Starting at Rock Bottom

Size: px
Start display at page:

Download "Starting at Rock Bottom"

Transcription

1 Starting at Rock Bottom At rock bottom of the Brushy Creek site s geological column lies the first clue to human habitation: A smelting and heattreating furnace, and mold, carved into Bed Ked: Figure 15 Feature I: Iron stained fill removed from the furnace cavity. Note Bed Ice remnants (dark gray) in the background, to the right hand side in this image. The exposed portions of Beds Ica, Ice and Igl erode rapidly during periods of heavy drainage, exposing underlying Bed Ked.

2 Figure 16 Feature I: Fill was removed from the furnace to what was initially thought to be the floor of the cavity. Note the heavily iron-stained fill, which contrasts to locally occurring soil. Local soils are comprised chiefly of black clay mixed with silt. Also note the iron-stained chert cobbles and fossilized shells removed from the furnace (at the top of this image).

3 Figure 17 Feature I: As fill continued to be removed, it was observed that the floor of the furnace had a depression. An in situ metallic nodule was observed as the remaining fill was removed.

4 Figure 18 Feature I: A close-up shot of the in situ metallic nodule, positioned at the mouth of the soon to be revealed blowhole. Note the heavy iron staining around the nodule.

5 Figure 19 Feature I: As research continued, it became apparent that a rounded, triangular blowhole was drilled into the bedrock, at the bottom of the furnace.

6 Figure 20 Feature I: An image of the furnace cavity and ca. 3 of the blowhole thoroughly cleaned. Note the iron deposits still intact at the bottom, left hand side of the furnace. Several other heavy iron stains are apparent. Figure 21

7 Feature I: Close up of the blowhole at the bottom of the furnace. Note the charring at the opening of the vent (top, slightly left hand side in this image). Also note the secondary carbonate deposits on the right hand side of the blowhole. Grains of sand are adhered to the furnace floor, to the left of the blowhole. Figure 22 Feature I: Surface blowhole inlet in relation to the furnace cavity. The surface blowhole inlet is drilled downward, at an approximately 25-degree angle relative to the surface, directly towards the bedrock underlying the furnace. It is assumed that the blowhole outlet, at the bottom of the furnace, was drilled straight down (ca. 90 degree angle relative to the surface), tapping into the underlying, surface blowhole inlet channel.

8 Figure 23 Feature I: Close-up of the surface blowhole inlet. Note the same rounded triangular outline, similar to the blowhole outlet at the bottom of the furnace. It is assumed that a chert or granite bit was hafted to a spear shaft and rotated, drilling a channel into the softer limestone.

9 Figure 24 Feature II: Partially cleared out mold cavity, carved directly into Bed Ked. The mold is located approximately 18 southwest of the furnace.

10 Figure 25 Feature II: Completely cleared out mold cavity. Note the lack of erosional smoothing on the floor of the mold, implying a rapid, and then continuous filling, from shortly after its creation and utilization, until present.

11 Figure 26 Feature II: Close-up of the carving on the mold cavity floor. Again, note the lack of erosional smoothing.

12 Figure 27 Features I and II: Relative spatial relationship between the furnace, surface blowhole inlet, and mold. The mold is carved into Bed Ked, at the southern valley margin, while the furnace and blowhole are carved into Bed Ked, in the valley bed, ca. 18 northeast of the mold.

13 Figure 28 Feature I: The furnace shown in relation to the exposed portion of Bed Igl, in the far background. Again, note intact Bed Ice to the right (dark gray colored), uncomformably deposited on underlying Bed Ked.

14 Figure 29 Geologic column previously positioned above the furnace and mold. Rapid erosion of this overlying strata has been brought on by aggressive, urban development along the creek s corridor in recent years.

15 Figure 30 Another view (looking northeast) of the dissected alluvium (cut bank) previously positioned above the furnace and mold. The creek is working itself north, downhill, into the original, ancient bedrock creek bed, eroding the topsoil off of the southern portion the dissected alluvium (point bar) in the process. The erosional processes have completely scoured ca. 300 meters of upstream alluvium off of Bed Ked.

16 Figure 31 Another view of the dissected alluvium, beginning at the top of Bed Igl and continuing up to the Late Holocene soil (Bed III).

17 Figure 32 Another view of the dissected alluvium, beginning at Bed Igl and continuing up to the Early Holocene soil (Bed II).

