How mountains are made. We will talk about valleys (erosion and weathering later)

Size: px
Start display at page:

Download "How mountains are made. We will talk about valleys (erosion and weathering later)"

Transcription

1 How mountains are made We will talk about valleys (erosion and weathering later)

2

3 Continent-continent plate convergence Less dense, granite-type materials resist subduction Colliding plates pile up, producing a deformed and thicker crust of lighter materials Example: Tibetan Plateau and Himalayan Mountains

4

5 The Himalayas

6 Glacier National Park

7

8 Chief Mountain

9

10 Principle of Superposition Youngest Strata Oldest Strata

11 Volcanic Eruptions Lava is produced when magma reaches Earth s surface Explosive eruptions can produce rapidly cooled rock fragments called pyroclasts Size range from dust (ash) to boulders (blocks and volcanic bombs) Calm oozing of magma out of the ground produces lava flows Pyroclastics and lava flows form extrusive igneous rocks Lava flows and pyroclasts pile up to form volcanoes

12 Mt Fuji: Stratovolcano

13 Elkhorn Mountains

14

15 Where do we see deep earthquakes? What is happening there?

16 Ocean-continent plate convergence Oceanic plate of denser basaltic material subducted under less dense granite-type continental shelf Marked by oceanic trench, deep-seated earthquakes and volcanic mountains Example: convergence of South American Plate with Nazca Plate

17 The Sierra Nevada Mountains Half Dome

18 The Sierra Nevada Mountains

19 The Boulder Batholith outside of Butte

20 The Boulder Batholith outside of Butte

21 Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change shape and orientation in response to applied stress Structural geology is the study of the shapes, arrangement, and interrelationships of rock units and the forces that cause them

22 Orientation of Geologic Structures Geologic structures are most obvious in deformed sedimentary rocks Tilted beds, joints, and faults are planar features whose orientation is described by their strike and dip Strike is the compass direction of a line formed by the intersection of an inclined plane with a horizontal plane Dip is the direction and angle from horizontal in which a plane is oriented

23 Figure 15.6

24 Figure 15.7

25 What do rocks do when you stress on them? The either bend (fold) or break (fracture and/or fault)

26 Stress and Strain Stress is force per unit area The three basic types of stress are compressive, tensional and shear Strain is a change in size or shape in response to stress Geologic structures are indicative of the type of stress and its rate of application, as well the physical properties of the rocks or sediments

27 Figure 15.2

28 Geologic Structures: Folds Folds are wavelike bends in layered rock Represent rock strained in a ductile manner, usually under compression The axial plane divides a fold into its two limbs The surface trace of an axial plane is called the hinge line (or axis) of the fold Anticlines are upward-arching folds, and synclines are downward-arching folds

29

30

31 Types of Folds Plunging folds are folds in which the hinge line is not horizontal Where surfaces have been leveled by erosion, plunging folds form V- or horseshoe-shaped patterns of exposed rock layers (beds) Open folds have limbs that dip gently, whereas isoclinal folds have parallel limbs Overturned folds have limbs that dip in the same directions, and recumbent folds are overturned to the point of being horizontal

32

33 Folds.exe

34 Structural Domes and Basins Domes are structures in which the beds dip away from a central point Sometimes called doubly plunging anticlines Basins are structures in which the beds dip toward a central point Sometimes called doubly plunging synclines

35

36

37 Figure 15.19

38 Fractures in Rock Joints - fractures bedrock along which no movement has occurred Multiple parallel joints are called joint sets Faults - fractures in bedrock along which movement has occurred Considered active if movement has occurred along them within the last 11,000 years Categorized by type of movement as dip-slip, strike-slip, or oblique-slip

39 Types of Faults Normal faults have movement parallel to the dip of the fault plane In normal faults, the hanging-wall block has moved down relative to the footwall block In reverse faults, the hanging-wall block has moved up relative to the footwall block Insert revised Fig here Insert revised Fig a here

40 Normal and Reverse Faults

41 Types of Faults Dip-slip (normal) faults have movement parallel to the dip of the fault plane Fault blocks, bounded by normal faults, that drop down or are uplifted are known as grabens and horsts, respectively Grabens associated with divergent plate boundaries are called rifts Thrust faults are reverse faults with dip angles less than 30 from horizontal

