Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations

Size: px
Start display at page:

Download "Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations"

Transcription

1 FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 1 Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations Koichiro Obana 1, Shuichi Kodaira 1, Yoshiyuki Kaneda 1, Kimihiro Mochizuki 2 and Masanao Shinohara 2 1 Research Program for Plate Dynamics, Institute for Frontier Research on Earth Evolution (IFREE) 2 Earthquake Research Institute, University of Tokyo, Tokyo, Japan. Introduction The seismogenic zone at a subduction zone does not normally extend to the trench axis and the shallowest part of the plate interface is thought to be seismically decoupled (Byrne et al., 1988). The seaward updip limit of the seismogenic zone is limited by a transition from the aseismic to seismogenic plate interface. The location of the updip limit of the seismogenic zone and its relation to the crustal structure are important to understand a transition process and the seismic rupture at the plate interface. The Nankai Trough seismogenic zone, southwestern Japan, is one of the most well-studied subduction seismogenic zones in the world (Fig. 1). Along the Nankai Trough, the Philippine Sea plate is subducting beneath the overriding Eurasian plate with a convergence rate of about 4.6cm/year off cape Muroto (Seno et al., 1993). Periodic great interplate earthquakes have been documented since the seventh century and the recurrence interval is about years (Ando, 1975). The fault region of great earthquakes along the Nankai Trough is divided into four segments. The co-seismic rupture of the 1946 Nankai earthquake occurred on the two western segments, A and B (Ando, 1975). Many seismic surveys using a controlled source have been conducted around the Nankai Trough (e.g., Kodaira et al., 2000; Takahashi et al., 2002). Off Cape Muroto, two offshore and onshore seismic surveys were done (Kodaira et al., 2000; 2002) (MO104 and KY9903 in Fig. 1). According to their results, the updip limit of the coseismic slip zone extends beneath the young accretionary prism. A splay fault system consisting of several out-of-sequence thrust (OST) faults around the seaward limit of the 1946 Nankai earthquake dislocation area was imaged by multi-channel seismic (MCS) reflection surveys (Park et al., 2000). They concluded that the OSTs were related to the large interplate earthquake and may generate a tsunami by a deformation of forearc accretionary prism. Interplate coupling between subducting and overriding plates during the interseismic period would cause the crustal deformation observed by geodetic surveys. Mazzotti et al. (2000) estimated a current interplate coupling between subducting Philippine Sea plate and overriding plate along the Nankai Trough using a dense Global Positioning System (GPS) network. They concluded that the Nankai Trough subduction zone is fully coupled on the plate boundary. The minimum extent of the locked zone is from 15km to 24km depth of the plate boundary. However, an uncertainty of the seaward extent of the locked zone remains. Seismicity during the interseismic period could show the location of the updip limit of the seismogenic. The updip limit of the seismicity during the interseismic period between large events is comparable with the aftershock area of large interplate earthquakes (Byrne et al., 1988). However, the offshore seismicity around the Nankai Trough is very low and hypocenters are not determined well by on-land observations. An ocean bottom seismograph (OBS) observation is effective to observe more earthquakes below the seafloor and obtain accurate hypocenters of them. In this article, we observe seismicity around the updip limit of the seismogenic zone obtained by OBS observations off cape Muroto. A purpose of this study is to examine the updip limit of the seismogenic zone and aseismic-seismic transition at the plate boundary. Observation and analysis We began a micro-seismicity observation off Cape Muroto in 1998 using free-fall and pop-up type digital recording OBSs. The recording period of our OBS is limited to about two months. It is not long enough to observe low seismicity around the Nankai Trough. We have repeated installing and retrieving OBSs to elongate the observation period. We have carried out an OBS observation for nine months in total from 1998 to The data recorded by two JAMSTEC submarine cable seismic stations off cape Muroto were also used in the analysis. The seismic velocity structure has a large lateral variation in a subduction zone. In this study, we determined hypocenter locations using 3-D P- and S-wave velocity structures based on OBS seismic surveys. We referred to four OBS seismic surveys around the Nankai Trough (KR9810, MO104, KY9903, and KR9806 in Fig. 1) (Kodaira et al., 2000; 2002; Nakanishi et al., 2002; Takahashi et al., 2002). A three-dimensional velocity structure was derived from interpolating them. P-wave velocities (Vp) were defined at the top and bottom of each layer. Velocities within the layer were obtained by linear interpolation of the velocities at the top and bottom of each layer. S-wave velocities (Vs) were estimated from assuming Vp/Vs structure. In this model, we assumed that Vp/Vs is 3.32 and 2.14, in the sedimentary layer and accretionary prism, respectively. In other parts of the structure, Vp/Vs is assumed to be These values are based on the results of seismic survey KR9810 off Cape Ashizuri (Takahashi et al., 2002). Finally, we constructed 3-D Vp and Vs models, which extend to 200km in the horizontal directions and 50km in depth with a 1km grid interval. For the first step of the hypocenter determination, P- and S- wave travel times between OBSs and 1km spacing grids in the 3- D model were calculated by solving the eikonal equation using finite differences (Zelt and Barton, 1998). At the second step, hypocenters were obtained by using these P- and S-wave travel 149