18 Figure 33 The lowest stratum within Bed Igl consists of iron-stained and charred cobbles. This stratum has been termed Bed Igl-Iscc

19 Figure 34 Stratum Igl-Iscc

20 Figure 35 Stratum Igl-Iscc

21 Figure 36 Stratum Igl-Iscc

22 Figure 37 Stratum Igl-Iscc

23 Figure 38 Increased erosional processes have completely scoured, to bedrock, ca. 300 meters of alluvium upstream of Unit Lima. View is to the northeast. Note the remaining westernmost edge of Lima-Igl, with the tangled roots of previously and currently existing trees (middle foreground of this image). In the right-hand background the white gravels of exposed Bed Igl (point bar) are visible. The furnace is positioned ca. 6 meters to the right of the exposed roots.

24 Figure 39 The erosional processes have completely scoured, to bedrock, Beds Igl, Ice and Ica, previously overlying the furnace and mold. View is to the southwest. A test trench was cleared in Unit Lima, Bed Igl, to confirm exposed Bed Igl had a firm floor. After the surface limestone and chert cobbles were removed, a firm floor was apparent.

25 Figure 40 Another southwest view from the exposed portion of Bed Igl (point bar), at Unit Lima. Note exposed and dissected Bed Ica, underlying Bed Igl, and deposited on Bed Ked, in the middle background of this image.

26 Figure 41 Figures 40 and 41 are unhighlighted and highlighted images showing the relevant geology in the immediate area of the furnace and mold. The red line highlights one of the new drains installed in early Two additional drains were constructed, one approximately 100 meters upstream from this drain, and the other drain, 200 meters upstream. The light green X marks the location of the mold. The dark blue X marks the location of the furnace. The yellow highlight traces the northern boundary of remaining Bed Ica. The light blue highlight traces the contours of the test trench, the trench establishing the firm stratum of remaining Bed Igl. The purple x marks the westernmost intact portion of the southern side of dissected Bed Igl. Approximately 2 meters to the right of the dark green x marks the westernmost, intact portion of the northern side of dissected Bed Igl. The overall view is to the southwest, upstream.

27 Figure 42 Remnants of Bed Ice cemented to underlying Bed Ked, approximately 6 meters downhill (north) from the furnace.

28 Figure 43 More remnants of Bed Ice cemented to underlying Bed Ked, approximately 6 meters downhill (north) from the furnace.

29 Figure 44 More remnants of Bed Ice cemented to underlying Bed Ked, approximately 6 meters downhill (north) from the furnace. Figure 45

30 More remnants of Bed Ice cemented to underlying Bed Ked, approximately 6 meters downhill (north) from the furnace. Figure 46 Close up of Bed Ice. Note the thermally altered piece of Edwards Gray Chert incorporated into the Bed Ice matrix.

31 Figure 47 Close up of Bed Ice. Note the thermally altered piece of Edwards Gray Chert incorporated into the Bed Ice matrix. Also note the possible human alteration of the chert.

32 Figure 48 Close up of Bed Ice.

33 Figure 49 Close up of Bed Ice. Note the piece of Edwards Gray Chert incorporated into the Bed Ice matrix.

34 Figure 50 Close up of Bed Ice. Note the thermally altered piece of Edwards Gray Chert incorporated into the Bed Ice matrix.

35 Figure 51 Close up of Bed Ice. Note the thermally altered piece of Edwards Gray Chert incorporated into the Bed Ice matrix. Also note the possible human working of the chert. Next is a progression of aerial views of Unit Lima, spanning from :

36 Figure 52 An aerial photo from Unit Lima is on the right hand side of the photo, just to the left of the circular, white dirt road. Note there are large trees still completely covering the now dissected alluvium. This suggests that in 1985, there was no dissection, further evidenced by the lack of exposure of the underlying, bright white alluvial gravel from Bed Igl.

37 Figure 53 An aerial photo from Unit Lima is on the right hand side of the photo, just to the left of the circular, white dirt road. Note there are large trees still completely covering the alluvium. This suggests that in 1985, there was no dissection, further evidenced by the lack of exposed, underlying, bright white alluvial gravel from Bed Igl. The creek has not yet started to work it s way downhill through the alluvium, evidenced by the lack of diversion of the creek path (highlighted).

38 Figure 54 An aerial view from Unit Lima is at the top, slightly lefthand side of this image, up and left of the circular white dirt road. Note the trees still growing on now exposed Bed Igl. The creek course has diverted downhill, settling into its ancient bed. Note, at the left, bottom corner (south of the creek course), the field has been put into cultivation. Directly downhill, ca. 25 in elevation, from the top right hand corner of the cultivated field, is where the furnace and mold are positioned. Apparent are many large trees still rooted into Unit Lima s alluvium, overlying the position of the furnace and mold.

