A study of the formation morphology and phase equilibrium of fractured methane hydrates

Size: px
Start display at page:

Download "A study of the formation morphology and phase equilibrium of fractured methane hydrates"

Transcription

1 ENERGY EXPLORATION & EXPLOITATION Volume 33 Number pp A study of the formation morphology and phase equilibrium of fractured methane hydrates Youhong Sun, Guobiao Zhang, Wei Guo *, Bing Li, Shengli Li, Kai Su and Rui Jia College of Construction Engineering, Jilin University, No. 973 Ximinzhu Str., Chaoyang District, Chang Chun, , China * Author for corresponding. guowei6981@126.com (Received 2 May 2015; accepted 18 July 2015) Abstract Natural gas hydrates mostly fill in the pores or fractures of host sediments and fractured gas hydrates are the main reservoir type in the Qilian mountain region of China. The process of gas production from hydrates can be influenced by the pore structures, fracture properties and mineral compositions of the host sediments. To determine whether the formation and phase equilibrium of hydrates are affected by the properties of the fractures, including the angle and width, formation experiments on methane hydrates were conducted using fracture media composed of artificial sandstone and natural mudstone. The phase equilibrium points for the methane hydrates hosted in fracture mudstone were measured using multi-stage heating. The experimental results indicate that the gas hydrates hosted within the fracture media grew faster. However, there were obvious differences in the methane hydrate formation morphologies for the two types of fracture media: the main occurrences of gas hydrates in sandstone were massive formations, and layered gas hydrates were formed along the fracture surfaces in mudstone. Additionally, a comparison of the phase equilibrium between the fractured CH 4 and bulk phase CH 4 hydrates indicated that the fracture scale did not have a significant influence on the thermodynamic equilibrium of the CH 4 hydrates for the experimental conditions and also implied that fracture properties had an insignificant impact on the hydrate stability zone. Keywords: Fracture media, Methane hydrate, Formation, Phase equilibrium 1. INTRODUCTION Natural gas hydrates primarily fill the pores and fractures of their host sediments (Salehi et al., 2014). In a recent international marine gas hydrate exploration, fractured gas hydrates have been found in the Ulleung Basin of Korea (Park et al., 2008), the Krishna-Godavari Basin offshore India (Collett et al., 2008 ) and the Gulf of Mexico in the USA (Cook et al., 2010). Natural fractured gas hydrates are the most prolific gas distribution type throughout the world, second only to polar and marine sandstone reservoirs (Boswell and Collett, 2006), and are the main reservoir type in the Qilian

