The Deep Fault Drilling Project, Alpine Fault Getting Inside the Earthquake Machine

Size: px
Start display at page:

Download "The Deep Fault Drilling Project, Alpine Fault Getting Inside the Earthquake Machine"

Transcription

1 The Deep Fault Drilling Project, Alpine Fault Getting Inside the Earthquake Machine John Townend Director, EQC Programme in Seismology and Fault Mechanics Head, School of Geography, Environment and Earth Sciences Victoria University of Wellington

2 Talk outline Recent, less recent, and future earthquakes in southern New Zealand How do big faults work? What do we think is important? Where does the Alpine Fault fit in? The Deep Fault Drilling Project (DFDP) Recent activities and results from DFDP-2 Summary and concluding thoughts

3 Talk outline Recent, less recent, and future earthquakes in southern New Zealand How do big faults work? What do we think is important? Where does the Alpine Fault fit in? The Deep Fault Drilling Project (DFDP) Recent activities and results from DFDP-2 Summary and concluding thoughts

4 30km NIWA 5 cm/yr New Zealand Plate Boundary 4 cm/yr 3.5 cm/yr

5 Prior to September 2010, few New Zealanders had experienced a large or disruptive earthquake

6

7 About 300 years and counting...

8 About 300 years and counting...

9 About 300 years and counting... Berryman et al., Science, 2012

10 About 300 years and counting... Based on this >6000 year record of ground-breaking earthquakes, the Alpine Fault is concluded to be late in its average interseismic cycle, with a ~28% likelihood of an M W 8 earthquake in the next 50 years Berryman et al., Science, 2012

11 There are little earthquakes around We use seismic waves produced by earthquakes to image the Alpine Fault tomographically, just as doctors image us with X-rays Feenstra et al., 2016

12 The fault is alive These bright spots represent fault zone guided waves, generated by earthquakes occurring on or very close to the deep Alpine Fault Eccles et al., 2015

13 The fault is alive We detect repeated small bursts of seismic energy known as lowfrequency earthquakes that show that the fault is slipping seismically Chamberlain et al., 2014

14 About 300 years and counting... Future Alpine Fault earthquakes will differ in many respects from what New Zealand has experienced since the 2010 Darfield earthquake: (1) the character of ground motions; (2) the extent of damage; and (3) the duration of aftershocks and other long-term effects

15 Talk outline Recent, less recent, and future earthquakes in southern New Zealand How do big faults work? What do we think is important? Where does the Alpine Fault fit in? The Deep Fault Drilling Project (DFDP) Recent activities and results from DFDP-2 Summary and concluding thoughts

16 What do we think matters? Earthquakes involve frictional sliding governed by the material properties of the rocks involved Rocks are saturated with fluids, whose pressures act to reduce friction Pressures are governed by the ease with which fluids can dissipate ( permeability ) Permeability is controlled by chemistry-, temperature- and stress-dependent processes Chemistry, temperature, and stress are controlled by tectonics and hydrology

17 What do we think matters? Earthquakes involve frictional sliding governed by the material properties of the rocks involved Fundamentally, the processes involved in Rocks are saturated with fluids, whose pressures act to reduce earthquake friction nucleation, propagation, radiation, and re-loading are in different ways Pressures intimately are governed associated by with the the ease chemical, with which fluids can dissipate ( permeability ) thermal, and hydraulic effects of fluid transport through the fault zone Permeability is controlled by chemistry-, temperature- and stress-dependent processes Chemistry, temperature, and stress are controlled by tectonics and hydrology

18 Deep Fault Drilling Project Preliminary workshop in 2007 ICDP workshop in 2009 Stage 1 completed at Gaunt Creek, near Whataroa, in February 2011 Stage 2 (targeting 1.3 km depth), Whataroa, Sept to Jan. 2015

19 Deep Fault Drilling Project How do large plate boundary faults evolve? How do they generate earthquakes? What controls the timing of Alpine Fault EQs? What are the temperatures, pressures, and stresses in the fault zone, late in the EQ cycle?

20 Deep Fault Drilling Project How do large plate boundary faults evolve? How do they generate earthquakes? What controls the timing of Alpine Fault EQs? What are the temperatures, pressures, and stresses in the fault zone, late in the EQ cycle? To sample ambient conditions, materials, and properties in situ, we need to drill and the Alpine Fault is the place to do this

21 Alpine Fault at Gaunt Creek

22 Alpine Fault at Gaunt Creek mylonites from 25 km crushed rock 15,000 yr old gravels Slide courtesy of Richard Norris, U. Otago

23 DFDP-1 technical goals Drill two boreholes to intersect the fault at ~150 m Retrieve core samples for detailed analysis Conduct geophysical logging of both holes Install permanent monitoring equipment