39 Figure 55 Highlighted 1995 aerial view. Unit Lima is at the top, slightly lefthand side of this image, at a ca. 45-degree angle, up and left of the circular white dirt road. Note the trees still growing on now exposed Bed-Igl. The creek course has diverted downhill, settling into its ancient bed. The blue highlighting represents the creeks current bed (and ancient bed). The yellow highlighting represents the prior creek bed, as portrayed in the 1985 aerial shot.

40 Figure 56 Aerial photo from There is no indication of large trees remaining on Unit Lima s alluvium. The creek course change is readily apparent. Dissection of Unit Lima s alluvium is now readily apparent, with the southern, uphill portion of Bed Igl exposed, and the northern, downhill portion of Bed Igl still covered by the overlying, fine-grained strata. The current creek course is now the ancient Ked creek bed, at the bottom of the valley of downward sloping Ked bedrock, running between the underlying southern Ked and northern Ked valley margins, that parallel the creek bed.

41 Figure USGS topographic map of Unit Lima. Note there is no indication that Unit Lima s alluvium has been dissected. Only cleared pasture, depicted in white, is evident. Figure USGS topographic map of Unit Lima. Note there is no indication that Unit Lima s alluvium has been dissected. Only cleared pasture, depicted in white, is evident. The red highlighting represents the creeks current bed.

42 Figure 59 Dissected Unit Lima, directly above the furnace and mold. Dr. Steve Kissin, Lakehead University, observes the furnace.

Starting at Rock Bottom: A Peculiar Central Texas PreClovis Culture

Starting at Rock Bottom: A Peculiar Central Texas PreClovis Culture Starting at Rock Bottom: A Peculiar Central Texas PreClovis Culture Background Brushy Creek grades, overall, west-northwest (WNW) to east-southeast (ESE) through the easternmost portions of the central

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL DESCRIPTIONS OF OTHER STRATIGRAPHIC SECTIONS Cherry Creek In its middle reaches, Cherry Creek meanders between three paired terraces within a narrow bedrock valley. The highest is

More information

Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland

Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland Abstract The Waterbury Dam was completed in October 1938 as a method of flood control in the Winooski Valley. The construction began in April1935

More information

UNIT DESCRIPTIONS: Artificial Fill, Undocumented (Afu): Locally derived sandy silt and silty sand, locally with clay and varying amounts of gravel and man-made debris. Abundant concrete rubble, in places

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown.

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown. Name 1. In the cross section of the hill shown below, which rock units are probably most resistant to weathering? 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different

More information

Module/Unit: Landforms Grade Level: Fifth

Module/Unit: Landforms Grade Level: Fifth Module/Unit: Landforms Grade Level: Fifth PA Academic Standards for Science and Technology and Environment and Ecology: 3.1.7.B Describe the use of models as an application or scientific or technological

More information

Pratice Surface Processes Test

Pratice Surface Processes Test 1. The cross section below shows the movement of wind-driven sand particles that strike a partly exposed basalt cobble located at the surface of a windy desert. Which cross section best represents the

More information

Chapter 6 Pages of Earth s Past: Sedimentary Rocks

Chapter 6 Pages of Earth s Past: Sedimentary Rocks Chapter 6 Pages of Earth s Past: Sedimentary Rocks Introduction! Drilling into the bottom of the North Sea, we encounter: " Soft mud and loose sand, silt, pebbles, and shells. Then: " Similar materials

More information

Mission Pre-Briefing for Crew B

Mission Pre-Briefing for Crew B BPLF Lunar Mission Simulations 2009 Briefing Topic: Mission Pre-Briefing for Crew B Regional Geologic Context Black Point Lava Flow 2009 Test Site BPLF occurs along the NE margin of a large volcanic field

More information

Subsurface Geology of the Kennebec River

Subsurface Geology of the Kennebec River Maine Geologic Facts and Localities July, 1998 Subsurface Geology of the Kennebec River 43 54 40.75 N, 69 48 29.01 W Text by Daniel B. Locke, Department of Agriculture, Conservation & Forestry 1 Map by

More information

Clyde River Landslide

Clyde River Landslide Clyde River Landslide Department of Geology, Perkins Hall, University of Vermont, Burlington, VT 05405 Abstract: This paper investigates a landslide on the Clyde River in Newport, Vermont. The landslide

More information

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Raymond C. Vaughan, Ph.D. What happens if you drop a

More information

Weathering, Erosion and Deposition

Weathering, Erosion and Deposition Weathering, Erosion and Deposition Shaping the Earth s Surface Weathering the process of breaking down rocks into smaller fragments Erosion the transport of rock fragments from one location to another

More information

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p. 95-125) Workbook Chapter 4, 5 THE BIG PICTURE: Weathering, erosion and deposition are processes that cause changes to rock material

More information

Page 1. Name:

Page 1. Name: Name: 1) Which property would best distinguish sediment deposited by a river from sediment deposited by a glacier? thickness of sediment layers age of fossils found in the sediment mineral composition

More information

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow.