2 746 A study of the formation morphology and phase equilibrium of fractured methane hydrates mountain region of China (Zhang et al., 2013). Natural hydrate-bearing sediments have characteristics including: complex mineral components and irregular distributions of fractures and pores, which affect the properties of the hydrates. Many researchers are aware of the influence that the storage media has on the properties of the pore-filling hydrate reservoirs (Salehi et al., 2014). Experimental and theoretical studies have been conducted using different media to simulate sediments to examine the formation and decomposition mechanisms and phase equilibrium of different types of gas hydrates. Handa and Stupin (1992), Seshadri et al. (2001) and Uchida et al. (2004) studied the formation process, decomposition kinetics and phase equilibrium of gas hydrates using porous media, such as silica gel, sandstone, glass beads, sand and clay. Zang et al. (2013), Hu et al. (2008), Jiang et al. (2013) and Liu et al. (2010) used fine-grained sediments, unconsolidated sediments, sand, porous sediments from the South China Sea, respectively, as porous media to investigate gas hydrate formation and decomposition processes. In these studies, different types of porous media were used to simulate the porosity of hydrate-bearing sediments to study the influences of porous structural properties on hydrate formation, decomposition and phase equilibrium. These are considered less relevant studies with regards to fractured gas hydrates. Studies on the formation and development, decomposition and phase equilibrium of fractured hydrates are still inadequate, which affects the exploration and development of fractured hydrates. In this work, the formation and phase equilibrium experiments of CH 4 hydrates in fracture media were conducted to determine the influences that natural fractures in sediments have on the formation and phase equilibrium of methane hydrates and to provide basic experimental data for potential use in possible exploitation studies. 2. EXPERIMENTAL MATERIALS AND METHODS 2.1. Selection of fracture media In the Qilian mountain region of China, the formation lithology of the fractured gas hydrate reservoir is mainly siltstone, oil shale, mudstone and fine sandstone (Wang et al., 2011), which are compact and fractured sedimentary rocks. Therefore, sandstone and mudstone were selected as the fracture media for these experiments. Sandstone was artificially synthesized using fine sand, cement and deionized water, which provided a material similar to the characteristics of sandstone, including the particle size and friction. Natural mudstone cores were directly selected for use. In nature, gas hydrates filling fractures have a certain thickness, ranging from 1 mm to several centimetres (Zhu et al., 2010; Ryu et al., 2013). The angles of the fractures in hydratebearing sediments are high, as much as 60 to 90, with an average occurring between 43 and 63 (Lee and Collett, 2009; 2013). Based on these sediment fracture characteristics, two types of fracture media were examined: a cylindrical-type with a diameter of 55 mm and a height of 65 mm and a penetrating fracture, which had an angle of 90 and a width of approximately 1 mm. In general, the moisture content of these rocks is generally high. Therefore, to simulate the moisture content characteristic of these sediments, the fracture media was saturated with deionized water. During the process, fracturing mudstone produced tiny fractures due to swelling after the material absorbed water, which was consistent with natural conditions.

3 ENERGY EXPLORATION & EXPLOITATION Volume 33 Number Experimental apparatus A diagram of the experimental apparatus and arrangement is shown in Figure 1 and is divided into four parts: a high pressure reactor, a low temperature thermostat, supplying gas lines and the data collection system. The primary component of the experimental apparatus is the high pressure reactor, which has an internal radius of 60 mm, a height of 90 mm and a maximum operating pressure of 20 MPa. The reactor is placed within the low temperature thermostat, which can maintain the temperature range from -25 to 90 C. Methane gas, supplied by the Beijing AF BaiF Gases Industry Corporation with a purity of 99.99%, is injected into the high pressure reaction through high pressure gas lines. In the experiment, the pressure and temperature were measured by PTX1517 pressure transducers and PT100 thermocouples, respectively. The thermocouples were inserted into the fracture medium. The experimental pressure and temperature data were recorded and stored in real time. Figure 1. Schematic of the experimental apparatus. 1-gas cylinder, 2-reducing valve, 3-pressure gauge, 4-valves, 5-reactor, 6-Low temperature thermostat, 7-thermometer, 8-pressure transducer, 9-paperless recorder and 10-computer Experimental methods First, the fracture media saturated with deionized water was placed in the reaction chamber and the experimental device was assembled according to the schematic. After checking the tightness of the apparatus, the reaction chamber was evacuated, and the atmosphere was replaced with methane. This process was repeated three times. Then, the thermostat temperature was set and methane gas was injected into the reactor until the gas pressure of the reactor was higher than the equilibrium pressure of the bulk hydrates at a constant reactor temperature. During the experiment, the reactor pressure higher was maintained higher than the equilibrium pressure by injecting methane gas repeatedly to promote the formation of hydrates. After the reactor pressure changes are observed to be small for a long period, the following actions were taken: 1) open the