24 DFDP-1 technical goals Drill two boreholes to intersect the fault at ~150 m Retrieve core samples for detailed analysis Conduct geophysical logging of both holes Install permanent monitoring equipment

25 Sutherland et al., Geology, m Integrated Gaunt Creek cross-section A. Fault zone structure B. Geology from outcrop DFDP-1B >20 m 150 m Fractured mylonite k = 10 m Cemented cataclasite k = 10 m Gravel 3 Fault core k = 10 m Footwall cataclasite k = 10 m m DFDP-1A Gouge <2 m PSS < m Topographic surface Water level Gravel k = 10 m Gravel 4 Fractured mylonite Cemented cataclasite Active river bed Water level inferred from DFDP-1B D. Regional cross-section Max SE 8 km 6 Min Sea level Alpine Fault 4 2 Gravel 1 C. Location South Island Australian New Zealand Plate DFDP AD earthquake 1620 AD 1430 AD DFDP-1 Alpine fault Gravel mm/yr Pacific Plate km Elevation (km) km NW N

26 Talk outline Recent, less recent, and future earthquakes in southern New Zealand How do big faults work? What do we think is important? Where does the Alpine Fault fit in? The Deep Fault Drilling Project (DFDP) Recent activities and results from DFDP-2 Summary and concluding thoughts

27 The goal of DFDP-2 is to determine the physical conditions at upper- and mid-crustal depths within a major active continental fault, the Alpine Fault, which is late in its earthquake cycle and which can be monitored over coming decades. DFDP-2 is principally funded by: the International Continental Scientific Drilling Program (ICDP); the Royal Society of New Zealand; GNS Science; Victoria University of Wellington; the University of Otago; NZ Government (MBIE); and the UK Government (NERC).

28 Aerial view of drillsite 22 Oct Photo by Julian Thomson, GNS Science

29 Earthquake monitoring (plus nearby GeoNet and SAMBA sites)

30 Mud (and rock) samples 04 Oct Photo by Naoki Kato, Osaka University

31 Sample analysis 07 Oct Photo by Lucie Capova, Victoria University

32 Gas monitoring 04 Oct Photos by Lucie Capova, Victoria University Gas chemistry measurements were made automatically every few minutes throughout the drilling

33 Hot springs! 10 Oct Photos by Naoki Kato Osaka University

34 Wireline tools 30 Oct Photo by Julian Thomson, GNS Science

35 We measure everything

36 The rock is full of fractures

37 Borehole enlargement Low deep/shallow res. High sonic attenuation Structures in BHTV Analysis by Mai-Linh Doan and Cecile Massiot

38 Lots of locals came to see us Westland High School, December 2014

39 A technical failure in mid-december brought drilling to an abrupt and premature end, but not before we had successfully installed an optical fibre extending to 890 m for ongoing temperature and seismic measurements

40 Thermal profile It is much hotter than anticipated: the equilibrium geotherm is ~140 C/km (DFDP-1 gave 63 C/km) Fantastic! Documenting the fault s thermal structure is a key project objective related to many seismogenic questions But the temperatures pose technical and logistical problems

41 Key findings from DFDP-2 Very high temperatures (~140 C/km) High fluid pressures (~80 m head at 800 m) Low permeability

42 Key findings from DFDP-2 Very high temperatures (~140 C/km) What do these mean for the max. depth of EQ slip? High fluid pressures (~80 m head at 800 m) How do these influence EQ nucleation and rupture? Low permeability Is this what governs the time required to re-load?

43 University of Calgary EnviroVibe seismic source in action

44 Shots Receivers

45 Talk outline Recent, less recent, and future earthquakes in southern New Zealand How do big faults work? What do we think is important? Where does the Alpine Fault fit in? The Deep Fault Drilling Project (DFDP) Recent activities and results from DFDP-2 Summary and concluding thoughts

46 Possible ramifications At m scales, the fault zone is asymmetric in several senses: fracturing, geometry, compliance, permeability The SE (Pacific) side is more fractured than the NW (Australian) side but stiffer and less permeable Does the fault tend to rupture in one direction (NE)?

47 Possible ramifications At m scales, the fault zone is asymmetric in several senses: fracturing, geometry, compliance, permeability What would you do with a minute or two s warning that an earthquake was heading your way? The SE (Pacific) side is more fractured than the NW (Australian) side but stiffer and less permeable Does the fault tend to rupture in one direction (NE)?