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow. 1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow. Which cross section best represents the shape of the river bottom at

More information

1. The diagram below shows the stump of a tree whose root grew into a small crack in bedrock and split the rock apart.

1. The diagram below shows the stump of a tree whose root grew into a small crack in bedrock and split the rock apart. 1. The diagram below shows the stump of a tree whose root grew into a small crack in bedrock and split the rock apart. 4. Which process involves either a physical or chemical breakdown of earth materials?

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore BEDRO CK For the complete encyclopedic entry with media resources,

More information

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Gutta cavat lapidem (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Fixed channel boundaries (bedrock banks and bed) High transport

More information

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement Surface Water SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. 1. An excessive amount of water flowing downslope

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

The Palmer Hill Glacial-Marine Delta, Whitefield, Maine

The Palmer Hill Glacial-Marine Delta, Whitefield, Maine Maine Geologic Facts and Localities December, 2010, Maine 44 o 10 12.16 N, 69 o 37 18.93 W Text by Woodrow Thompson, Department of Agriculture, Conservation & Forestry 1 Introduction The most recent continental

More information

EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations

EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations Name: EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations Introduction: Maps are some of the most interesting and informative printed documents available. We are familiar

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant?

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant? 1. In which type of climate does chemical weathering usually occur most rapidly? 1. hot and dry 3. cold and dry 2. hot and wet 4. cold and wet 2. Figure 1 The map shows the top view of a meandering stream

More information

Fossils and Geology of Litzsinger Road Ecology Center

Fossils and Geology of Litzsinger Road Ecology Center Fossils and Geology of Litzsinger Road Ecology Center Table of Content Key Terms 1 Key Terms 2 What you need to know Geologic Map of Missouri Geologic Time Chart More of what you need to know Digital map

More information

Midterm Review. Nata/Lee

Midterm Review. Nata/Lee Name: 1. Which statement best supports the theory that all the continents were once a single landmass? (1) Rocks of the ocean ridges are older than those of the adjacent sea floor. (2) Rock and fossil

More information

Marshall Shore Town Park, Liberty, Maine

Marshall Shore Town Park, Liberty, Maine Maine Geologic Facts and Localities August, 2005 Marshall Shore Town Park, Liberty, Maine 44 22 33.04 N, 69 21 9.19 W Text by Henry N. Berry IV, Department of Agriculture, Conservation & Forestry 1 Introduction

More information

KRIS wsbssm. IBHiiilll

KRIS wsbssm. IBHiiilll KRIS wsbssm IBHiiilll Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/engineeringaspec34ekbl STATE OF ILLINOIS HENRY HORNER,

More information

Ge Problem Set 1

Ge Problem Set 1 Ge 101 2012 Problem Set 1 This problem set covers basic techniques in structural geology, geomorphology and the construction of cross sections. Questions 2 and 3 are simple exercises; 1 and 4 are reallife

More information

Sand. Sand is any eroded material (igneous, metamorphic or sedimentary) that has a grain size from 1/16 th to 2 millimeters in size.

Sand. Sand is any eroded material (igneous, metamorphic or sedimentary) that has a grain size from 1/16 th to 2 millimeters in size. Sedimentology 001 What is sedimentology? Sedimentology...encompasses the study of modern sediments such as sand [1], mud (silt) [2] andclay [3] and understanding the processes that deposit them.[4] It

More information

depression above scarp scarp

depression above scarp scarp 1 LAB 1: FIELD TRIP TO McKINLEYVILLE AND MOUTH OF THE MAD RIVER OBJECTIVES: a. to look at geomorphic and geologic evidence for large scale thrust-faulting of young sediments in the Humboldt Bay region

More information

Essential Questions. What is erosion? What is mass wasting?