2 FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 1 time tables. Hypocenters are relocated iteratively from an initial guess of the hypocenter by a linearized inversion to minimize root-mean-square (RMS) travel time residuals weighted by the inverse of their picking errors. We examined several locations as initial guesses for each event. Because our 3-D model includes large velocity contrasts, there would be several local minimums of the travel time residual. Examined initial guesses were distributed in a space of 100km in horizontal directions with a 10km interval and 5 to 30km in depth with a 5km interval. As a final result, a hypocenter was determined at a location with a minimum weighted RMS residual from all inversion results. Results We tried to locate 582 events through our OBS observation period and 328 events converged within the 3-D model. However, many events were too small to pick up sufficient numbers of phase arrivals. We selected only 176 events with three or more P-arrivals and two or more S-arrivals as reliable hypocenters (Fig. 2). Seaward extension of the seismicity seems to be limited by the 4000m isobath contour which was sub-parallel to the 150 C isotherm contour on the top of the subducting oceanic crust (Hyndman et al., 1995). Cross sections along the seismic survey lines, MO104 and KY9903, with projected hypocenters, show two groups of seismicity (Fig. 3). One is a group corresponding to earthquakes that occurred at a depth shallower than the subducting oceanic crust, the other is a group corresponding to earthquakes that occurred in the uppermost mantle of the subducting oceanic plate. Shallow earthquakes near the top of the subducting oceanic crust make several clusters on both seismic survey lines. Almost all the shallow hypocenters were shallower than 10km in depth. Seismicity in the uppermost mantle is located from 20km to 30km in depth. The hypocenters in the uppermost mantle show a scattered distribution. Earthquakes of the shallow group show some clustering around the seaward limit of the co-seismic slip area of the 1946 Nankai earthquake (Ando, 1975). Some of these earthquakes were characterized by very similar waveforms. These similar waveforms imply that events occurred at the almost the same locations with the same mechanisms. We calculated cross-correlation coefficients of waveforms between pairs of events on a vertical component including both P- and S-wave arrivals. We treat pairs of events with correlation coefficients which were larger than 0.90 at more than two OBSs as similar earthquakes. The similar earthquakes were located at the seaward limit of the shallow earthquakes, which occurred at the top of the subducting oceanic crust (Fig. 4). Discussion Seismicity around the updip limit of the seismogenic zone A study of micro earthquakes at Parkfield along the San Andreas fault show seismicity clusters characterized by earthquakes regularly occurring (Nadeau et al., 1995). They were identified by high cross-correlation coefficients of waveforms. These earthquakes are interpreted as a repeated slip on a given asperity driven by a steady slip (Nadeau and Johnson, 1998). Similar earthquakes observed off cape Muroto were not regularly occurring. However, those earthquake clusters can be interpreted as earthquakes occurring at a locally coupled area in the aseismic-seismic transition zone. Existence of some clusters indicates several locked patches surrounded by steady slip zone. Similar earthquakes projected on a poststack depth migrated section of MCS profile along KY9903 locate around the top of the subducting oceanic crust (Fig. 5). It is still unknown whether earthquakes occurred in the subducting oceanic crust, in the overriding accretionary prism, or on the boundary between them because of limitation of the accuracy of the hypocenter depth. The friction on the plate interface between subducting oceanic crust and overriding accretionary prism seems to increase landward from the earthquake cluster. The decollement steps down from the sedimentary layer on the subducting crust to the top of oceanic crust around the similar earthquake cluster. In addition, the seafloor slope shows a steepening to landward from the similar earthquake cluster. Where the friction at the bottom boundary of the accretionary prism increases, the prism taper becomes steeper (Davis et al., 1983). Along the line KY9903, a subducting seamount was imaged by seismic survey (Kodaira et al., 2002). The steepening of the seafloor slope could be caused by the subduction of a seamount (Yamazaki and Okamura, 1989; Dominguez et al., 1998). However, steepening of the seafloor slope and stepping down of the decollement also coincide with the similar earthquake cluster along the other survey line MS105 (Fig. 6). The shallow earthquake clusters are likely associated with the change of a friction between the accretionary prism and a subducting oceanic plate. Along the line MS105, out-of-sequence thrusts (OST) cutting through the accretionary prism from top of the subducting oceanic crust to the seafloor were identified by MCS survey (Park et al., 2000). These OSTs cutting the topmost cover sequence were interpreted as seismic thrust during large interplate earthquakes including the 1946 Nankai earthquake. The earthquake cluster around the top of oceanic crust layer 2 is located where the OST converges to the top of the subducting oceanic crust. The landward plate interface from the OST is a seismogenic plate interface during large thrusts earthquakes with the subduction of an oceanic plate. The seaward limit of the shallow earthquakes coincides with the 150 C isotherm on the top of oceanic crust (Hyndman et al., 1995). This temperature is associated with the dehydration temperature for stable-sliding clays at the subduction zone and may correspond to the updip seismogenic limit (Hyndman et al., 1997). At this temperature, smectite to illite clay-mineral transition occur and the physical properties of them change from stable-sliding to unstable-sliding. However, smectite is not observed in large quantities at subduction zones everywhere (Hyndman et al., 1997). The fraction of smectite in a sediments entering the subduction zone off cape Muroto is less than 10-20% at the toe of the accretionary prism (Underwood et al., 1993). The smectite to illite transition is not enough to explain the onset of the seismogenic behavior (Moore and Saffer, 2001). A suite of diagenetic to low-grade metamorphic processes causes stick-slip behavior in fault zones and also alter the upper plate of the subduction zone to allow a stress drop sufficient to create a recordable earthquake (Moore and Saffer, 2001). Thus, the updip limit of the seismogenic zone coincides with a 150 C 150