48 Summary The central Alpine Fault is late in its typical earthquake cycle and an internationally significant target for understanding fault zone mechanics and the earthquake machine DFDP-2 did not reach its target depth of 1.3 km but has yielded exceptional petrophysical, hydrogeological, and thermal measurements Those data are currently the focus of analysis Planning for the next attempt is underway

49 Concluding thoughts Good science provides the context in which engineering and planning prepare society to cope with as-yet unexperienced events Media and communications networks let the public see and discuss what is happening ( data ) in great and immediate detail The responsibility of scientists to act as observers, interpreters and communicators, converting data into information and knowledge, is thus more important than ever

50 rupertsnztectonics.blogspot.co.nz Facebook: Deep Fault Drilling Project -2 Youtube: GNS Science

The Tectonic Setting of New Zealand

The Tectonic Setting of New Zealand The Tectonic Setting of New Zealand we are here Subduction-driven tectonics The New Zealand continent Papua New Guinea Australia 3,000,000 sq km micro-continent back-arc basin trench volcanism faults accretionary

More information

The Seismic Hazardscape of New Zealand

The Seismic Hazardscape of New Zealand The Seismic Hazardscape of New Zealand Mark Stirling Professor of Earthquake Science Introduction Plate tectonic setting of New Zealand Seismic hazards for University of Otago campuses Kaikoura earthquake

More information

The San Andreas Fault Observatory at Depth: Recent Site Characterization Studies and the 2.2-Km-Deep Pilot Hole

The San Andreas Fault Observatory at Depth: Recent Site Characterization Studies and the 2.2-Km-Deep Pilot Hole The San Andreas Fault Observatory at Depth: Recent Site Characterization Studies and the 2.2-Km-Deep Pilot Hole Steve Hickman and Bill Ellsworth (USGS) Mark Zoback (Stanford University) and the Pre-EarthScope

More information

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE Tim Stern and SAHKE team* * VUW, GNS, University of Southern California, University of Tokyo(Japan) SAHKE = Seismic

More information

LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science

LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science Date: 23 January 2018 I. Reminder: Exam #1 is scheduled for Feb 1st one week from Thursday o

More information

Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake

Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake D.C. Lawton* (University of Calgary), M.B. Bertram (University of Calgary), K.W. Hall (University of Calgary), K.L. Bertram

More information

The Canterbury Earthquakes: Scientific answers to critical questions

The Canterbury Earthquakes: Scientific answers to critical questions OFFICE OF THE PRIME MINISTER S SCIENCE ADVISORY COMMITTEE The Canterbury Earthquakes: Scientific answers to critical questions The Canterbury region has had six months of unexpected and extremely difficult

More information

21. Earthquakes I (p ; 306)

21. Earthquakes I (p ; 306) 21. Earthquakes I (p. 296-303; 306) How many people have been killed by earthquakes in the last 4,000 years? How many people have been killed by earthquakes in the past century? What two recent earthquakes

More information

Geothermal Application of Borehole Logging in New Zealand

Geothermal Application of Borehole Logging in New Zealand Geothermal Application of Borehole Logging in New Zealand D. McNamara, C. Massiot, M. Lawrence HADES 2011, 25th May New Zealand s High Temperature Geothermal Logging Drilling Parameters e.g. rate of penetration

More information

What is an Earthquake?

What is an Earthquake? Earthquakes What is an Earthquake? Earthquake - sometimes violent shaking of ground caused by movement of Earth s tectonic plates; creates seismic waves Often followed by smaller earthquakes (aftershocks);

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

PLATE TECTONIC PROCESSES

PLATE TECTONIC PROCESSES Lab 9 Name Sec PLATE TECTONIC PROCESSES 1. Fill in the blank spaces on the chart with the correct answers. Refer to figures 2.3, 2.4 p.33 (2.2 and 2.3 on p. 23) as needed. 2. With your knowledge of different

More information

TEGAM s Connection to the EarthScope Project

TEGAM s Connection to the EarthScope Project TEGAM s Connection to the EarthScope Project Introduction The EarthScope Project is an undertaking funded by the National Science Foundation in partnership with the United States Geological Survey and

More information

New Zealand RS&T Curriculum Vitae Template

New Zealand RS&T Curriculum Vitae Template New Zealand RS&T Curriculum Vitae Template PART 1 1a. Personal details Full name Prof John Townend Present position Professor of Geophysics and Head of School Organisation/Employer Victoria University

More information

Jocelyn Karen Campbell

Jocelyn Karen Campbell THE UNCERTAINTIES IN ASSESSING THE IMPACT OF REGIONAL SEISMICITY AT THE WIL SITE Statement of Evidence by Jocelyn Karen Campbell A CANTERBURY FAULTS coded by type CHARACTERISTICS OF THRUST FAULTS IN CANTERBURY

More information

S e i s m i c W a v e s

S e i s m i c W a v e s Project Report S e i s m i c W a v e s PORTLAND STATE UNIVERSITY PHYSICS 213 SPRING TERM 2005 Instructor: Dr. Andres La Rosa Student Name: Prisciliano Peralta-Ramirez Table Of Contents 1. Cover Sheet 2.