Essential Questions. What is erosion? What is mass wasting? Erosion Essential Questions What is erosion? What is mass wasting? What is Erosion? Erosion The transportation of sediment from one area to another Caused mainly by running water but also caused by glaciers,

More information

Michigan s Geology and Groundwater

Michigan s Geology and Groundwater Michigan s Geology and Groundwater Ralph J. Haefner Deputy Director U.S. Geological Survey Michigan-Ohio Water Science Center Lansing, Michigan Outline About the USGS Geology 101 Michigan s geology Bedrock

More information

GEOL 652. Poudre River Fieldtrip

GEOL 652. Poudre River Fieldtrip GEOL 652. Poudre River Fieldtrip One of the more difficult variables to measure and/or estimate when studying flow in natural channels is that of roughness. Roughness, usually approximated with Manning

More information

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON PUBLIC WORKS CANADA WESTERN REGION REPORT ON GEOTECHNICAL INVESTIGATION PROPOSED MARTIN RIVER BRIDGE MILE 306.7 MACKENZIE HIGHWAY Submitted by : R. D. Cook, P.Eng. Soils Engineer Special Services Western

More information

THE BEDROCK SURFACE AND FORMER DRAINAGE SYSTEMS OF MONTGOMERY COUNTY, OHIO 1

THE BEDROCK SURFACE AND FORMER DRAINAGE SYSTEMS OF MONTGOMERY COUNTY, OHIO 1 THE BEDROCK SURFACE AND FORMER DRAINAGE SYSTEMS OF MONTGOMERY COUNTY, OHIO 1 STANLEY E. NORRIS, Geologist, U. S. Geological Survey, Columbus, Ohio INTRODUCTION The bedrock surface of Montgomery County,

More information

Landslides and Ground Water Permeability with Respect to the. Contact Point of Glacial Lake Vermont and the Champlain Sea

Landslides and Ground Water Permeability with Respect to the. Contact Point of Glacial Lake Vermont and the Champlain Sea Landslides and Ground Water Permeability with Respect to the Contact Point of Glacial Lake Vermont and the Champlain Sea Sediments at Town Line Brook, Winooski, VT Michala Peabody Lara Vowles Abstract:

More information

Page 1. Name:

Page 1. Name: Name: 1) Which event is the best example of erosion? dissolving of rock particles on a limestone gravestone by acid rain breaking apart of shale as a result of water freezing in a crack rolling of a pebble

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

16 January 2018 Job Number: RICHARD NEWMAN C\- CLARK FORTUNE MCDONALD AND ASSOCIATES PO BOX 553 QUEENSTOWN

16 January 2018 Job Number: RICHARD NEWMAN C\- CLARK FORTUNE MCDONALD AND ASSOCIATES PO BOX 553 QUEENSTOWN 16 January 2018 Job Number: 50595 RICHARD NEWMAN C\- CLARK FORTUNE MCDONALD AND ASSOCIATES PO BOX 553 QUEENSTOWN CHANSEN@CFMA.CO.NZ STORMWATER DISPOSAL ASSESSMENT Dear Richard, RDAgritech were requested

More information

NC Earth Science Essential Standards

NC Earth Science Essential Standards NC Earth Science Essential Standards EEn. 2.1 Explain how processes and forces affect the Lithosphere. EEn. 2.1.1 Explain how the rock cycle, plate tectonics, volcanoes, and earthquakes impact the Lithosphere.

More information

GIFFORD PINCHOT STATE PARK DIABASE (MOLTEN LIQUID ROCK)

GIFFORD PINCHOT STATE PARK DIABASE (MOLTEN LIQUID ROCK) PENNSYLVANIA TRAIL OF GEOLOGY PARK GUIDE 10 GIFFORD PINCHOT STATE PARK DIABASE (MOLTEN LIQUID ROCK) Gifford Pinchot State Park contains examples of the three major rock classes: igneous, metamorphic, and

More information

Vermont Stream Geomorphic Assessment. Appendix E. River Corridor Delineation Process. VT Agency of Natural Resources. April, E0 - April, 2004

Vermont Stream Geomorphic Assessment. Appendix E. River Corridor Delineation Process. VT Agency of Natural Resources. April, E0 - April, 2004 Vermont Stream Geomorphic Assessment Appendix E River Corridor Delineation Process Vermont Agency of Natural Resources - E0 - River Corridor Delineation Process Purpose A stream and river corridor delineation

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

SL GEOLOGY AND MINING. Coal bearing strata in the project area are referable primarily to the Allegheny Group of

SL GEOLOGY AND MINING. Coal bearing strata in the project area are referable primarily to the Allegheny Group of SL-145-1 GEOLOGY AND MINING Coal bearing strata in the project area are referable primarily to the Allegheny Group of Pennsylvania age. These rocks occur as dissected remnants overlying the ridge-forming

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

Black Point & Bihler Point

Black Point & Bihler Point Black Point & Bihler Point Conglomerate Photo: looking north toward end of Black Point (south of post 1) All of the rocks in this photo are conglomerate. Both Black Point and Bihler Point are formed from

More information

LAB 6: TRINIDAD BEACH FIELD TRIP

LAB 6: TRINIDAD BEACH FIELD TRIP OBJECTIVES: LAB 6: TRINIDAD BEACH FIELD TRIP 1) to develop your powers of observation, especially of geological phenomena; 2) to identify the rocks exposed at Trinidad Beach; 3) to reconstruct some of

More information

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom.