3 FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 1 isotherm on the top of oceanic crust off cape Muroto lacking enough fraction of smectite in the downgoing oceanic sediment. From the above mentioned points, the shallow earthquake clusters including similar waveform earthquakes occurred in a transition zone from aseismic to seismogenic plate interface. However, the plate interface does not couple perfectly in the transition zone. Earthquakes characterized by similar waveforms occur in several locally locked patches. Co-seismic slip on the most seaward part of the 1946 Nankai earthquake estimated from tsunami (Tanioka and Satake, 2001) is smaller than cumulative relative motions between subducting and overriding plates during the interseismic period. Some of relative motions may be consumed by steady slip in the unlocked region of the transition zone. Earthquakes in the uppermost mantle Earthquakes also occurred in the uppermost mantle below the subducting oceanic crust (Fig. 3). These earthquakes may be caused by a dehydration embrittlement of serpentinized mantle. Earthquakes in the mantle beneath southwestern Japan were considered to be caused by the dehydration embrittlement of serpentinized mantle with back-arc igneous activity in the Izu-Bonin arc (Seno et al., 2001). Kodaira et al. (2002) explained the seismicity in the mantle beneath the Shikoku Island with a similar mechanism. A low P-wave velocity zone was imaged beneath the subducted seamount along the seismic survey line KY9903 (Kodaira et al., 2002). They thought that this low Vp (=7.5km/sec) is associated with serpentinized mantle related to the past plume activity along the Kinan seamount chain. If the mantle portion of the subducting slab is hydrated at the trench, dehydration may begin at a depth of about 20km on the basis of thermal modeling and a dehydration loci of serpentine (Seno et al., 2001). Earthquakes in the uppermost mantle observed our OBS observations were deeper than 20km in depth. Although the exact area of the serpentinized mantle could not be estimated, the earthquake in the uppermost mantle beneath the OBS array is explained by the dehydration embrittlement of hydrated mantle. Conclusions We observed seismicity off cape Muroto around the updip limit of the seismogenic zone using OBSs. The obtained hypocenters seem to be classified into two activities. One is seismicity around the top of the subducting oceanic crust and the other is in the uppermost mantle of the subducting Philippine Sea plate. The earthquakes around the top of the subducting oceanic crust make several clusters characterized by pairs of earthquakes with very similar waveforms. These earthquake clusters are located in the transition zone of the interplate coupling, which changes from aseismic stable sliding to seismogenic locked. Deeper earthquakes in the uppermost mantle could be explained by a dehydration embrittlement of serpentinized mantle with hydration of the mantle provided by past plume activity along the Kinan seamount chain. Acknowledgments. We would like to thank captains, crewmembers, and shipboard scientists of cruises to deploy and retrieve OBSs. We acknowledge N. Takahashi, E. Araki, S. Yoneshima, Y. Nakamura, A. Nakanishi, T. Higashikata, T. Kanazawa, K. Suyehiro, and marine technicians of Nippon Marine Enterprises, Ltd. for their support. References Ando, M., Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan, Tectonophysics, 27, , Byrne. D. E., D. M. Davis, and L. R. Sykes, Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones, Tectonics, 7, , Davis, D. J., J. Suppe, and F. A. Dahlen, Mechanics of fold-and-thrust belts and accretionary wedges, J. Geophys. Res., 88, , Dominguez, S., S. E. Lallemant, J. Malavieille, and R. von Huene, Upper plate deformation associated with seamount subduction, Tectonophysics, 293, , Hyndman, R. D., K. Wang, and M. Yamano, Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust, J. Geophys. Res., 100, , Hyndman, R. D., M. Yamano, and D. A. Oleskevich, The seismogenic zone of subduction thrust, The Island Arc, 6, , Kodaira, S., N. Takahashi, J. -O. Park, K. Mochizuki, M. Shinohara, and S. Kimura, Western Nankai Trough seismogenic zone: result from a wide-angle ocean bottom seismic survey, J. Geophys. Res., 105, , Kodaira, S., E. Kurashimo, J.-O. Park, N. Takahashi, A. Nakanishi, S. Miura, T. Iwasaki, N. Hirata, K. Ito, and Y. Kaneda, Structural factors controlling the rupture process of a megathrust earthquake at the Nankai Trough seismogenic zone, Geophys. J. Int., 149, , Mazzotti, S., X. L. Pichon, and P. Henry, Full interseismic locking of the Nankai and Japan west Kurile subduction zones: an analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS, J. Geophys. Res., 105, , Moore, J. C., and D. Saffer, Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and increasing effective stress, Geology, 29, , Nadeau, R. M., W. Foxall, and T. V. Mcevilly, Clustering and periodic recurrence of micro earthquakes on the San Andreas fault a Parkfield, California, Science, 267, , Nadeau, R. M., and L. R. Johnson, Seismological studies at Parkfield VI: moment release rates and estimated of source parameters for small repeating earthquakes, Bull. Seismol. Soc. Am., 88, , Nakanishi, A., N. Takahashi, J. -O. Park, S. Miura. S. Kodaira, Y. Kaneda, N. Hirata, T. Iwasaki, and M. Nakamura, Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone, J. Geophys. Res., 107, DOI /2001JB000424, Park, J. -O., T. Tsuru, H. Mikada, S. Kodaira, N. Takahashi, A. Nakanishi, S. Miura, Y. Kaneda, and Y. Kono, A challenge to high resolution deep seismic imaging in seismogenic zone: 1999 Nankai Trough seismic survey (MCS reflection survey), Prog. Abst. Seismol. Soc. Jpn., P102, Park, J. -O., T. Tsuru, S. Kodaira, A. Nakanishi, S. Miura, Y. Kaneda, and Y. Kono, Out-of sequence thrust faults developed in the coseismic slip zone of the 1946 Nankai earthquake (Mw=8.2) off Shikoku, southwest Japan, Geophys. Res. Lett., 27, , Seno, T., S. Stein, and A. E. Gripp, A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, , Seno, T., D. Zhao, Y. Kobayashi, and M. Nakamura, Dehydration of serpentinized slab mantle: seismic evidence from southwest Japan, Earth, Planets, and Space, 53, , Takahashi, N., S. Kodaira, A. Nakanishi, J. -O. Park, S. Miura, T. Tsuru, Y. Kaneda, K. Suyehiro, H. Kinoshita, N. Hirata, and T. Iwasaki, Seismic structural model of the western end of the Nankai Trough seismogenic zone, J. Geophys. Res., 2002, in press. Tanioka, Y., and K. Satake, Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake, Earth, Planets, and Space, 53, , Underwood, M. B., R. Orr, K. Pickering, and A. Taira, Provenance and dispersal patterns of sediments in the turbidite wedge of Nankai Trough, Proc. ODP, Sci. Res., 131, 15-34, Yamazaki, T., and Y. Okamura, Subducting seamounts and deformation of overriding forearc wedges around Japan, Tectonophysics, 160, , Zelt, C. A., and P. J. Barton, Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin, J. Geophys. Res., 103, ,

4 FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 1 Figure 1. Map around the Nankai Trough. Open circles indicate OBS positions. Rectangular areas labeled A to D are coseismic rupture area of great interplate earthquakes (Ando, 1975). A solid star indicates the epicenter of 1946 Nankai earthquake. Area A and B were ruptured in 1946 Nankai earthquake. Solid lines, KR9810, MO104, KY9903, and KR9806, show profiles of OBS-Airgun seismic structure surveys. Figure 2. Epicentral distribution based on the 3-D velocity model. Solid circles indicate epicenters observed by OBS. Open circles indicate epicenter determined by Japan Meteorological Agency (JMA) from October 1998 to September Radius of each circle is taken to be proportional to magnitude. Open diamonds indicate location of the OBSs. The rectangle indicates the coseismic slip area of the 1946 Nankai Earthquake (Ando, 1975). Broken line is 150 C isotherm on the top of the subducting oceanic crust (Hyndman et al., 1995). Two thick lines, MO104 and KY9903, are Airgun-OBS seismic survey lines. Figure 4. (a) Epicenter of shallow earthquakes. Crosses indicate epicenters, which are shallower than 10km in depth. Open circles indicate earthquakes with similar waveforms. Each similar earthquake cluster is enclosed by a solid line. Dotted lines indicate the seismic survey lines KY9903 (Kodaira et al., 2002) and MS105 (Park et al., 2000). The rectangle and broken line are the same as in Fig. 2. Figure 3. Cross sections along two Airgun-OBS seismic survey lines in Fig. 2 (Kodaira et al., 2000; 2002). Solid circles indicate projected locations of hypocenters. Only hypocenters within 25km of either side of the survey line have been projected. The radius of each circle is taken to be proportional to the magnitude. Isovelocity contours of Vp are drawn with interval of 0.5km/sec. 152