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

Quiz Seven (2:00 to 2:02 PM)

Quiz Seven (2:00 to 2:02 PM) Quiz Seven (2:00 to 2:02 PM) UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 22: Agents of Metamorphism Instructor: Dr. Douglas W. Haywick Last Time Rock Deformation A) Confining pressure

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results Earthquake patterns in the Flinders Ranges - Temporary network 2003-2006, preliminary results Objectives David Love 1, Phil Cummins 2, Natalie Balfour 3 1 Primary Industries and Resources South Australia

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND A magnitude 6.3 earthquake shook the southern New Zealand city of Christchurch. At least 100 people are reported dead, and there are reports of collapsed buildings, cracked streets and flooding due to

More information

IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6

IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6 IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6 Regional Workshop on Volcanic, Seismic, and Tsunami Hazard Assessment Related to NPP Siting Activities and

More information

Risk Evaluation. Todd Shipman PhD, Alberta Geological Survey/Alberta Energy Regulator November 17 th,2017 Induced Seismicity Workshop, Yellowknife NWT

Risk Evaluation. Todd Shipman PhD, Alberta Geological Survey/Alberta Energy Regulator November 17 th,2017 Induced Seismicity Workshop, Yellowknife NWT Risk Evaluation Todd Shipman PhD, Alberta Geological Survey/Alberta Energy Regulator November 17 th,2017 Induced Seismicity Workshop, Yellowknife NWT Risk Management Approach to Induced Seismicity Establishing

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

PART I Hot Dry Rock Geothermal Energy: History and Potential of the Newest and Largest Renewable Energy Resource

PART I Hot Dry Rock Geothermal Energy: History and Potential of the Newest and Largest Renewable Energy Resource Contents PART I Hot Dry Rock Geothermal Energy: History and Potential of the Newest and Largest Renewable Energy Resource Chapter 1 Serendipity A Brief History of Events Leading to the Hot Dry Rock Geothermal

More information

Azimuth with RH rule. Quadrant. S 180 Quadrant Azimuth. Azimuth with RH rule N 45 W. Quadrant Azimuth

Azimuth with RH rule. Quadrant. S 180 Quadrant Azimuth. Azimuth with RH rule N 45 W. Quadrant Azimuth 30 45 30 45 Strike and dip notation (a) N30 E, 45 SE ("Quadrant"): the bearing of the strike direction is 30 degrees east of north and the dip is 45 degrees in a southeast (SE) direction. For a given strike,

More information

Lithospheric plates. Geology of the Batemans Bay region. Tectonic processes

Lithospheric plates. Geology of the Batemans Bay region. Tectonic processes 1 Lithospheric plates Enormous heat sources in the Earth s deep interior, acquired during the very early history of the planet billions of years ago continue to drive present-day geological at the surface.

More information

Name: Date: Per. Plate Tectonics Study Guide (Ch. 5)

Name: Date: Per. Plate Tectonics Study Guide (Ch. 5) Name: Date: Per. Plate Tectonics Study Guide (Ch. 5) 1. Fill in the Chart about heat Transfer Types Description Examples Where it takes place Radiation Sun s rays reaching earth Heat Transfer between objects

More information

A magnitude 7.8 earthquake has occurred km (63.3 mi) ESE of Suva, Fiji at a depth of km (378 miles).

A magnitude 7.8 earthquake has occurred km (63.3 mi) ESE of Suva, Fiji at a depth of km (378 miles). A magnitude 7.8 earthquake has occurred 101.8 km (63.3 mi) ESE of Suva, Fiji at a depth of 608.6 km (378 miles). There is no risk of a tsunami from an earthquake at this depth. Images courtesy of Google

More information

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Introduction Our proposal focuses on the San Andreas fault system in central and northern California.

More information

J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science)

J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science) 29829. One 4D geomechanical model and its many applications J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science) Main objectives (i) Field case study demonstrating application

More information

Verification of the asperity model using seismogenic fault materials Abstract

Verification of the asperity model using seismogenic fault materials Abstract Verification of the asperity model using seismogenic fault materials Takehiro Hirose*, Wataru Tanikawa and Weiren Lin Kochi Institute for Core Sample Research/JAMSTEC, JAPAN * Corresponding author: hiroset@jamstec.go.jp

More information

The Mine Geostress Testing Methods and Design

The Mine Geostress Testing Methods and Design Open Journal of Geology, 2014, 4, 622-626 Published Online December 2014 in SciRes. http://www.scirp.org/journal/ojg http://dx.doi.org/10.4236/ojg.2014.412046 The Mine Geostress Testing Methods and Design

More information

Plate Tectonics. By Destiny, Jarrek, Kaidence, and Autumn

Plate Tectonics. By Destiny, Jarrek, Kaidence, and Autumn Plate Tectonics By Destiny, Jarrek, Kaidence, and Autumn .The Denali Fault and San Andreas Fault - The San Andreas Fault is a continental transform fault that extends roughly 1300 km (810 miles) through