42 The Tetons

43 The Tetons

44 The Beartooths

45

46 Basin and Range

47

48 Basin and Range

49 Basin and Range

50 Types of Faults Strike-slip faults have movement that is predominantly horizontal and parallel to the strike of the fault plane A viewer looking across to the other side of a right-lateral strike-slip fault would observe it to be offset to their right A viewer looking across to the other side of a left-lateral strike-slip fault would observe it to be offset to their left Oblique-slip faults have movement with both vertical and horizontal components Right-lateral San Andreas Fault

51

52 Juan de Fuca plate

53 San Andreas Fault

54 San Andreas Fault

55 Figure Faulitng.exe

How to Build a Mountain and other Geologic Structures. But first a short review

How to Build a Mountain and other Geologic Structures. But first a short review How to Build a Mountain and other Geologic Structures But first a short review Where do we see deep earthquakes? What is happening there? What can happen at a plate boundary? 1. Plates can move apart

More information

How to Build a Mountain and other Geologic Structures. But first, questions

How to Build a Mountain and other Geologic Structures. But first, questions How to Build a Mountain and other Geologic Structures But first, questions Questions your students might ask How were Montana s mountains formed? How old are the mountains? What are the different ways

More information

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress Geologic Structures Changes in the shape and/or orientation of rocks in response to applied stress Figure 15.19 Can be as big as a breadbox Or much bigger than a breadbox Three basic types Fractures >>>

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS This set of labs will focus on the structures that result from deformation in earth s crust, namely folds and faults. By the end of these labs you should be able

More information

CRUSTAL DEFORMATION. Chapter 10

CRUSTAL DEFORMATION. Chapter 10 CRUSTAL DEFORMATION and dgeologic Structures t Chapter 10 Deformation Df Deformation involves: Stress the amount of force applied to a given area. Types of Stress: Confining Stress stress applied equally

More information

Crustal Deformation Earth - Chapter Pearson Education, Inc.

Crustal Deformation Earth - Chapter Pearson Education, Inc. Crustal Deformation Earth - Chapter 10 Structural Geology Structural geologists study the architecture and processes responsible for deformation of Earth s crust. A working knowledge of rock structures

More information

Mountains and Mountain Building: Chapter 11

Mountains and Mountain Building: Chapter 11 Mountains and Mountain Building: Chapter 11 Objectives: 1)Explain how some of Earth s major mountain belts formed 2) Compare and contrast active and passive continental margins 3) Explain how compression,

More information

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS ROCK DEFORMATION Tectonic forces exert different types of stress on rocks in different geologic environments. STRESS The first, called confining stress

More information

Geomorphology Final Exam Study Guide

Geomorphology Final Exam Study Guide Geomorphology Final Exam Study Guide Geologic Structures STRUCTURAL GEOLOGY concerned with shapes, arrangement, interrelationships of bedrock units & endogenic (within) forces that cause them. Tectonic

More information

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar Fold: A fold is a bend or wrinkle of rock layers or foliation; folds form as a sequence of ductile deformation. Folding is the processes by which crustal forces deform an area of crust so that layers of

More information

What Causes Rock to Deform?

What Causes Rock to Deform? Crustal Deformation Earth, Chapter 10 Chapter 10 Crustal Deformation What Causes Rock to Deform? Deformation is a general term that refers to all changes in the shape or position of a rock body in response

More information

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection?

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection? Chapter 16 Mountains and Plate Tectonics what s the connection? Mountain Building Most crustal deformation occurs along plate margins. S.2 Active Margin Passive Margin Mountain Building Factors Affecting

More information

Crustal Deformation. (Building Earth s Surface, Part 1) Science 330 Summer Mapping geologic structures

Crustal Deformation. (Building Earth s Surface, Part 1) Science 330 Summer Mapping geologic structures Crustal Deformation (Building Earth s Surface, Part 1) Science 330 Summer 2005 Mapping geologic structures When conducting a study of a region, a geologist identifies and describes the dominant rock structures

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Crustal Deformation and Mountain Building Chapter 17 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Jennifer

More information

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building 1) A(n) fault has little or no vertical movements of the two blocks. A) stick slip B) oblique slip C) strike slip D) dip slip 2) In a(n) fault,

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Unit 4 Lesson 3 Mountain Building. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 3 Mountain Building. Copyright Houghton Mifflin Harcourt Publishing Company Stressed Out How can tectonic plate motion cause deformation? The movement of tectonic plates causes stress on rock structures. Stress is the amount of force per unit area that is placed on an object.