5 FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 1 Figure 5. Poststack depth migrated section of MCS profile along KY9903 (upper panel) and its interpretation with projected hypocenters (lower panel) (after Park et al., 1999b). Co-seismic slip zone of 1946 Nankai earthquake (Ando, 1975) and interplate locked zone (Hyndman et al., 1995) are indicated at the top of the figure. Hypocenters located within 10km from the MCS line are projected on the lower panel. Open circles indicate earthquakes characterize by high cross correlation coefficient of the waveforms. Crosses indicate other earthquakes. Figure 6. A poststack depth migrated seismic profile along MS105 (upper panel) and its interpretation with projected hypocenters (lower panel) (after Park et al., 2000). Symbols are the same as in Fig

6

Microseismicity at the seaward updip limit of the western Nankai Trough seismogenic zone

Microseismicity at the seaward updip limit of the western Nankai Trough seismogenic zone JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B10, 2459, doi:10.1029/2002jb002370, 2003 Microseismicity at the seaward updip limit of the western Nankai Trough seismogenic zone Koichiro Obana, Shuichi

More information

Splay fault and megathrust earthquake slip in the Nankai Trough

Splay fault and megathrust earthquake slip in the Nankai Trough Earth Planets Space, 53, 243 248, 2001 Splay fault and megathrust earthquake slip in the Nankai Trough Phil R. Cummins, Takane Hori, and Yoshiyuki Kaneda Frontier Research Program for Subduction Dynamics,

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L09304, doi: /2010gl042935, 2010

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L09304, doi: /2010gl042935, 2010 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042935, 2010 Seismic characteristics around the fault segment boundary of historical great earthquakes along the Nankai

More information

Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone

Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 17, NO. B1, 7, 129/1JB424, 2 Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone Ayako

More information

Structural factors controlling the rupture process of a megathrust earthquake at the Nankai trough seismogenic zone

Structural factors controlling the rupture process of a megathrust earthquake at the Nankai trough seismogenic zone Geophys. J. Int. (2002) 149, 815 835 Structural factors controlling the rupture process of a megathrust earthquake at the Nankai trough seismogenic zone S. Kodaira, 1 E. Kurashimo, 2 J.-O. Park, 1 N. Takahashi,

More information

I point out two possible paradoxical difficulties in the important target of the IODP in subduction zones, i.e.,

I point out two possible paradoxical difficulties in the important target of the IODP in subduction zones, i.e., Drilling the Seismogenic Zone: Some Paradoxes Tetsuzo Seno Earthquake Research Institute, University of Tokyo (Bull. Earthq. Res. Inst., subumitted on January 16, 2003; accepted on July 22, 2003) Abstract

More information

Electrical Conductivity Structures around Seismically Locked Regions

Electrical Conductivity Structures around Seismically Locked Regions Electrical Conductivity Structures around Seismically Locked Regions Tada-nori Goto Program for Deep Sea Research, IFREE, Japan Agency for Marine-Earth Science and Technology 1. Introduction Existence

More information

Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers

Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers LETTER Earth Planets Space, 57, 363 368, 2005 Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers Shin ichi Sakai 1, Tomoaki Yamada 1, Masanao Shinohara

More information

A subducted oceanic ridge influencing the Nankai megathrust earthquake rupture

A subducted oceanic ridge influencing the Nankai megathrust earthquake rupture FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. A subducted oceanic ridge influencing the Nankai megathrust earthquake rupture Jin-Oh Park Research Program for Plate Dynamics, Institute for Research on Earth

More information

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Earth Planets Space, 53, 235 241, 2001 Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Yuichiro Tanioka 1 and Kenji Satake 2 1 Meteorological Research

More information

Double-difference relocations of the 2004 off the Kii peninsula earthquakes

Double-difference relocations of the 2004 off the Kii peninsula earthquakes LETTER Earth Planets Space, 57, 357 362, 25 Double-difference relocations of the 24 off the Kii peninsula earthquakes Bogdan Enescu 1, James Mori 1, and Shiro Ohmi 1 1 Disaster Prevention Research Institute

More information

overlie the seismogenic zone offshore Costa Rica, making the margin particularly well suited for combined land and ocean geophysical studies (Figure

overlie the seismogenic zone offshore Costa Rica, making the margin particularly well suited for combined land and ocean geophysical studies (Figure Chapter 1 Introduction Historically, highly destructive large magnitude (M w >7.0) underthrusting earthquakes nucleate along the shallow segment of subduction zone megathrust fault, and this region of

More information

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Toshitaka Baba Research Program for Plate Dynamics, Institute for Frontier

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004 GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi:10.1029/2004gl020366, 2004 Characteristic seismic activity in the subducting plate boundary zone off Kamaishi, northeastern Japan, revealed by precise

More information

Seismic structure of western end of the Nankai trough seismogenic zone

Seismic structure of western end of the Nankai trough seismogenic zone JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B10, 2212, doi:10.1029/2000jb000121, 2002 Seismic structure of western end of the Nankai trough seismogenic zone Narumi Takahashi, Shuichi Kodaira, Ayako

More information

Ling Bai 1, Ichiro Kawasaki 1, Tianzhong Zhang 2, and Yuzo Ishikawa 3. Earth Planets Space, 58, , 2006

Ling Bai 1, Ichiro Kawasaki 1, Tianzhong Zhang 2, and Yuzo Ishikawa 3. Earth Planets Space, 58, , 2006 Earth Planets Space, 58, 823 830, 2006 An improved double-difference earthquake location algorithm using sp phases: application to the foreshock and aftershock sequences of the 2004 earthquake offshore

More information

REGIONAL CHARACTERISTICS OF STRESS FIELD AND ITS DYNAMICS IN AND AROUND THE NANKAI TROUGH, JAPAN

REGIONAL CHARACTERISTICS OF STRESS FIELD AND ITS DYNAMICS IN AND AROUND THE NANKAI TROUGH, JAPAN 46 4 2003 7 CHINESE JOURNAL OF GEOPHYSICS Vol. 46, No. 4 July, 2003 1 1 2 3 1, 100037 2, 920-1192 3, 237-0061,,, : -. (10 22 ), (60 85km) ; (40 ), (160km)..,. GPS,, -,,.,,,.. 0001-5733(2003) 04-0488 -