More information

Magnitude 7.8 SCOTIA SEA

Magnitude 7.8 SCOTIA SEA A magnitude 7.8 earthquake has occurred in the South Orkney Island region in the Scotia Sea. According to the USGS, this earthquake is the latest in a series of moderate-tolarge earthquakes to strike this

More information

Plate Tectonics and Earth s Structure

Plate Tectonics and Earth s Structure Plate Tectonics and Earth s Structure Chapter Eight: Plate Tectonics Chapter Nine: Earthquakes Chapter Ten: Volcanoes Chapter Nine: Earthquakes 9.1 What is an Earthquake? 9.2 Seismic Waves 9.3 Measuring

More information

The Earthquake Cycle Chapter :: n/a

The Earthquake Cycle Chapter :: n/a The Earthquake Cycle Chapter :: n/a A German seismogram of the 1906 SF EQ Image courtesy of San Francisco Public Library Stages of the Earthquake Cycle The Earthquake cycle is split into several distinct

More information

Earthquakes & Volcanoes

Earthquakes & Volcanoes Earthquakes & Volcanoes Geology - the study of solid Earth, the rocks of which it is composed, and the processes by which they change geo = Earth; ology = study of Earth s Layers Plate Tectonics - the

More information

Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS)

Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) Brittany Erickson (Portland State University) Junle Jiang (University of California, San Diego) SCEC DR-SEAS Workshop,

More information

DETAILS OF CATCHMENTS STUDIED

DETAILS OF CATCHMENTS STUDIED GSA Data Data Repository itemitem 2006048 DETAILS OF CATCHMENTS STUDIED 0 10 20 km Jacksons Bay Cascade River A Martyr R. Jerry R. B Cascade River Hokuri Creek, North Hokuri Creek, South Lake McKerrow

More information

Physical Geology Lab. Teacher Check (show your screen to your teacher) Part ONE: Dynamic Earth. Continents Over Time.

Physical Geology Lab. Teacher Check (show your screen to your teacher) Part ONE: Dynamic Earth. Continents Over Time. Physical Geology Lab Name Hour Part ONE: Dynamic Earth Earth s Structure Name the Layer: The only liquid layer Only a few miles thick (under oceans) Mostly solid iron and nickel Made of hot, semi-solid

More information

Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into

Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into Christchurch, but now moving away (23 December in particular).

More information

Bonn, Germany MOUTAZ DALATI. General Organization for Remote Sensing ( GORS ), Syria Advisor to the General Director of GORS,

Bonn, Germany MOUTAZ DALATI. General Organization for Remote Sensing ( GORS ), Syria Advisor to the General Director of GORS, Bonn, Germany Early Warning System is needed for Earthquakes disaster mitigation in Syria Case Study: Detecting and Monitoring the Active faulting zones along the Afro-Arabian-Syrian Rift System MOUTAZ

More information

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update 01-October-2009 Christophe Vigny Directeur de recherches at CNRS Laboratoire de Géologie Geoscience Dept. Of ENS,

More information

Earthquake Lab! Seismic Waves 1. What do scientists believe the Earth is made of?

Earthquake Lab! Seismic Waves 1. What do scientists believe the Earth is made of? Name: Earthquake Lab! Seismic Waves 1. What do scientists believe the Earth is made of? Period: 2. How do scientists make measurements of inside the Earth? 3. What are the two types of Earthquake waves?

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

Preliminary report on the Canterbury Earthquake South Island of New Zealand , M 6.3

Preliminary report on the Canterbury Earthquake South Island of New Zealand , M 6.3 Preliminary report on the Canterbury Earthquake South Island of New Zealand 21.02.2011, M 6.3 Kyriazis Pitilakis and the group of - Aristotle University Thessaloniki, Greece. General 2 General 147 people

More information

Outcome C&D Study Guide

Outcome C&D Study Guide Name: Class: Outcome C&D Study Guide Identify the layers of Earth s interior Lithosphere the upper most layer of the earth that includes the crust and the hard outer mantle. It is fractured into tectonic

More information

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. GEOLOGY Geologists scientists who study the forces that make and shape the Earth Geologists

More information

Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013

Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013 Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013 Abstract Earthquakes do not fit into the class of models we discussed in Physics 219B. Earthquakes

More information

Lecture Outline Friday March 2 thru Wednesday March 7, 2018

Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Questions? Lecture Exam Friday March 9, 2018 Same time, Same room Bring Pencils and WSU ID 50 question Multiple Choice, Computer Graded Interlude

More information

2016 Kaikoura Earthquake (NZ) Effects & Phenomena. Trevor Matuschka With special acknowledgement Dan Forster (Damsafety Intelligence)