More information

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B GEOLOGY 12 KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B CHAPTER 12 Isostacy and Structural Geology 1. Using the terms below, label the following diagrams and

More information

Unit 4 Lesson 7 Mountain Building

Unit 4 Lesson 7 Mountain Building Indiana Standards 7.2.4 Explain how convection currents in the mantle cause lithospheric plates to move causing fast changes like earthquakes and volcanic eruptions, and slow changes like creation of mountains

More information

11.1 Rock Deformation

11.1 Rock Deformation Tarbuck Lutgens Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock

More information

December 21, Chapter 11 mountain building E.notebook. Feb 19 8:19 AM. Feb 19 9:28 AM

December 21, Chapter 11 mountain building E.notebook. Feb 19 8:19 AM. Feb 19 9:28 AM Mountains form along convergent plate boundaries. Typically (usually) if you look at a mountain range, you know that it is at a plate boundary (active continental margin) or has been some time in the past

More information

Lecture Outlines PowerPoint. Chapter 10 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 10 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 10 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms.

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Chapter 10 Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Reading Strategy Previewing Before you read the section,

More information

Section 3 Deforming Earth s Crust

Section 3 Deforming Earth s Crust Section 3 Deforming Earth s Crust Key Concept Tectonic plate motions deform Earth s crust. Deformation causes rock layers to bend and break and causes mountains to form. What You Will Learn Stress is placed

More information

Chapter. Mountain Building

Chapter. Mountain Building Chapter Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock type, and

More information

An aerial view from the south of the eruption of Mount St. Helens volcano on May 18, 1980.

An aerial view from the south of the eruption of Mount St. Helens volcano on May 18, 1980. 1 2 3 4 5 6 7 8 9 10 Building Earth s Surface Tillery, Chapter 21 Science 330 Summer 2007 An aerial view from the south of the eruption of Mount St. Helens volcano on May 18, 1980. Interpreting Earth s

More information

6.1 Geological Stresses

6.1 Geological Stresses www.ck12.org Chapter 6. Geological Activity from Plate Tectonics Processes 6.1 Geological Stresses Define the types of geological stress and describe their affect on various types of rock under a range

More information

Lecture # 6. Geological Structures

Lecture # 6. Geological Structures 1 Lecture # 6 Geological Structures ( Folds, Faults and Joints) Instructor: Dr. Attaullah Shah Department of Civil Engineering Swedish College of Engineering and Technology-Wah Cantt. 2 The wavy undulations

More information

Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting

Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting Crustal Deformation AKA Structural geology (adapted from Brunkel, 2012) Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting How Rocks Deform: 4 Controls

More information

Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea:

Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea: Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # A. Viscosity Group # B. Dissolved Gases Group # II. Volcanic Material

More information

Directed Reading. Section: How Mountains Form MOUNTAIN RANGES AND SYSTEMS. Skills Worksheet

Directed Reading. Section: How Mountains Form MOUNTAIN RANGES AND SYSTEMS. Skills Worksheet Skills Worksheet Directed Reading Section: How Mountains Form 1. How high is Mount Everest? a. about 1980 km above sea level b. more than 8 km below sea level c. more than 8 km above sea level d. more

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

Learning Objectives (LO) What we ll learn today:!

Learning Objectives (LO) What we ll learn today:! Learning Objectives (LO) Lecture 13: Mountain Building Read: Chapter 10 Homework #11 due Tuesday 12pm What we ll learn today:! 1. Define the types of stress that are present in the crust! 2. Define the

More information

Plate Tectonics. entirely rock both and rock

Plate Tectonics. entirely rock both and rock Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,

More information

Convergent plate boundary.