4 748 A study of the formation morphology and phase equilibrium of fractured methane hydrates reactor and observe the morphology of the hydrates that form in the fracture media and 2) determine the fractured hydrate equilibrium conditions for pure methane. The phase equilibrium was measured using a multi-step heating method (Sun et al., 2010; Mahboobeh et al., 2013). First, the reactor temperature is decreased to -3.5 C, and the valve to remove methane gas from the reactor was opened until the gas pressure in the reactor was lower than the pressure of the bulk hydrates. The pressure increased to a constant value, indicating an equilibrium state based on the gas expansion or hydrate dissociation, which consequently was the hydrate equilibrium pressure at -3.5 C. Then, a rise in the reactor temperature by 1 C promoted hydrate decomposition and pressure increase. When the reactor pressure was kept constant for 12 hours, another gas hydrate phase equilibrium point was acquired. Following this method, the temperature was increased from -3.5 to 7.5 C by a step-heating path to record the reactor pressure at each step and acquire the phase equilibrium curve of the fractured methane hydrates over a certain temperature range. 3. RESULTS AND DISCUSSION 3.1. Formation morphology of the CH4 hydrates in the fracture media The morphology of the CH 4 hydrates after formation at low temperatures in fractured sandstone and mudstone is shown in Figure 2. There were obvious differences in the methane hydrate formation morphologies in the two types of fracture media. In the fractured sandstone, CH 4 hydrates mainly formed on the surface of the medium (Fig. 2 (A1)), most of which were distributed in the gap between the medium and the reactor wall, with a small part amount distributed on the upper and lower surfaces around the fracture, and a very small amount of forming on the bottom edge of the fracture surface. In the fractured mudstone, CH 4 hydrate formed on the surface and in the fracture medium. The hydrate on the surface of the medium was mainly distributed like a belt along the fracture, and the fracture was filled with a large amount of gas hydrate, which was thicker along the edge of the fracture. The main reason for this phenomenon is the difference in the water adsorptions of the sandstone and mudstone. For the fractured sandstone, the adsorption force of the water is smaller due to the differences in the mineral components and pore properties. Saturated water gradually seeped out of the pores and fractures in the sandstone and enriched the areas around the fracture and on the wall of the reactor, corresponding with the methane hydrates that formed on lower edge of the fracture and in the gap between the reactor wall and the sandstone. There was not a significant amount of hydrates that formed on the fracture surface due to less water being attached to the fracture. After the fractured mudstone was saturated with water, the pores and tiny fractures filled and the clay minerals in the fracture surface adsorbed enough water to from a layer of water film (Fig. 3 (A)) due to the strong water adsorption. Therefore, the water could react with the CH 4 gas to form crystal nuclei (Fig. 3 (B)) because of a sufficient amount of gas-liquid contacts, which was followed by the formation of hydrates. The induction time was very short, meaning that a mudstone fracture surface would form and be covered with a layer of hydrates along the direction of the fracture (Fig. 3 (C)). Simultaneously, a small amount of water absorbed in a pore will slowly form a small amount of pore-filling gas hydrate (Fig. 3 (D)).

5 ENERGY EXPLORATION & EXPLOITATION Volume 33 Number Characteristics of the temperature and pressure in hydrate formation process Figure 4 displays the reaction temperature and pressure changes versus time during CH 4 hydrate formation in the fracture media. The formation process for fractured hydrates was similar to that of pore-filling hydrates (Hu et al., 2008; Zang et al., 2013). According to the changes in the curve slope, the fractured hydrate formation process can be divided into three periods: induction, fast formation and slow formation. (A1) (A2) (B1) (B2) Figure 2. The morphology of the CH4 hydrates in the fractures of sandstone and mudstone.(a1) Image of hydrates in sandstone in the reactor, (A2) image of hydrates on the fracture surface of the sandstone, (B1) image of hydrates in mudstone in the reactor and (B2) image of hydrates on the fracture surface of the mudstone. The induction period occurs at the beginning of methane gas injection. The methane gas pressures in the two types of fracture media drop as a result of both the temperature drop and the rapid dissolution of the methane gas in water. The induction time for fractured hydrates was as short as min, which may be due to the large gas-liquid contact area, which results from the rough surface structure of the fractured medium and the numerous mineral particles. These properties provide favourable conditions for hydrate nucleation and speed up the nucleation rate. The fast formation period occurs when the reactor temperature is lower than the phase equilibrium temperature and the reactor pressure decreases greatly from 4 MPa to 3 MPa in sandstone and from 3.9 MPa to 3.3 MPa in mudstone, indicating the fast formation of hydrates. This was due to the good dispersion of fracture surface water. Methane hydrate