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom. 1. Sediment is deposited as a river enters a lake because the A) velocity of the river decreases B) force of gravity decreases C) volume of water increases D) slope of the river increases 2. Which diagram

More information

abrasion the rubbing, grinding, and bumping of rocks that cause physical weathering (SRB, IG)

abrasion the rubbing, grinding, and bumping of rocks that cause physical weathering (SRB, IG) FOSS Soils, Rocks, and Landforms Module Glossary NGSS Edition 2019 abrasion the rubbing, grinding, and bumping of rocks that cause physical weathering (SRB, IG) acid a substance that geologists use to

More information

Ecoregions Glossary. 7.8B: Changes To Texas Land Earth and Space

Ecoregions Glossary. 7.8B: Changes To Texas Land Earth and Space Ecoregions Glossary Ecoregions The term ecoregions was developed by combining the terms ecology and region. Ecology is the study of the interrelationship of organisms and their environments. The term,

More information

WITTKOP, BENNETT, CHORMANN AND WUNSCH

WITTKOP, BENNETT, CHORMANN AND WUNSCH 1 GEOLOGY OF THE MAY 2006 SUNCOOK RIVER AVULSION by Chad Wittkop, Department of Geology, University of Wisconsin Eau Claire, Eau Claire, WI 54701 Derek Bennett, Rick Chormann and David Wunsch, New Hampshire

More information

EROSION, DEPOSITION AND SEDIMENTARY ROCKS. Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages Chapter 3: pages 52-54, 61-69

EROSION, DEPOSITION AND SEDIMENTARY ROCKS. Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages Chapter 3: pages 52-54, 61-69 EROSION, DEPOSITION AND SEDIMENTARY ROCKS Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages 124-133 Chapter 3: pages 52-54, 61-69 Base Level Resistant bed Resistant bed creates a local base level

More information

COSMORPHOLOGY - May 2009

COSMORPHOLOGY - May 2009 Name COSMORPHOLOGY - May 2009 Geologic landforms Purpose: By studying aerial photographs you will learn to identify different kinds of geologic features based on their different morphologies and learn

More information

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone David Hoffman University of Missouri Rolla Natural Hazards Mitigation Institute Civil, Architectural & Environmental

More information

USGS scientists with Venezuelan military liaisons.

USGS scientists with Venezuelan military liaisons. USGS scientists with Venezuelan military liaisons. In December, 1999, heavy rainfall triggered thousands of debris flows and caused numerous flash floods in a 300- kilometer long area of the north coast

More information

Glacial Geology of Moose Point State Park, ME

Glacial Geology of Moose Point State Park, ME Geologic Site of the Month May, 2013 Glacial Geology of Moose Point State Park, Maine 44 o 25 59.18"N, 68 o 56 37.11"W Text and photos by Woodrow B. Thompson, Department of Agriculture, Conservation &

More information

Cretaceous, Dakota Formation, Terra Cotta Member South Side of I-70, Salina County, Kansas

Cretaceous, Dakota Formation, Terra Cotta Member South Side of I-70, Salina County, Kansas Cretaceous, Dakota Formation, Terra Cotta Member South Side of I-70, Salina County, Kansas Written By: Steven D.J. Baumann G-102010-1A Outcrop looking southeast Photo taken by: Steven Baumann on 10-20-2010

More information

The Geology of Sebago Lake State Park

The Geology of Sebago Lake State Park Maine Geologic Facts and Localities September, 2002 43 55 17.46 N, 70 34 13.07 W Text by Robert Johnston, Department of Agriculture, Conservation & Forestry 1 Map by Robert Johnston Introduction Sebago

More information

Appendix D. Sediment Texture and Other Soil Data

Appendix D. Sediment Texture and Other Soil Data 5 6 7 8 Appendix D. Sediment Texture and Other Soil Data This appendix describes the sediment texture of the aquifer system in the Restoration Area. The contents of this appendix describe the: Importance

More information

Chapter 10. Running Water aka Rivers. BFRB Pages

Chapter 10. Running Water aka Rivers. BFRB Pages Chapter 10 Running Water aka Rivers BFRB Pages 101-116 Stream Erosion and Transportation Running water is all precipitation (rain, snow, etc) that falls on Earth and is pulled downhill by gravity. Running

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

New York University Excavations at Amheida 2010 Geological Investigations LOCAL GEOLOGY