Convergent plate boundary. Crustal Deformation Convergent plate boundary http://my.execpc.com/~acmelasr/mountains/geogramsnf.html Plate Tectonic Settings and Magma Where plates CONVERGE, water is driven off the subducting plate,

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle?

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Forces That Shape Earth How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Plate Motion Mountain ranges are produced by plate tectonics. The theory of plate

More information

Lecture Outline Friday March 2 thru Wednesday March 7, 2018

Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Questions? Lecture Exam Friday March 9, 2018 Same time, Same room Bring Pencils and WSU ID 50 question Multiple Choice, Computer Graded Interlude

More information

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault.

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault. Strike-Slip Faults! Fault motion is parallel to the strike of the fault.! Usually vertical, no hanging-wall/footwall blocks.! Classified by the relative sense of motion. " Right lateral opposite block

More information

Chapter 10: Deformation and Mountain Building. Fig. 10.1

Chapter 10: Deformation and Mountain Building. Fig. 10.1 Chapter 10: Deformation and Mountain Building Fig. 10.1 OBJECTIVES Describe the processes of rock deformation and compare and contrast ductile and brittle behavior in rocks. Explain how strike and dip

More information

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials I. Properties of Earth Materials GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps Name When rocks are subjected to differential stress the resulting build-up in strain can

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

Structural Geology and Geology Maps Lab

Structural Geology and Geology Maps Lab Structural Geology and Geology Maps Lab Mesa College Geology 101 Lab Ray Rector: Instructor Structural Geology Lab Pre-Lab Resources Pre-Lab Internet Links 1) Fundamentals of Structural Geology 2) Visualizing

More information

1. classic definition = study of deformed rocks in the upper crust

1. classic definition = study of deformed rocks in the upper crust Structural Geology I. Introduction 1. classic definition = study of deformed rocks in the upper crust deformed includes translation, rotation, and strain (change of shape) All rocks are deformed in some

More information

Earth s Tectonic Plates

Earth s Tectonic Plates MASTER 49 6.2 3.7 5.4 Philippine Pacific 5.4 North American Juan de Fuca Caribbean Cocos 10.0 9.2 2.3 2.5 2.3 1.8 3.0 Indian-Australian 10.5 7.1 17.2 16.8 6.0 Nazca South American 11.1 10.3 7.3 3.7 7.5

More information

Mountains are then built by deforming crust: Deformation & Mountain Building. Mountains form where stresses are high!

Mountains are then built by deforming crust: Deformation & Mountain Building. Mountains form where stresses are high! Deformation & Mountain Building Where are mountains located? Deformation and Folding Mountain building Mountains form where stresses are high! Mountains form at all three types of plate boundaries where

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting. Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover

More information

Mohorovicic discontinuity separates the crust and the upper mantle.

Mohorovicic discontinuity separates the crust and the upper mantle. Structure of the Earth Chapter 7 The Earth is divided into 3 Main Layers 1. Crust outermost layer 1% of the Earth s mass thickness varies: 5 100 km two types: oceanic denser continental Mohorovicic discontinuity

More information

Shape Earth. Plate Boundaries. Building. Building

Shape Earth. Plate Boundaries. Building. Building Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Lesson 4 Chapter Wrap-Up Forces That Shape Earth Landforms at Plate Boundaries Mountain Building Continent Building How is Earth s surface shaped by plate

More information

YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS.

YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS. GRADE 9 YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS. Name: 1. Label the internal structure of the earth provided below. WRITE on the space provide. Oceanic Crust/Upper

More information

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis)

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis) Geology 101 Staple this part to part one of lab 6 and turn in Lab 6, part two: Structural geology (analysis) Recall that the objective of this lab is to describe the geologic structures of Cougar Mountain

More information

Section 2: How Mountains Form

Section 2: How Mountains Form Section 2: How Mountains Form Preview Objectives Mountain Ranges and Systems Plate Tectonics and Mountains Types of Mountains Objectives Identify the types of plate collisions that form mountains. Identify

More information

Instructor s Manual Chapter 10. Deformation, Mountain Building, and the Continents

Instructor s Manual Chapter 10. Deformation, Mountain Building, and the Continents Chapter 10 Table of Contents Chapter Outline Learning Outcomes Chapter Summary Lecture Suggestions Enrichment Topics Common Misconceptions Consider This Key Terms Internet Sites, Videos, Software, and