6 750 A study of the formation morphology and phase equilibrium of fractured methane hydrates formed rapidly along the gas-liquid interface of the fracture and covered the fracture or medium surface, as seen from the morphology of hydrate shown in Fgures 2 (B1) and 2 (B2). Correspondingly, the reactor temperature suddenly increased by 0.7 C to 0.9 C in the sandstone (Fig. 4 (A)) and by 0.3 C to 0.6 C in mudstone (Fig. 4 (B)), which was because the hydrate formation released a significant amount of heat. The slow formation period occurs in two types of fracture media. The reactor pressure decreased slowly and small temperature fluctuates occurred, indicating the slow formation of CH 4 hydrates. This is mainly because after hydrate formation at the gas-liquid interface of the fracture, the formation is controlled by a process in which the gas transfers mass to the liquid through the hydrate layer, resulting in the slow growth of hydrates due to fracturing with a certain width and a water film with a certain thickness. Hydrates in fracture media also include a small part of pore-filling hydrates, which are slowly formed in a small amount of pores in the fracture media, such as the pore-filling hydrates shown in Figure Phase equilibrium of CH4 hydrates in fractured media In this experiment, the phase equilibrium conditions of the fractured methane hydrates were measured under an isochoric process with a step-heating path. The data obtained (A) (B) (C) (D) Figure 3. Schematic of the fractured methane hydrate formation process. (A) Water film formation, (B) Crystal nuclei formation, (C) Fractured hydrate formation and (D) Fractured hydrate derivation.

7 ENERGY EXPLORATION & EXPLOITATION Volume 33 Number (A) Sandstone (B) Mudstone Figure 4. Pressure and temperature changes versus time in the reaction are shown in Table 1, and a comparison of the phase equilibrium between the fractured and bulk phase methane hydrates (Mei et al., 1997; Zhao, 2005) is shown in Figure 5. The deviation between the equilibrium conditions of the fractured methane hydrates measured in this experiment and the bulk phase methane hydrates was very small. The analysis on the morphology of the hydrates (shown in Fig. 2) indicated that the methane hydrate occurring in fractured mudstone exhibited three different occurrences due to the large size of the fracture, including nodular, massive and layered distributions, which were similar to the methane hydrate morphology of pure water. Therefore, the fracture scale does not affect the thermodynamic conditions of the gas hydrates. Also, when researching the formation and distribution of fractured gas hydrates, an analysis of the formation and distribution of hydrates in the fracture reservoirs should be able to be performed macroscopically and roughly follows the laws and characteristics of porefilling hydrate reservoirs. However, in terms of the formation kinetics, differences in the gas-liquid contact may lead to differences in the rate of hydrate formation, the length of accumulation time and the amount of reserves available within a hydrate reservoir at a certain stage for two types of different hydrate types. 4. CONCLUSIONS Methane hydrate formation experiments were conducted in fractured saturated sandstone and mudstone media. The phase equilibrium points of the methane hydrates in fracture mudstone were measured using multi-step heating. The following conclusions were drawn from the results: (1) There were obvious differences in the methane hydrate formation morphologies for the two types of fracture media. The main occurrences of gas hydrates in sandstone were massive and layered, whereas the hydrates formed along the fracture surfaces in mudstone. Differences in the water adsorptions of the sandstone and mudstone were the primary reason for this phenomenon and were due to their different mineral compositions.