New York University Excavations at Amheida 2010 Geological Investigations LOCAL GEOLOGY New York University Excavations at Amheida 2010 Geological Investigations LOCAL GEOLOGY The geology of the Amheida area has been outlined previously by the site topographers; the general geomorphology

More information

THE CROOKS GAP HOUSEPIT SITE AND OTHER NEARBY MID-HOLOCENE HOUSEPITS

THE CROOKS GAP HOUSEPIT SITE AND OTHER NEARBY MID-HOLOCENE HOUSEPITS Volume 56(1 ), Spring 2012 The Wyoming Archaeologist THE CROOKS GAP HOUSEPIT SITE AND OTHER NEARBY MID-HOLOCENE HOUSEPITS by Craig S. Smith Marcia Peterson INTRODUCTION This article summarizes excavation

More information

Name: Which rock layers appear to be most resistant to weathering? A) A, C, and E B) B and D

Name: Which rock layers appear to be most resistant to weathering? A) A, C, and E B) B and D Name: 1) The formation of soil is primarily the result of A) stream deposition and runoff B) precipitation and wind erosion C) stream erosion and mass movement D) weathering and biological activity 2)

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Geotechnical Aspects of the Ohio River Bridges Project

Geotechnical Aspects of the Ohio River Bridges Project Geotechnical Aspects of the Ohio River Bridges Project Mark A. Litkenhus, PE Sr. Geotechnical Engineer Stephen H. Bickel, PE Sr. Geotechnical Engineer STGEC Ohio River Bridges at Louisville Geotechnical

More information

Sedimentary Structures in Metamorphic Rocks

Sedimentary Structures in Metamorphic Rocks Maine Geologic Facts and Localities November, 2006 Primary Sedimentary Structures in Some Metamorphic Rocks Text by Thomas K. Weddle, Department of Agriculture, Conservation & Forestry 1 Photo by Thomas

More information

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life Landforms Landscape evolution A Natural landscape is the original landscape that exists before it is acted upon by human culture. An Anthropic landscape is the landscape modified by humans for their activities

More information

Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley.

Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley. Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley. (B) Feather River Basin with Yuba and Bear subbasins. Most hydraulic

More information

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA A map that shows Earth s Topographic Map surface topography, which is Earth s shape and features Contour

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

c) metamorphosis d) rock transformation a) melting and cooling b) heat and pressure a) igneous rock b) sedimentary rock

c) metamorphosis d) rock transformation a) melting and cooling b) heat and pressure a) igneous rock b) sedimentary rock Quizizz Rocks and Soil Name : Class : Date : 1. The process where rocks is transformed from one type to another is called a) rock cycle b) water cycle c) metamorphosis d) rock transformation 2. How are

More information

This material is part of the collection of the Philadelphia Water Department and was downloaded from the website Please contact the

This material is part of the collection of the Philadelphia Water Department and was downloaded from the website  Please contact the This material is part of the collection of the Philadelphia Water Department and was downloaded from the website www.phillyh2o.org Please contact the PhillyH2O webmaster for more information about this

More information

Objectives: Define Relative Age, Absolute Age

Objectives: Define Relative Age, Absolute Age S6E5. Students will investigate the scientific view of how the earth s surface is formed. c. Classify rocks by their process of formation. g. Describe how fossils show evidence of the changing surface

More information

Name: Mid-Year Review #2 SAR

Name: Mid-Year Review #2 SAR Name: Mid-Year Review #2 SAR Base your answers to questions 1 through 3 on on the diagram below, which shows laboratory materials used for an investigation of the effects of sediment size on permeability,

More information

Fletcher Junction Project Technical Update December 18, 2008

Fletcher Junction Project Technical Update December 18, 2008 Fletcher Junction Project Technical Update December 18, 2008 Disclaimer Warning! The business of Gold Exploration can be FUN, but it can also be hazardous to your physical, emotional, spiritual and financial

More information

I m good. Thank you.

I m good. Thank you. I m good. Thank you. The Rock Cycle Ag Earth Science Chapter 3.1 A natural occurring, inorganic crystalline material with a unique chemical composition. mineral A consolidated mixture of minerals rock

More information

Geology and New England Landscapes

Geology and New England Landscapes Geology and New England Landscapes Jim Turenne, CPSS USDA-NRCS Warwick, RI. http://nesoil.com Why Geology? Provides the big picture of site conditions. Major part of soil formation (parent material and

More information

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 101 Lab Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 101 Lab Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Physical Geology GEOL 101 Lab Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

EARTH S CHANGING SURFACE

EARTH S CHANGING SURFACE EARTH S CHANGING SURFACE Weathering Together, weathering and erosion work continuously to wear down the material on Earth s surface. weathering process that breaks down rock and other substances of Earth