More information

Faults, folds and mountain building

Faults, folds and mountain building Faults, folds and mountain building Mountain belts Deformation Orogens (Oro = Greek all changes for mountain, in size, shape, genesis orientation, = Greek for or formation) position of a rock mass Structural

More information

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC Crustal Deformation Reading: Chapter 10 Pages 283-304 Review Questions 4, 6, 7, 10, 12, 15, 18, 20 FINAL EXAM NOON TO 2 PM, TUESDAY DEC. 5 HERE: Natural Science 101 BRING A SCAN TRON TURN IN YOUR REVIEW

More information

Earth s Many Landforms. Earth s Many Landforms. Earth s Many Landforms. Crustal Deformation. Crustal Deformation 10/22/2014

Earth s Many Landforms. Earth s Many Landforms. Earth s Many Landforms. Crustal Deformation. Crustal Deformation 10/22/2014 Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 24 EARTH S SURFACE LAND AND WATER Earth s Many Landforms Earth consists of seven continents: Africa, Antarctica, Asia, Australia, Europe,

More information

Part I. PRELAB SECTION To be completed before labs starts:

Part I. PRELAB SECTION To be completed before labs starts: Student Name: Physical Geology 101 Laboratory #13 Structural Geology II Drawing and Analyzing Folds and Faults Grade: Introduction & Purpose: Structural geology is the study of how geologic rock units

More information

Folding/Faulting: Topographic Expression of Folded Strata

Folding/Faulting: Topographic Expression of Folded Strata Folding/Faulting: Topographic Expression of Folded Strata Mountains: Orogenesis and Deformation Folding Faulting Joints & Fractures Domes and Basins Horst and Graben Rift Valleys US Examples: Sierra Nevada

More information

Folding. Faulting. Volcanoes

Folding. Faulting. Volcanoes Folding Faulting Volcanoes Most major global mountain ranges were formed by the collision of continental (tectonic) plates Fold mountains are actually formed by crust which have been uplifted and folded

More information

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC Crustal Deformation Reading: Chapter 10 Pages 283-294 FINAL EXAM 8 to 10 AM, THURSDAY DEC. 6 HERE: Natural Science 101 BRING A SCAN TRON TURN IN YOUR REVIEW QUESTIONS BEFORE THE TEST, PICK UP WHEN YOU

More information

Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building

Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building TECTONICS AND TECTONIC STRUCTURES Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building The plate theory Different stages are

More information

Chapter 7 Plate Tectonics. Plate tectonics accounts for important features of Earth s surface and major geologic events.

Chapter 7 Plate Tectonics. Plate tectonics accounts for important features of Earth s surface and major geologic events. Chapter 7 Plate Tectonics Plate tectonics accounts for important features of Earth s surface and major geologic events. 7-2 Alfred Wegener s Hypothesis of Continental Drift (1915) He noticed that the continents

More information

Name Class Date. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere c. asthenosphere d. mesosphere

Name Class Date. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere c. asthenosphere d. mesosphere Name Class Date Assessment Geology Plate Tectonics MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere

More information

Layers of the Earth Date: SWABT: Identify and describe the layers of the Earth and their characteristics

Layers of the Earth Date: SWABT: Identify and describe the layers of the Earth and their characteristics Layers of the Earth SWABT: Identify and describe the layers of the Earth and their characteristics CRUST Composition: Thickness: State of Matter: : Mostly Basalt : Mostly Granite : Crust and Upper Mantle

More information

Lab 6: Plate tectonics, structural geology and geologic maps

Lab 6: Plate tectonics, structural geology and geologic maps Geology 103 Name(s): Lab 6: Plate tectonics, structural geology and geologic maps Objective: To show the effects of plate tectonics on a large-scale set of rocks and to reconstruct the geological history

More information

Forces in Earth s Crust

Forces in Earth s Crust Forces in Earth s Crust (pages 180 186) Types of Stress (page 181) Key Concept: Tension, compression, and shearing work over millions of years to change the shape and volume of rock. When Earth s plates

More information

1. occurs when the oceanic crust slides under the continental crust.