8 752 A study of the formation morphology and phase equilibrium of fractured methane hydrates Figure 5. Comparison of equilibrium conditions between fractured methane hydrate and bulk phase methane hydrate. Table 1. Measured data of CH 4 hydrate equilibrium conditions in fractured mudstone. Temperature of low First equilibrium experiment(e1 Second equilibrium experiment(e2) Pressure (MPa) Pressure (MPa)

9 ENERGY EXPLORATION & EXPLOITATION Volume 33 Number (2) The fractured hydrate formation processes can be divided into three periods: induction, fast formation and slow formation, which is the same for hydrates formed in porous media. (3) The deviation between the equilibrium conditions of the fractured methane hydrates measured in this experiment and bulk phase methane hydrates was very small, indicating that the fracture scale in the experiments does not affect the thermodynamic conditions of the gas hydrate. Therefore, the exploration and exploitation of hydrates in fracture reservoirs can be observed macroscopically and roughly follows the laws and characteristics of a pore-filling hydrate reservoir. However, differences in the rate of hydrate formation, the length of accumulation time and the amount of reserves available in a hydrate reservoir at a certain stage for the two types of different types hydrate may be caused by different formation kinetics. 5. ACKNOWLEDGEMENT This study has been supported by National Natural Science Foundation of China (Grant No , Grant No ) and China Geological Survey Project (GZH , GZHL ). REFERENCES Boswell R. and Collett T.S., The gas hydrates resource pyramid: Fire in the ice. Methane Hydrate Newsletter 6(3), 5-7. Collett T.S., Riedel M., Cochran J., Boswell R., Presley J., Kumar P., Sathe A., Sethi A., Lall M., Sibal V. and the NGHP Expedition 01 Scientists, Geologic Controls on the Occurrence of Gas Hydrates in the Indian Continental Margin: Results of the Indian National Gas Hydrate Program (NGHP) Expedition 01 Initial Reports, pp Cook A., Guerin G., Mrozewski S., Collett T. and Boswell R., Gulf of Mexico gas Hydrate Joint Industry Project Leg II: Walker Ridge 313 LWD Operations and Results, pp Handa Y.P. and Stupin D.Y., Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-?-Radius silica gel pores. The Journal of Physical Chemistry 96(21), Hu G.W., Ye Y.G., Zhang J., Diao S.B., Liu C.L., Wang H.X. and Wang J.S., Study on gas hydrate formation-dissociation and its acoustic responses in unconsolidated Sands. Geoscience 22(3), Jiang G.L., Wu Q.B., Yang Y.Z. and Zhan J., Formation and dissociation of methane hydrate in different occurrences in sand. Nature Gas Geoscience 24(6), (in Chinese with an English abstract). Lee M.W. and Collett T.S., Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. Journal of Geophysical Research. Part B: Solid Earth 114(B7), 13. Lee M.W. and Collett T.S., Characteristics and interpretation of fracture-filled gas hydrate-an example from the Ulleung Basin, East Sea of Korea. Marine and Petroleum Geology 47,