2016 Kaikoura Earthquake (NZ) Effects & Phenomena. Trevor Matuschka With special acknowledgement Dan Forster (Damsafety Intelligence) 2016 Kaikoura Earthquake (NZ) Effects & Phenomena Trevor Matuschka With special acknowledgement Dan Forster (Damsafety Intelligence) Contents 1. Kaikoura Earthquake where and what happened 2. Seismic and

More information

Section 2: How Mountains Form

Section 2: How Mountains Form Section 2: How Mountains Form Preview Objectives Mountain Ranges and Systems Plate Tectonics and Mountains Types of Mountains Objectives Identify the types of plate collisions that form mountains. Identify

More information

IODP drilling and core storage facilities

IODP drilling and core storage facilities 4 IODP drilling and core storage facilities Neville Exon As the knowledge obtainable from ocean drilling is various and extensive, its end-users are similarly various and extensive. Scientific ocean drilling

More information

The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1

The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1 The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1 Graeme BLICK, John BEAVAN, Chris CROOK, Nic DONNELLY Keywords: Darfield Earthquake, control, survey,

More information

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes Earthquakes 1 Topic 4 Content: Earthquakes Presentation Notes Earthquakes are vibrations within the Earth produced by the rapid release of energy from rocks that break under extreme stress. Earthquakes

More information

GEOLOGY MEDIA SUITE Chapter 13

GEOLOGY MEDIA SUITE Chapter 13 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 13 Earthquakes 2010 W.H. Freeman and Company Three different types of seismic waves are recorded by seismographs Key Figure

More information

This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010.

This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010. 1 of 5 04/12/2012 11:05 a.m. This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010. Why are we getting so many earthquakes?

More information

Plate Tectonics Tutoiral. Questions. Teacher: Mrs. Zimmerman. Plate Tectonics and Mountains Practice Test

Plate Tectonics Tutoiral. Questions. Teacher: Mrs. Zimmerman. Plate Tectonics and Mountains Practice Test Teacher: Mrs. Zimmerman Print Close Plate Tectonics and Mountains Practice Test Plate Tectonics Tutoiral URL: http://www.hartrao.ac.za/geodesy/tectonics.html Questions 1. Fossils of organisms that lived

More information

ADDITIONAL RESOURCES. Duration of resource: 30 Minutes. Year of Production: Stock code: VEA Resource written by: Andrew Clarke BA Dip Tchg

ADDITIONAL RESOURCES. Duration of resource: 30 Minutes. Year of Production: Stock code: VEA Resource written by: Andrew Clarke BA Dip Tchg ADDITIONAL RESOURCES The destructive and unexpected nature of earthquakes has remained a constant threat since civilisation began. Suitable for all secondary audiences, this two-part program firstly examines

More information

12. The diagram below shows the collision of an oceanic plate and a continental plate.

12. The diagram below shows the collision of an oceanic plate and a continental plate. Review 1. Base your answer to the following question on the cross section below, which shows the boundary between two lithospheric plates. Point X is a location in the continental lithosphere. The depth

More information

Dangerous tsunami threat off U.S. West Coast

Dangerous tsunami threat off U.S. West Coast Earthquakes Ch. 12 Dangerous tsunami threat off U.S. West Coast Earthquakes What is an Earthquake? It s the shaking and trembling of the Earth s crust due to plate movement. The plates move, rocks along

More information

Lifelines mitigation in Hawke s Bay

Lifelines mitigation in Hawke s Bay Lifelines mitigation in Hawke s Bay N.L. Evans Opus International Consultants (Member) NZSEE 2002 Conference ABSTRACT: This paper summarizes the findings of the recently completed Hawke s Bay Engineering

More information

Drilling Induced Fracture (DIF) Characterization and Stress Pattern Analysis of the Southern McMurdo Sound (SMS) Core, Vitoria Land Basin, Antarctica

Drilling Induced Fracture (DIF) Characterization and Stress Pattern Analysis of the Southern McMurdo Sound (SMS) Core, Vitoria Land Basin, Antarctica Drilling Induced Fracture (DIF) Characterization and Stress Pattern Analysis of the Southern McMurdo Sound (SMS) Core, Vitoria Land Basin, Antarctica ABSTRACT Ezer Patlan Academic Affiliation, Fall 2008:

More information

Finding Large Capacity Groundwater Supplies for Irrigation

Finding Large Capacity Groundwater Supplies for Irrigation Finding Large Capacity Groundwater Supplies for Irrigation December 14, 2012 Presented by: Michael L. Chapman, Jr., PG Irrigation Well Site Evaluation Background Investigation Identify Hydrogeologic Conditions

More information

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates.

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. As you can see, some of the plates contain continents and others are mostly under the ocean.

