAR ANALYSIS OF STRUCTURES ACCORDING TO NEW EUROPEAN DESIGN CODE October 1-17, 008, Bejng, Chna NON LINEAR ANALYSIS OF SRUCURES ACCORDING O NEW EUROPEAN DESIGN CODE D. Mestrovc 1, D. Czmar and M. Pende 3 1 Professor, Dept. of Structural Engneerng, Faculty of Cvl Engneerng,

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

2. PROBLEM STATEMENT AND SOLUTION STRATEGIES. L q. Suppose that we have a structure with known geometry (b, h, and L) and material properties (EA).

2. PROBLEM STATEMENT AND SOLUTION STRATEGIES. L q. Suppose that we have a structure with known geometry (b, h, and L) and material properties (EA). . PROBEM STATEMENT AND SOUTION STRATEGIES Problem statement P, Q h ρ ρ o EA, N b b Suppose that we have a structure wth known geometry (b, h, and ) and materal propertes (EA). Gven load (P), determne the

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

Δ x. u(x,t) Fig. Schematic view of elastic bar undergoing axial motions

Δ x. u(x,t) Fig. Schematic view of elastic bar undergoing axial motions ME67 - Handout 4 Vbratons of Contnuous Systems Axal vbratons of elastc bars The fgure shows a unform elastc bar of length and cross secton A. The bar materal propertes are ts densty ρ and elastc modulus

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluton to the Heat Equaton ME 448/548 Notes Gerald Recktenwald Portland State Unversty Department of Mechancal Engneerng gerry@pdx.edu ME 448/548: FTCS Soluton to the Heat Equaton Overvew 1. Use

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

Δ x. u(x,t) Fig. Schematic view of elastic bar undergoing axial motions

Δ x. u(x,t) Fig. Schematic view of elastic bar undergoing axial motions ME67 - Handout 4 Vbratons of Contnuous Systems Axal vbratons of elastc bars The fgure shows a unform elastc bar of length and cross secton A. The bar materal propertes are ts densty ρ and elastc modulus

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

Solutions for Homework #9

Solutions for Homework #9 Solutons for Hoewor #9 PROBEM. (P. 3 on page 379 n the note) Consder a sprng ounted rgd bar of total ass and length, to whch an addtonal ass s luped at the rghtost end. he syste has no dapng. Fnd the natural

More information

PHYS 2211L - Principles of Physics Laboratory I

PHYS 2211L - Principles of Physics Laboratory I PHYS L - Prncples of Physcs Laboratory I Laboratory Adanced Sheet Ballstc Pendulu. Objecte. The objecte of ths laboratory s to use the ballstc pendulu to predct the ntal elocty of a projectle usn the prncples

More information

arxiv:cs.cv/ Jun 2000

arxiv:cs.cv/ Jun 2000 Correlaton over Decomposed Sgnals: A Non-Lnear Approach to Fast and Effectve Sequences Comparson Lucano da Fontoura Costa arxv:cs.cv/0006040 28 Jun 2000 Cybernetc Vson Research Group IFSC Unversty of São

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

Statistical Evaluation of WATFLOOD

Statistical Evaluation of WATFLOOD tatstcal Evaluaton of WATFLD By: Angela MacLean, Dept. of Cvl & Envronmental Engneerng, Unversty of Waterloo, n. ctober, 005 The statstcs program assocated wth WATFLD uses spl.csv fle that s produced wth

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

Using Spectrophotometric Methods to Determine an Equilibrium Constant Prelab

Using Spectrophotometric Methods to Determine an Equilibrium Constant Prelab Usng Spectrophotometrc Methods to Determne an Equlbrum Constant Prelab 1. What s the purpose of ths experment? 2. In step 11 of the procedure, t s stated that the absorbance of the soluton ncreases as

More information

Study on Non-Linear Dynamic Characteristic of Vehicle. Suspension Rubber Component

Study on Non-Linear Dynamic Characteristic of Vehicle. Suspension Rubber Component Study on Non-Lnear Dynamc Characterstc of Vehcle Suspenson Rubber Component Zhan Wenzhang Ln Y Sh GuobaoJln Unversty of TechnologyChangchun, Chna Wang Lgong (MDI, Chna [Abstract] The dynamc characterstc

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled nductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled elements hae more that one branch and branch oltages or branch currents

More information

6.3.7 Example with Runga Kutta 4 th order method

6.3.7 Example with Runga Kutta 4 th order method 6.3.7 Example wth Runga Kutta 4 th order method Agan, as an example, 3 machne, 9 bus system shown n Fg. 6.4 s agan consdered. Intally, the dampng of the generators are neglected (.e. d = 0 for = 1, 2,

More information