More information

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L00G24, doi: /2011gl050399, 2012

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L00G24, doi: /2011gl050399, 2012 GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl050399, 2012 Normal-faulting earthquakes beneath the outer slope of the Japan Trench after the 2011 Tohoku earthquake: Implications for the stress

More information

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2*,**/ pp. +-- +.1 * The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone The Japanese University Group of the Joint Seismic Observations

More information

LETTER Earth Planets Space, 57, , 2005

LETTER Earth Planets Space, 57, , 2005 LETTER Earth Planets Space, 57, 1115 1120, 2005 A tectonic interpretation of NW-SE strike-slip faulting during the 2004 off the Kii peninsula earthquakes, Japan: Probable tear of the Philippine Sea plate

More information

Seismic activity beneath the Nankai trough revealed by DONET ocean-bottom observations

Seismic activity beneath the Nankai trough revealed by DONET ocean-bottom observations Mar Geophys Res (214) 35:271 284 DOI 1.17/s111-13-9195-3 SPECIAL ISSUE PAPER Seismic activity beneath the Nankai trough revealed by DONET ocean-bottom observations Masaru Nakano Takeshi Nakamura Shin-ichiro

More information

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes LETTER Earth Planets Space, 57, 197 202, 2005 Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes Nobuyuki Yamada and Tomotaka

More information

Aftershocks of the December 7, 2012 intraplate doublet near the Japan Trench axis

Aftershocks of the December 7, 2012 intraplate doublet near the Japan Trench axis Obana et al. Earth, Planets and Space 20, 66:24 FULL PAPER OpenAccess Aftershocks of the December 7, 20 intraplate doublet near the Japan Trench axis Koichiro Obana 1,2*, Shuichi Kodaira 1,2, Yasuyuki

More information

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka JAPAN

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka JAPAN Dense Ocean floor Network System for Mega Thrust Earthquakes & Tsunamis(DONET) -Towards Understanding Mega Thrust Earthquakes, the Geohazard & Disaster Mitigation- Yoshiyuki KANEDA, Katsuyoshi KAWAGUCHI,

More information

Velocity-Interface Structure of the Southwestern Ryukyu Subduction Zone from EW OBS/MCS Data

Velocity-Interface Structure of the Southwestern Ryukyu Subduction Zone from EW OBS/MCS Data Marine Geophysical Researches 22: 265-287, 2001. 2002 Kluwer Academic Publishers. Printed in the Netherlands. Velocity-Interface Structure of the Southwestern Ryukyu Subduction Zone from EW9509-1 OBS/MCS

More information

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0)

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0) GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048408, 2011 Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0) Dapeng Zhao, 1 Zhouchuan

More information

Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity

Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L04613, doi:10.1029/2003gl018863, 2004 Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity

More information

Intraoceanic thrusts in the Nankai Trough off the Kii Peninsula: Implications for intraplate earthquakes

Intraoceanic thrusts in the Nankai Trough off the Kii Peninsula: Implications for intraplate earthquakes Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L06303, doi:10.1029/2008gl036974, 2009 Intraoceanic thrusts in the Nankai Trough off the Kii Peninsula: Implications for intraplate earthquakes

More information

Subduction zone dynamics: role of H 2 O in generation of earthquakes and magmas

Subduction zone dynamics: role of H 2 O in generation of earthquakes and magmas Subduction zone dynamics: role of H 2 O in generation of earthquakes and magmas Akira Hasegawa Research Center for Prediction of Earthquakes and Volcanic Eruptions Graduate School of Science, Tohoku University

More information

Resistivity image of the Philippine Sea Plate around the 1944 Tonankai earthquake zone deduced by Marine and Land MT surveys

Resistivity image of the Philippine Sea Plate around the 1944 Tonankai earthquake zone deduced by Marine and Land MT surveys LETTER Earth Planets Space, 57, 29 213, 25 Resistivity image of the Philippine Sea Plate around the 1944 Tonankai earthquake zone deduced by Marine and Land MT surveys Takafumi Kasaya 1, Tada-nori Goto

More information

JAMSTEC Marine Geophysical Projects for Researches on Subduction Cycles and Deformation

JAMSTEC Marine Geophysical Projects for Researches on Subduction Cycles and Deformation JAMSTEC Marine Geophysical Projects for Researches on Subduction Cycles and Deformation Shuichi Kodaira Research Center for Earthquake and Tsunami JAMSTEC JAMSTEC Marine Geophysical Projects Motivation:

More information

Study on the effect of the oceanic water layer on strong ground motion simulations

Study on the effect of the oceanic water layer on strong ground motion simulations Earth Planets Space, 62, 621 630, 2010 Study on the effect of the oceanic water layer on strong ground motion simulations Anatoly Petukhin 1, Tomotaka Iwata 2, and Takao Kagawa 3 1 Geo-Research Institute,

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

Intensive seismic activity around the Nankai trough revealed by DONET ocean-floor seismic observations

Intensive seismic activity around the Nankai trough revealed by DONET ocean-floor seismic observations Earth Planets Space, 65, 5 15, 2013 Intensive seismic activity around the Nankai trough revealed by DONET ocean-floor seismic observations Masaru Nakano, Takeshi Nakamura, Shin ichiro Kamiya, Michihiro

More information

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake J-RAPID Symposium March 6-7, 2013 Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake Y. Honkura Tokyo Institute of Technology Japan Science and Technology

More information

Aftershock distribution of the 26 December 2004 Sumatra-Andaman earthquake from ocean bottom seismographic observation

Aftershock distribution of the 26 December 2004 Sumatra-Andaman earthquake from ocean bottom seismographic observation Earth Planets Space, 58, 113 119, 2006 Aftershock distribution of the 26 December 2004 Sumatra-Andaman earthquake from ocean bottom seismographic observation Eiichiro Araki 1, Masanao Shinohara 2, Koichiro

More information

(Somerville, et al., 1999) 2 (, 2001) Das and Kostrov (1986) (2002) Das and Kostrov (1986) (Fukushima and Tanaka, 1990) (, 1999) (2002) ( ) (1995

(Somerville, et al., 1999) 2 (, 2001) Das and Kostrov (1986) (2002) Das and Kostrov (1986) (Fukushima and Tanaka, 1990) (, 1999) (2002) ( ) (1995 ( ) 1995 ( ) (Somerville, et al., 1999) 2 (, 2001) (2001) Das and Kostrov (1986) (2002) Das and Kostrov (1986) GPS ) (Fukushima and Tanaka, 1990) (, 1999) (2002) ( ) (1995 1 (outer fault parameter) (inner