More information

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material undergoes plastic deformation when stress exceeds yield stress σ 0 Permanent strain results from

More information

Pre-earthquake activity in North-Iceland Ragnar Stefánsson 1, Gunnar B. Guðmundsson 2, and Þórunn Skaftadóttir 2

Pre-earthquake activity in North-Iceland Ragnar Stefánsson 1, Gunnar B. Guðmundsson 2, and Þórunn Skaftadóttir 2 International Workshop on Earthquakes in North Iceland Húsavík, North Iceland, 31 May - 3 June 2016 Pre-earthquake activity in North-Iceland Ragnar Stefánsson 1, Gunnar B. Guðmundsson 2, and Þórunn Skaftadóttir

More information

The Structure of the Earth and Plate Tectonics

The Structure of the Earth and Plate Tectonics The Structure of the Earth and Plate Tectonics Agree or Disagree? 1. The Earth if made up of 4 different layers. 2. The crust (where we live) can be made of either less dense continental crust or the more

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lecture 20, 30 Nov. 2017 www.geosc.psu.edu/courses/geosc508 Seismic Spectra & Earthquake Scaling laws. Seismic Spectra & Earthquake Scaling laws. Aki, Scaling law

More information

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes!

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes! 51-100-21 Environmental Geology Summer 2006 Tuesday & Thursday 6-9:20 p.m. Dr. Beyer Earthquakes Ch. 5 I. Locations of Earthquakes II. Earthquake Processes III. Effects of Earthquakes IV. Earthquake Risk

More information

Supplement A. Effective Coulomb Stress Analysis We assessed changes in Coulomb stress beneath reservoirs by the general theory of decoupled linear poroelasticity [Biot, 1956; Roeloffs, 1988; Wang 2000;

More information

Modeling pressure response into a fractured zone of Precambrian basement to understand deep induced-earthquake hypocenters from shallow injection

Modeling pressure response into a fractured zone of Precambrian basement to understand deep induced-earthquake hypocenters from shallow injection Modeling pressure response into a fractured zone of Precambrian basement to understand deep induced-earthquake hypocenters from shallow injection S. Raziperchikolaee 1 and J. F. Miller 1 Abstract Analysis

More information

Lecture Outline Wednesday-Monday April 18 23, 2018

Lecture Outline Wednesday-Monday April 18 23, 2018 Lecture Outline Wednesday-Monday April 18 23, 2018 Questions? Lecture Final Exam Lecture Section 1 Friday May 4, 8:00-10:00am Lecture Section 2 Friday May 4, 3:10-5:10 pm Final Exam is 70% new material

More information

Abstracts ESG Solutions

Abstracts ESG Solutions Abstracts ESG Solutions 2015-2016 For more information, please contact Melissa Hoy, Technical Marketing Coordinator at melissa.hoy@esgsolutions.com Visit us online at www.esgsolutions.com Abstract #1 Fracture

More information

Description of faults

Description of faults GLG310 Structural Geology Description of faults Horizontal stretch Crustal thickness Regional elevation Regional character Issues Normal Thrust/reverse Strike-slip >1 1 in one direction and < 1 in

More information

Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault

Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault David R. Shelly USGS, Menlo Park Shelly and Hardebeck, GRL, 2010 Collaborators: Jeanne Hardebeck

More information

The Structure of the Earth and Plate Tectonics

The Structure of the Earth and Plate Tectonics The Structure of the Earth and Plate Tectonics Structure of the Earth The Earth is made up of 4 main layers: Inner Core Outer Core Mantle Crust Crust Mantle Outer core Inner core The Crust This is where

More information

Magnitude 8.2 FIJI. A magnitude 8.2 earthquake occurred km (226.7 mi) E of Suva, Fiji at a depth of km (350 miles).

Magnitude 8.2 FIJI. A magnitude 8.2 earthquake occurred km (226.7 mi) E of Suva, Fiji at a depth of km (350 miles). A magnitude 8.2 earthquake occurred 364.8 km (226.7 mi) E of Suva, Fiji at a depth of 563.4 km (350 miles). There is no risk of a tsunami from an earthquake at this depth. Images courtesy of Google The

More information

Magnitude 7.5 PALU, INDONESIA

Magnitude 7.5 PALU, INDONESIA A magnitude 7.5 earthquake occurred 80.8 km (50.2 mi) north of Palu, Indonesia at a depth of 10 km (6.2 miles). This earthquake triggered a tsunami with wave heights up to 2 m (6.6 ft) that an official

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

MAR110 LECTURE #6 West Coast Earthquakes & Hot Spots

MAR110 LECTURE #6 West Coast Earthquakes & Hot Spots 17 September 2007 Lecture 6 West Coast Earthquakes & Hot Spots 1 MAR110 LECTURE #6 West Coast Earthquakes & Hot Spots Figure 6.1 Plate Formation & Subduction Destruction The formation of the ocean crust

More information

PROBLEM SET #X. 2) Draw a cross section from A-A using the topographic profile provided on page 3.