1. occurs when the oceanic crust slides under the continental crust. 1. occurs when the oceanic crust slides under the continental crust. 2. What type of stress is shown? 3. Where two plates slide past one another is called a boundary. 4. What type of stress is shown? 5.

More information

Convergent plate boundaries. Objective to be able to explain the formation and key features of these zones.

Convergent plate boundaries. Objective to be able to explain the formation and key features of these zones. Convergent plate boundaries Objective to be able to explain the formation and key features of these zones. Destructive plate margins When plates collide due to convection currents/slab pull in the asthenosphere

More information

Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s

Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s References Information taken from several places including Prentice Hall Earth Science: @ http://www.eram.k12.ny.us/education/components/docmgr/default.php?sectiondetaili

More information

Deformation: Modification of Rocks by Folding and Fracturing

Deformation: Modification of Rocks by Folding and Fracturing CHAPTER 7 Deformation: Modification of Rocks by Folding and Fracturing Chapter Summary A geologic map is a scientific model of rock formations that are exposed on the Earth s surface showing outcrops,

More information

Chapter 7 Plate Tectonics

Chapter 7 Plate Tectonics Chapter 7 Plate Tectonics Earthquakes Earthquake = vibration of the Earth produced by the rapid release of energy. Seismic Waves Focus = the place within the Earth where the rock breaks, producing an earthquake.

More information

Evidence from the Surface. Chapter 02. Continental Drift. Fossil Evidence for Pangaea. Seafloor Spreading. Seafloor Spreading 1/31/2012

Evidence from the Surface. Chapter 02. Continental Drift. Fossil Evidence for Pangaea. Seafloor Spreading. Seafloor Spreading 1/31/2012 Evidence from the Surface Surface landforms Continental shelf and slope Abyssal Plane Mid-oceanic ridge Oceanic Trenches Chapter 02 Continental Drift Continental Drift - a hypothesis that the continents

More information

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA A map that shows Earth s Topographic Map surface topography, which is Earth s shape and features Contour

More information

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge? 1. Crustal formation, which may cause the widening of an ocean, is most likely occurring at the boundary between the A) African Plate and the Eurasian Plate B) Pacific Plate and the Philippine Plate C)

More information

Tectonic plates of the world

Tectonic plates of the world Mountain Building Tectonic plates of the world ISOSTACY Isostatic Rebound crust rises as a result of removal of mass This iceberg also demonstrates the process of isostatic rebound. Types of Mountains

More information

Geology of Landscapes Chapter 6 (Building Earth s Surface Faulting and Folding)

Geology of Landscapes Chapter 6 (Building Earth s Surface Faulting and Folding) Geology of Landscapes Chapter 6 (Building Earth s Surface Faulting and Folding) Process of _ that the earth s Stress and Strain Any solid material responds to a force in a way that depends on: pressure

More information

Plate Tectonics Notes

Plate Tectonics Notes Plate Tectonics Notes Last 30 Days Earthquakes Physical Features Last 30 Days Earthquakes with Plate Boundaries Earth s Structure Earth s Layers Core: Inner Core: Center of the earth, solid ball of metal

More information

Deformation of the Crust

Deformation of the Crust Deformation of the Crust Review Choose the best response. Write the letter of that choice in the space provided. 1. The state of balance between the thickness of the crust and the depth at which it rides

More information

Earth s Structure. Earth has 4 layers. The inner core, outer core, mantle and crust. How do we know???

Earth s Structure. Earth has 4 layers. The inner core, outer core, mantle and crust. How do we know??? Earth s Structure Earth has 4 layers. The inner core, outer core, mantle and crust. How do we know??? Adaptive Curriculum Determining Planet Layers from Seismic Waves Earth s Structure Scientists use earthquake

More information

Forces in Earth s Crust

Forces in Earth s Crust Forces in Earth s Crust This section explains how stresses in Earth s crust cause breaks, or faults, in the crust. The section also explains how faults and folds in Earth s crust form mountains. Use Target

More information

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 Why is there no oceanic crust older than 200 million years? SUBDUCTION If new oceanic crust is being continuously created along the earth