More information

Along strike variations in short term slow slip events in the southwest Japan subduction zone

Along strike variations in short term slow slip events in the southwest Japan subduction zone JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2008jb006059, 2010 Along strike variations in short term slow slip events in the southwest Japan subduction zone Shutaro Sekine, 1,2 Hitoshi Hirose,

More information

High resolution receiver function imaging of the seismic velocity discontinuities in the crust and the uppermost mantle beneath southwest Japan

High resolution receiver function imaging of the seismic velocity discontinuities in the crust and the uppermost mantle beneath southwest Japan LETTER Earth Planets Space, 55, 59 64, 2003 High resolution receiver function imaging of the seismic velocity discontinuities in the crust and the uppermost mantle beneath southwest Japan Makiko Yamauchi

More information

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

Crustal deformation by the Southeast-off Kii Peninsula Earthquake Crustal deformation by the Southeast-off Kii Peninsula Earthquake 51 Crustal deformation by the Southeast-off Kii Peninsula Earthquake Tetsuro IMAKIIRE, Shinzaburo OZAWA, Hiroshi YARAI, Takuya NISHIMURA

More information

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Tadashi Yaginuma 1, Tomomi Okada 1, Yuji Yagi 2, Toru Matsuzawa 1, Norihito

More information

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough K. Shiraishi* (JAMSTEC), M. Robb (Emerson Paradigm), K. Hosgood (Emerson

More information

Long-term Crustal Deformation in and around Japan, Simulated by a 3-D Plate Subduction Model

Long-term Crustal Deformation in and around Japan, Simulated by a 3-D Plate Subduction Model Long-term Crustal Deformation in and around Japan, Simulated by a 3-D Plate Subduction Model Chihiro Hashimoto (1) and Mitsuhiro Matsu ura (2) (1) Institute of Frontier Research for Earth Evolution, Japan

More information

Megathrust Earthquakes

Megathrust Earthquakes Megathrust Earthquakes Susan Schwartz University of California Santa Cruz CIDER 2017 UC Berkeley July 5, 2017 The largest megathrust events are not uniformally distributed at all subduction zones. M>8

More information

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data Katsuhisa Kanda and Masayuki Takemura Kobori Research Complex, Kajima Corporation, Tokyo 107-8502, Japan Summary An

More information

Depth-dependent slip regime on the plate interface revealed from slow earthquake activities in the Nankai subduction zone

Depth-dependent slip regime on the plate interface revealed from slow earthquake activities in the Nankai subduction zone 2010/10/11-14 Earthscope Workshop Depth-dependent slip regime on the plate interface revealed from slow earthquake activities in the Nankai subduction zone Kazushige Obara, ERI, Univ. Tokyo Recurrence

More information

Study megathrust creep to understand megathrust earthquakes

Study megathrust creep to understand megathrust earthquakes 1 Study megathrust creep to understand megathrust earthquakes Kelin Wang Pacific Geoscience Centre, Geological Survey of Canada, kelin.wang@canada.ca Introduction Once upon a time, there was a belief that

More information

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations Earth Planets Space,,, Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations Ayako Nakamura, Youichi Asano, and Akira Hasegawa Research Center for Prediction of

More information

Disaster Prevention Research Section, Technology Center, Taisei Corporation, Yokohama, Japan 2

Disaster Prevention Research Section, Technology Center, Taisei Corporation, Yokohama, Japan   2 LONG-PERIOD GROUND MOTION SIMULATION OF 2004 OFF THE KII PENINSULA EARTHQUAKES AND PREDICTION OF FUTURE M8 CLASS EARTHQUAKES ALONG NANKAI TROUGH SUBDUCTION ZONE, SOUTH OF JAPAN ISLAND Chiaki Yoshimura

More information

Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica

Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 0, XXXX, doi:10.1029/2002gl015406, 2002 Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica Robert N. Harris Department of Geology

More information

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Earth Planets Space, 64, 1239 1243, 2012 Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Tamao Sato 1, Shinya Hiratsuka

More information

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Letter J. Phys. Earth, 41, 319-325, 1993 Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Yasuo Izutani Faculty of Engineering,

More information

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate T. Sasatani, N. Takai, M. Shigefuji, and Y. Miyahara Hokkaido University, Sapporo, Japan W. Kawabata Electric Power Development

More information

The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate

The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate LETTER Earth Planets Space, 63, 663 667, 2011 The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate Makoto Matsubara 1 and Kazushige Obara 2 1

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 675 679, 2011 Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from

More information

Seismicity near the hypocenter of the 2011 off the Pacific coast of Tohoku earthquake deduced by using ocean bottom seismographic data

Seismicity near the hypocenter of the 2011 off the Pacific coast of Tohoku earthquake deduced by using ocean bottom seismographic data Earth Planets Space, 64, 1125 1135, 2012 Seismicity near the hypocenter of the 2011 off the Pacific coast of Tohoku earthquake deduced by using ocean bottom seismographic data Kensuke Suzuki 1, Ryota Hino

More information

Very low frequency earthquakes excited by the 2004 off the Kii peninsula earthquakes: A dynamic deformation process in the large accretionary prism

Very low frequency earthquakes excited by the 2004 off the Kii peninsula earthquakes: A dynamic deformation process in the large accretionary prism LETTER Earth Planets Space, 57, 321 326, 25 Very low frequency earthquakes excited by the 2 off the Kii peninsula earthquakes: A dynamic deformation process in the large accretionary prism Kazushige Obara

More information

Depth (Km) + u ( ξ,t) u = v pl. η= Pa s. Distance from Nankai Trough (Km) u(ξ,τ) dξdτ. w(x,t) = G L (x,t τ;ξ,0) t + u(ξ,t) u(ξ,t) = v pl

Depth (Km) + u ( ξ,t) u = v pl. η= Pa s. Distance from Nankai Trough (Km) u(ξ,τ) dξdτ. w(x,t) = G L (x,t τ;ξ,0) t + u(ξ,t) u(ξ,t) = v pl Slip history during one earthquake cycle at the Nankai subduction zone, inferred from the inversion analysis of levelling data with a viscoelastic slip response function Mitsuhiro Matsu'ura, Akira Nishitani

More information

Toru Matsuzawa. Title/Affiliation. Specialized Field

Toru Matsuzawa. Title/Affiliation. Specialized Field Toru Matsuzawa Title/Affiliation Specialized Field Research Subject Professor/ Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University Earthquake-generating