PROBLEM SET #X. 2) Draw a cross section from A-A using the topographic profile provided on page 3. PROBLEM SET #X PART A: The geologic map on page 3 is from an area consisting of faulted Miocene sedimentary rocks. There are two major faults exposed here: the Rattlesnake fault and the Jackrabbit fault.

More information

Geomechanical Analysis of Hydraulic Fracturing Induced Seismicity at Duvernay Field in Western Canadian Sedimentary Basin

Geomechanical Analysis of Hydraulic Fracturing Induced Seismicity at Duvernay Field in Western Canadian Sedimentary Basin Geomechanical Analysis of Hydraulic Fracturing Induced Seismicity at Duvernay Field in Western Canadian Sedimentary Basin Suvrat P Lele 1, Timothy Tyrrell 2, Ganeswara R Dasari 1, William A Symington 1

More information

Earthquakes and Seismotectonics Chapter 5

Earthquakes and Seismotectonics Chapter 5 Earthquakes and Seismotectonics Chapter 5 What Creates Earthquakes? The term Earthquake is ambiguous: Applies to general shaking of the ground and to the source of the shaking We will talk about both,

More information

Name Hour. Environmental Science Semester 2 Study Guide. Plate Tectonics. 1. Explain sea floor spreading.

Name Hour. Environmental Science Semester 2 Study Guide. Plate Tectonics. 1. Explain sea floor spreading. Name Hour Environmental Science Semester 2 Study Guide Plate Tectonics 1. Explain sea floor spreading. 2. Describe Wegener s idea of continental drift. 3. List 5 pieces of evidence to support the idea

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lecture 18, 16 Nov. 2017 www.geosc.psu.edu/courses/geosc508 Earthquake Magnitude and Moment Brune Stress Drop Seismic Spectra & Earthquake Scaling laws Scaling and

More information

Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:!

Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:! Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:! 1. List the three types of tectonic plate boundaries! 2. Describe the processes occurring

More information

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Rheology III Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Ideal materials fall into one of the following categories:

More information

Synthetic Seismicity Models of Multiple Interacting Faults

Synthetic Seismicity Models of Multiple Interacting Faults Synthetic Seismicity Models of Multiple Interacting Faults Russell Robinson and Rafael Benites Institute of Geological & Nuclear Sciences, Box 30368, Lower Hutt, New Zealand (email: r.robinson@gns.cri.nz).

More information

INTRODUCTION TO EARTHQUAKES

INTRODUCTION TO EARTHQUAKES INTRODUCTION TO EARTHQUAKES Seismology = Study of earthquakes Seismologists = Scientists who study earthquakes Earthquake = Trembling or shaking of the earth s surface, usually as a result of the movement

More information

An entire branch of Earth science, called, is devoted to the study of earthquakes.

An entire branch of Earth science, called, is devoted to the study of earthquakes. Lesson One Essential Question Where do earthquakes take place? What causes earthquakes? What are three different types of faults that occur at plate boundaries? How does energy from earthquakes travels

More information

Lab 7: Plate tectonics

Lab 7: Plate tectonics Geology 115/History 150 Name(s): Lab 7: Plate tectonics Plate tectonics is the theory that is used to explain geological phenomena worldwide. For this reason, most of the useful maps that illustrate plate

More information

Ensign, Unravelling the Enigma DEVEX 2016

Ensign, Unravelling the Enigma DEVEX 2016 Ensign, Unravelling the Enigma DEVEX 2016 Introduction Sole Pit area of UK SNS Discovered 1986, developed 2012 View and understanding evolved over time Ensign 2 The Facts Structure Fault bound 3-way dip

More information

Chapter 6. Conclusions. 6.1 Conclusions and perspectives

Chapter 6. Conclusions. 6.1 Conclusions and perspectives Chapter 6 Conclusions 6.1 Conclusions and perspectives In this thesis an approach is presented for the in-situ characterization of rocks in terms of the distribution of hydraulic parameters (called SBRC

More information

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA A map that shows Earth s Topographic Map surface topography, which is Earth s shape and features Contour

More information

The UK GeoEnergy Test Bed Ceri J Vincent British Geological Survey

The UK GeoEnergy Test Bed Ceri J Vincent British Geological Survey The UK GeoEnergy Test Bed Ceri J Vincent British Geological Survey Thanks to Matthew Hall (GTB Theme Lead for G ERA), Phil Meldrum, Russell Swift, Oliver Kuras, Richard Luckett, Andrew Butcher, Jonathan

More information

TAKE HOME EXAM 8R - Geology

TAKE HOME EXAM 8R - Geology Name Period Date TAKE HOME EXAM 8R - Geology PART 1 - Multiple Choice 1. A volcanic cone made up of alternating layers of lava and rock particles is a cone. a. cinder b. lava c. shield d. composite 2.

More information