More information

Theme 7. Metamorphic rocks. Distinguishing rock types

Theme 7. Metamorphic rocks. Distinguishing rock types Theme 7. Metamorphic rocks. Distinguishing rock types 7.1. Metamorphic rocks formation 7.2. Classification of metamorphic rocks 7.3. Distinguishing rock types 7.1. Metamorphic rocks formation 7.1. Metamorphic

More information

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway The Earth is more than a giant ball made up of dirt, rocks, and minerals. The Earth may look like a giant ball from when looking at it from

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

Ch. 9 Review. Pgs #1-31 Write Questions and Answers

Ch. 9 Review. Pgs #1-31 Write Questions and Answers Ch. 9 Review Pgs. 356-357 #1-31 Write Questions and Answers 356-357 #1-5 Answers 1. The layer of the upper mantle that can flow is the: A - Asthenosphere 2. Most scientists rejected Wegener s theory of

More information

You must take the exam in the lecture section for which you are registered. Any exceptions must be cleared with the instructor in advance.

You must take the exam in the lecture section for which you are registered. Any exceptions must be cleared with the instructor in advance. Geo 101, Fall 2000 Review Questions for Final Exam GEOLOGIC TIME AND FOLDING AND FAULTING THE FINAL EXAM FOR MWF CLASS WILL BE TUESDAY 1400 THE FINAL EXAM FOR TR CLASS WILL BE FRIDAY 930 These questions

More information

Name Class Date. Study Guide for 7 th Grade Final Exam (Semester One)

Name Class Date. Study Guide for 7 th Grade Final Exam (Semester One) Name Class Date Study Guide for 7 th Grade Final Exam (Semester One) 1. What are the steps of the scientific method? Define the problem or question Form a hypothesis (MUST BE TESTABLE) o (identify variables)

More information

Plate Tectonics - Demonstration

Plate Tectonics - Demonstration Name: Reference: Prof. Larry Braile - Educational Resources Copyright 2000. L. Braile. Permission granted for reproduction for non-commercial uses. http://web.ics.purdue.edu/~braile/indexlinks/educ.htm

More information

GEOL 110. Sedimentary Layering. Geologic Structures (faults, joints, folds), Unconformities, Karst. Sedimentary Layering 9/23/17. Geologic Structures

GEOL 110. Sedimentary Layering. Geologic Structures (faults, joints, folds), Unconformities, Karst. Sedimentary Layering 9/23/17. Geologic Structures GEOL 110 Sedimentary Layering Geologic Structures (faults, joints, folds), Unconformities, Karst Layering = horizontal, continuous banding produced during sediment deposition Sedimentary Layering Geologic

More information

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates.

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. As you can see, some of the plates contain continents and others are mostly under the ocean.

More information

Faults, Fossils, Rocks and Minerals Review:

Faults, Fossils, Rocks and Minerals Review: Faults, Fossils, Rocks and Minerals Review: 1. The preserved remains or traces of organisms that lived in the past are. - Fossils 2. How do Fossils form? - A dead organism becomes buried in sediment 3.

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

10. Paleomagnetism and Polar Wandering Curves.

10. Paleomagnetism and Polar Wandering Curves. Map of ocean floor Evidence in Support of the Theory of Plate Tectonics 10. Paleomagnetism and Polar Wandering Curves. The Earth's magnetic field behaves as if there were a bar magnet in the center of

More information

Chapter Review USING KEY TERMS. asthenosphere uplift continental drift. known as. tectonic plates move. object. UNDERSTANDING KEY IDEAS

Chapter Review USING KEY TERMS. asthenosphere uplift continental drift. known as. tectonic plates move. object. UNDERSTANDING KEY IDEAS Skills Worksheet Chapter Review USING KEY TERMS 1. Use the following terms in the same sentence: crust, mantle, and core. Complete each of the following sentences by choosing the correct term from the

More information

A Classification of Forces Affecting the Landforms

A Classification of Forces Affecting the Landforms Landforms There are many forms of land on the surface of the earth. Continents, oceans, mountains, plateaus, valleys, deltas, etc., are some of the examples of landforms. Landforms can be divided into

More information

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH UNIT 3.2 An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. USE THESE NOTES: OUR HOME PLANET EARTH: What do you know about our planet? SO.HOW

More information