More information

A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan

A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan Earth Planets Space, 55, 667 675, 2003 A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan Mamoru Hyodo 1 and Kazuro Hirahara 2 1 Graduate School of

More information

Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake

Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 687 692, 2011 Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake Thorne Lay 1, Charles J. Ammon 2, Hiroo Kanamori 3, Lian

More information

Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation

Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl050661, 2012 Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation Kiichiro Kawamura, 1,2 Tomoyuki Sasaki,

More information

Earthquakes Chapter 19

Earthquakes Chapter 19 Earthquakes Chapter 19 Does not contain complete lecture notes. What is an earthquake An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all directions

More information

Multi-channel seismic reflection experiments in Izu-Ogasawara arc cruises-

Multi-channel seismic reflection experiments in Izu-Ogasawara arc cruises- JAMSTEC Report of Research and Development, Volume 4, November 2006, 1 12 Multi-channel seismic reflection experiments in Izu-Ogasawara arc -2005 cruises- K. Takizawa 1, T. Tsuru 2, Y. Kaiho 1, M. Yamashita

More information

Aseismic slip and low-frequency earthquakes in the Bungo channel, southwestern Japan

Aseismic slip and low-frequency earthquakes in the Bungo channel, southwestern Japan GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L769, doi:1.19/3gl19381, Aseismic slip and low-frequency earthquakes in the Bungo channel, southwestern Japan Shinzaburo Ozawa, 1 Yuki Hatanaka, 1 Masaru Kaidzu,

More information

Present-day deformation across the southwest Japan arc: Oblique subduction of the Philippine Sea plate and lateral slip of the Nankai forearc

Present-day deformation across the southwest Japan arc: Oblique subduction of the Philippine Sea plate and lateral slip of the Nankai forearc LETTER Earth Planets Space, 55, 643 647, 2003 Present-day deformation across the southwest Japan arc: Oblique subduction of the Philippine Sea plate and lateral slip of the Nankai forearc Takao Tabei 1,

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

Numerical modelling: The governing equation used in this study is: (K T ) c T H 0,

Numerical modelling: The governing equation used in this study is: (K T ) c T H 0, GSA DATA REPOSITORY 2012254 Cozzens and Spinelli Numerical modelling: The governing equation used in this study is: (K T ) c T H 0, where K is thermal conductivity, T is temperature, ρ is density, c is

More information

9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion

9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion 1965-36 9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion 22 September - 4 October, 2008 Tomography and Active Tectonics in Kanto, Japan Francis T.

More information

GJI Seismology. 302 C 2007 The Authors Journal compilation C 2007 RAS

GJI Seismology. 302 C 2007 The Authors Journal compilation C 2007 RAS Geophys. J. Int. (), doi:./j.-x...x Temperature distribution of the upper surface of the subducted Philippine Sea Plate along the Nankai Trough, southwest Japan, from a three-dimensional subduction model:

More information

Gas Hydrate BSR and Possible Fluid Migration in the Nankai Accretionary Prism off Muroto

Gas Hydrate BSR and Possible Fluid Migration in the Nankai Accretionary Prism off Muroto Gas Hydrate BSR and Possible Fluid Migration in the Nankai Accretionary Prism off Muroto Sumito Morita 1), Yasuyuki Nakamura 2), Shin ichi Kuramoto 3), Nathan Bangs 4) and Asahiko Taira 3) 1) Geological

More information

Chapter 2. Earthquake and Damage

Chapter 2. Earthquake and Damage EDM Report on the Chi-Chi, Taiwan Earthquake of September 21, 1999 2.1 Earthquake Fault 2.1.1 Tectonic Background The island of Taiwan is located in the complex junction where the Eurasian and Philippine

More information

Aftershock observation of the Noto Hanto earthquake in 2007 using ocean bottom seismometers

Aftershock observation of the Noto Hanto earthquake in 2007 using ocean bottom seismometers LETTER Earth Planets Space, 6, 15 11, 28 Aftershock observation of the Noto Hanto earthquake in 27 using ocean bottom seismometers Tomoaki Yamada 1, Kimihiro Mochizuki 1, Masanao Shinohara 1, Toshihiko

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14308, doi: /2008gl034461, 2008

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14308, doi: /2008gl034461, 2008 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35,, doi:10.1029/2008gl034461, 2008 Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implications

More information

Hypocenter distribution of plate boundary zone off Fukushima, Japan, derived from ocean bottom seismometer data

Hypocenter distribution of plate boundary zone off Fukushima, Japan, derived from ocean bottom seismometer data Earth Planets Space, 57, 93 105, 2005 Hypocenter distribution of plate boundary zone off Fukushima, Japan, derived from ocean bottom seismometer data Masanao Shinohara 1, Ryota Hino 2, Takashi Yoshizawa

More information

Earth Planets Space, 64, , (Received February 5, 2012; Revised May 9, 2012; Accepted June 17, 2012; Online published January 28, 2013)

Earth Planets Space, 64, , (Received February 5, 2012; Revised May 9, 2012; Accepted June 17, 2012; Online published January 28, 2013) Earth Planets Space, 64, 1149 1156, 2012 P-wave velocity structure in the southernmost source region of the 2011 Tohoku earthquakes, off the Boso Peninsula, deduced by an ocean bottom seismographic survey

More information

Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law

Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law Naoyuki Kato (1), Kazuro Hirahara (2) and Mikio Iizuka (3) (1) Earthquake Research Institute, University

More information

Measurements in the Creeping Section of the Central San Andreas Fault

Measurements in the Creeping Section of the Central San Andreas Fault Measurements in the Creeping Section of the Central San Andreas Fault Introduction Duncan Agnew, Andy Michael We propose the PBO instrument, with GPS and borehole strainmeters, the creeping section of

More information

Spatial distribution of centroid moment tensor solutions for the 2004 off Kii peninsula earthquakes

Spatial distribution of centroid moment tensor solutions for the 2004 off Kii peninsula earthquakes LETTER Earth Planets Space, 57, 351 356, 25 Spatial distribution of centroid moment tensor solutions for the 24 off Kii peninsula earthquakes Yoshihiro Ito, Takumi Matsumoto, Hisanori Kimura, Hirotoshi

More information

LETTERS. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip

LETTERS. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip Vol 442 13 July 2006 doi:10.1038/nature04931 Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip David R. Shelly 1, Gregory C. Beroza 1, Satoshi Ide 2 & Sho

More information

Differentiating earthquake tsunamis from other sources; how do we tell the difference?