More information

3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS CLIMATE GEOLOGY TOPOGRAPHY

3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS CLIMATE GEOLOGY TOPOGRAPHY 3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS This section describes the climate, geology, topography, and soil resource characteristics of the Yolo Bypass Wildlife Area (Wildlife Area). Agricultural soil

More information

Understanding Earth Fifth Edition

Understanding Earth Fifth Edition Understanding Earth Fifth Edition Grotzinger Jordan Press Siever Chapter 5: SEDIMENTATION: Rocks Formed by Surface Processes Lecturer: H Mohammadzadeh Assistant professors, Department of Geology, FUM Copyright

More information

Sedimentary Rocks. All sedimentary rocks begin to form when existing rocks are broken down into sediments Sediments are mainly weathered debris

Sedimentary Rocks. All sedimentary rocks begin to form when existing rocks are broken down into sediments Sediments are mainly weathered debris Rocks! Objectives Describe the major processes involved in the formation of sedimentary rock Distinguish between clastic sedimentary rocks and chemical sedimentary rocks Identify the features that are

More information

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Page - 1 Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Section A Overview of Lands with Dry Climates The definition of a dry climate is tied to an understanding of the hydrologic cycle

More information

Cuyama Basin North Fork Vineyard

Cuyama Basin North Fork Vineyard Cuyama Basin North Fork Vineyard Company Background plus Data Insights to Support GSP Development for the Cuyama Basin Presented by Grapevine Capital Partners and Cleath-Harris Geologists April 26th, 2018

More information

Explain how rock composition affects the rate of weathering. Discuss how surface area affects the rate at which rock weathers.

Explain how rock composition affects the rate of weathering. Discuss how surface area affects the rate at which rock weathers. Objectives Explain how rock composition affects the rate of weathering. Discuss how surface area affects the rate at which rock weathers. Describe the effects of climate and topography on the rate of weathering.

More information

What is weathering and how does it change Earth s surface? Answer the question using

What is weathering and how does it change Earth s surface? Answer the question using 7 th Grade Lesson What is weathering and how does it change Earth s surface? Answer the question using the sentence frame. You have 4 minutes. Weathering is. This changes the Earth s surface because. 1

More information

Do you think sediment transport is a concern?

Do you think sediment transport is a concern? STREAM RESTORATION FRAMEWORK AND SEDIMENT TRANSPORT BASICS Pete Klingeman 1 What is Your Restoration Project Like? k? Do you think sediment transport is a concern? East Fork Lewis River, WA Tidal creek,

More information

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each) Sedimentary Rocks & Surface Processes Quest Name: Earth Science 2013 Block: Date: Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

More information

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 100. Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 100. Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Physical Geology GEOL 100 Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

Why Geomorphology for Fish Passage

Why Geomorphology for Fish Passage Channel Morphology - Stream Crossing Interactions An Overview Michael Love Michael Love & Associates mlove@h2odesigns.com (707) 476-8938 Why Geomorphology for Fish Passage 1. Understand the Scale of the

More information

Weathering, Erosion, Deposition

Weathering, Erosion, Deposition Weathering, Erosion, Deposition The breakdown of rocks at or near the Earth s Surface. Physical Chemical - The breakdown of rock into smaller pieces without chemical change. - Dominant in moist /cold conditions

More information

L.O: SLOWING STREAMS DEPOSIT (SORT) SEDIMENT HORIZONTALLY BY SIZE.

L.O: SLOWING STREAMS DEPOSIT (SORT) SEDIMENT HORIZONTALLY BY SIZE. L.O: SLOWING STREAMS DEPOSIT (SORT) SEDIMENT HORIZONTALLY BY SIZE. 1. Base your answer to the following question on the profile shown below, which shows the pattern of horizontal sorting produced at a

More information

2 Aggregates in Indiana

2 Aggregates in Indiana 2 Aggregates in Indiana Origin of Aggregates Gravel and Natural Sands Crushed Stone Slag Distribution of Aggregates Glacial Deposits Bedrock Deposits Aggregate Types Natural Aggregates Artificial Aggregates

More information

GEOL.3250 Geology for Engineers Glacial Geology

GEOL.3250 Geology for Engineers Glacial Geology GEOL.3250 Geology for Engineers Glacial Geology NAME Part I: Continental Glaciation Continental glaciers are large ice sheets that cover substantial portions of the land area. In the region of accumulation

More information

Sedimentary Rocks. Origin, Properties and Identification. Geology Laboratory GEOL 101 Lab Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Geology Laboratory GEOL 101 Lab Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Geology Laboratory GEOL 101 Lab Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information