Differentiating earthquake tsunamis from other sources; how do we tell the difference? Differentiating earthquake tsunamis from other sources; how do we tell the difference? David Tappin (1), Stephan Grilli (2), Jeffrey Harris (2), Timothy Masterlark (3), James Kirby (4), Fengyan Shi Shi

More information

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Naoyuki Kato (1) and Tomowo Hirasawa (2) (1) Geological

More information

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake? Earthquakes Building Earth s Surface, Part 2 Science 330 Summer 2005 What is an earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all

More information

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone IJMS 2017 vol. 4 (2): 49-54 International Journal of Multidisciplinary Studies (IJMS) Volume 4, Issue 2, 2017 DOI: http://doi.org/10.4038/ijms.v4i2.22 Seismic Activity near the Sunda and Andaman Trenches

More information

2 The Geology and Tectonics of the Tohoku Region

2 The Geology and Tectonics of the Tohoku Region 2 The Geology and Tectonics of the Tohoku Region Japan is part of the "Ring of Fire," the belt of earthquakes and volcanic activity that distinguishes the active margins of the Pacific Ocean from the passive

More information

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College What Is an Earthquake? An earthquake is the vibration of Earth, produced by the rapid release of energy.

More information

Subduction of a wedge shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes

Subduction of a wedge shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jb006962, 2010 Subduction of a wedge shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted

More information

Verification of the asperity model using seismogenic fault materials Abstract

Verification of the asperity model using seismogenic fault materials Abstract Verification of the asperity model using seismogenic fault materials Takehiro Hirose*, Wataru Tanikawa and Weiren Lin Kochi Institute for Core Sample Research/JAMSTEC, JAPAN * Corresponding author: hiroset@jamstec.go.jp

More information

R/V Kairei Cruise Report KR Seismic study in Nansei-Shoto Region. November 17, 2013 December 14, 2013

R/V Kairei Cruise Report KR Seismic study in Nansei-Shoto Region. November 17, 2013 December 14, 2013 R/V Kairei Cruise Report KR13-18 Seismic study in Nansei-Shoto Region November 17, 2013 December 14, 2013 Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Contents: 1.Cruise Information:

More information

Geometry of slab, intraslab stress field and its tectonic implication in the Nankai trough, Japan

Geometry of slab, intraslab stress field and its tectonic implication in the Nankai trough, Japan Earth Planets Space, 54, 733 742, 2002 Geometry of slab, intraslab stress field and its tectonic implication in the Nankai trough, Japan Jiren Xu 1 and Yoshiteru Kono 2 1 Deep Sea Research Department,

More information

LETTER Earth Planets Space, 58, , 2006

LETTER Earth Planets Space, 58, , 2006 LEER Earth lanets Space, 58, 587 592, 26 Revisiting the three M 7 Miyagi-oki earthquakes in the 93s: possible seismogenic slip on asperities that were re-ruptured during the 978 M=7.4 Miyagi-oki earthquake

More information

Ground displacement in a fault zone in the presence of asperities

Ground displacement in a fault zone in the presence of asperities BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 2, pp. 95-110; JUNE 2000 Ground displacement in a fault zone in the presence of asperities S. SANTINI (1),A.PIOMBO (2) and M. DRAGONI (2) (1) Istituto

More information

Dense Ocean floor Network System for Earthquakes and Tsunamis DONET

Dense Ocean floor Network System for Earthquakes and Tsunamis DONET Dense Ocean floor Network System for Earthquakes and Tsunamis DONET Yoshiyuki Kaneda Japan Agency for Marine-Earth Science and Technology (JAMSTEC) ION 1 Earthquakes in the Nankai Trough Tokai Nankai Hyuga

More information

R/V Kairei Cruise Report KR Seismic study in the northwestern Pacific region. Jan. 4, 2011 Jan. 20, 2011

R/V Kairei Cruise Report KR Seismic study in the northwestern Pacific region. Jan. 4, 2011 Jan. 20, 2011 R/V Kairei Cruise Report KR11-01 Seismic study in the northwestern Pacific region Jan. 4, 2011 Jan. 20, 2011 Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Contents: 1.Cruise Information:

More information

A MODEL OF PLATE CONVERGENCE IN SOUTHWEST JAPAN, INFERRED FROM LEVELING DATA ASSOCIATED WITH THE 1946 NANKAIDO EARTHQUAKE

A MODEL OF PLATE CONVERGENCE IN SOUTHWEST JAPAN, INFERRED FROM LEVELING DATA ASSOCIATED WITH THE 1946 NANKAIDO EARTHQUAKE J. Ph_vs. Earth, 35, 449-467, 1987 A MODEL OF PLATE CONVERGENCE IN SOUTHWEST JAPAN, INFERRED FROM LEVELING DATA ASSOCIATED WITH THE 1946 NANKAIDO EARTHQUAKE Kaoru MIYASHITA Department of Earth Sciences,

More information

Interseismic deformation of the Nankai subduction zone, southwest Japan, inferred from three-dimensional crustal velocity fields

Interseismic deformation of the Nankai subduction zone, southwest Japan, inferred from three-dimensional crustal velocity fields Earth Planets Space, 59, 173 18, 7 Interseismic deformation of the Nankai subduction zone, southwest Japan, inferred from three-dimensional crustal velocity fields Takao Tabei 1, Mari Adachi 1, Shin ichi

More information

Real time Monitoring System for Earthquakes and Tsunamis (DONET)

Real time Monitoring System for Earthquakes and Tsunamis (DONET) Real time Monitoring System for Earthquakes and Tsunamis (DONET) NankaiTrough Yoshiyuki Kaneda Japan Agency for Marine-Earth Science and Technology (JAMSTEC) POGO@Seoul Presentation 1 Earthquakes in the

More information

Earthquake Early Warning in Subduction Zones

Earthquake Early Warning in Subduction Zones Earthquake Early Warning in Subduction Zones Jeffrey J. McGuire 1, Frederik J. Simons 2, and John A. Collins 1 1 Department of Geology and Geophysics, Woods Hole Oceanographic Institution 2 Geosciences

More information

Thermal models of flat subduction and the rupture zone of great subduction earthquakes

Thermal models of flat subduction and the rupture zone of great subduction earthquakes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B1, 2009, doi:10.1029/2001jb000787, 2003 Thermal models of flat subduction and the rupture zone of great subduction earthquakes Marc-André Gutscher IUEM,

More information