10 754 A study of the formation morphology and phase equilibrium of fractured methane hydrates Liu F., Wu S.G. and Dong D.D., Experimental study for methane hydrate in porous sediments from South China Sea. Studia Marine Sinica 50, (in Chinese with an English abstract). Mahboobeh M.T., Abdolsamad Z.M., Khodadad N. and Nooshin G.Z., 2013.The role of thermal path on the accuracy of gas hydrate phase equilibrium data using isochoric method. Fluid Phase Equilibria 338, Mei D.H., Liao J., Wang L.K., Yang J.T. and Guo T.M., Measurement and prediction of the equilibrium formation conditions for gas hydrates. Journal of Chemical Engineering of Chinese Universities 11(3), Park K.P., Bahk J.J., Kwon Y., Kim G.Y., Riedel M., Holland M., Schultheiss P., Rose K., and UBGH-1 Scientific Party, Korean National Program expedition confirms rich gas hydrate deposits in the Ulleung basin, East Sea. Fire in the Ice (US DOE NETL newsletter), pp Ryu B.J., Collett T.S., Riedel M., Kim G.Y., Chun J.H., Bahk J.J., Lee J.Y., Kim J.H. and Yoo D.G., Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2). Marine and Petroleum Geology 47, Salehi E., Javaherian A., Pour M.A., Khah N.K.F. and Khoshdel H., Compressional and shear wave pre-stack analysis of gas-hydrate resources in the Makran Accretionary Prism. Energy Exploration and Exploitation 32(2), Seshadri K., Wilder J.W. and Smith D.H., Measurements of equilibrium pressures and temperatures for propane hydrate in silica gels with different poresize distributions. The Journal of Physical Chemistry (B) 105(13), Sun S.C., Ye Y.G., Liu C.L., Tan Y.Z., Meng Q.G., Ma Y. and Xiang F.K., Preliminary experiment of stable P-T Conditions of methane hydrate in Quartz Sand with multi-step dissociation method. Geoscience 24(3), (in Chinese with an English abstract). Uchida T., Takeya S., Chuvilin E.M., Ohmura R., Nagao J., Yakushev V.S., Istomin V.A., Minagawa H., Ebinuma T. and Narita H., Decomposition of methane hydrates in sand, sandstone, clays, and glass beads. Journal of Geophysical Research: Solid Earth 109(B5), Wang P.K., Zhu Y.H., Lu Z.Q., Guo X.W. and Huang X., Gas hydrate in Qilian Mountain permafrost and its distribution characteristics. Geological Bulletin of China 30(12), (in Chinese with an English abstract). Zang X.Y., Liang D.Q. and Wu N.Y., Gas hydrate formation in fine sand. Science China: Earth Sciences 56(4), Zhao H.W., Study on gas hydrate phase equilibrium condition and simulation experiment and testing technology: Doctoral Thesis, Jilin University, Chang Chun, China, pp. 114 (in Chinese with an English abstract). Zhang J.H., Wei W., Wei X.H. and Wang P., Formation Conditions and Characteristics of Natural Gas Hydrate in Muli Permafrost. Inner Mongolia Petrochemical Industry 13, (in Chinese with an English abstract). Zhu Y.H., Zhang R.Q., Wen M.J., LU Z.Q. and Wang P.K., Gas hydrates in the Qilian Mountain permafrost and their basic characteristics. Acta Geoscientica Sinica 31(1), 7-16 (in Chinese with an English abstract).

Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments

Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments *Chul-Whan Kang 1), Ah-Ram Kim 2), Hak-Sung Kim 3), Gye-Chun Cho 4) and Joo-Yong Lee 5) 1), 2), 3), 4) Department of Civil

More information

Effect of porosity and permeability reduction on hydrate production in marine sediments

Effect of porosity and permeability reduction on hydrate production in marine sediments Effect of porosity and permeability reduction on hydrate production in marine sediments *Ah-Ram Kim 1) and Gye-Chun Cho 2) 1), 2) Department of Civil Engineering, KAIST, Daejeon 305-600, Korea 2) gyechun@kaist.ac.kr

More information

A Transformation from Acoustic and Density Properties to Reservoir Properties applied to Krishna Godavari Basin, India

A Transformation from Acoustic and Density Properties to Reservoir Properties applied to Krishna Godavari Basin, India P-439 Summary A Transformation from Acoustic and Density Properties to Reservoir Properties applied to Krishna Godavari Basin, India Debjani Bhowmick*and Deepak K. Gupta, Indian School of Mines Uma Shankar

More information

Measurement of the organic saturation and organic porosity in. shale

Measurement of the organic saturation and organic porosity in. shale Measurement of the organic saturation and organic porosity in shale Qian Sang a,b, Shaojie Zhang a, Yajun Li a, Mingzhe Dong a,b Steven Bryant b a College of Petroleum Engineering, China University of

More information

Calculation and applied analysis of natural gas hydrate saturation based on experimental data

Calculation and applied analysis of natural gas hydrate saturation based on experimental data Bulgarian Chemical Communications, Special Edition H, (pp. 145 149) 017 Calculation and applied analysis of natural gas hydrate saturation based on experimental data J. Zhao 1 *, Y. L. Wu 1, Y.Q. Ji 1

More information

Stress-dependant characteristics of deep marine sediments recovered from the Ulleung Basin, East Sea, Korea

Stress-dependant characteristics of deep marine sediments recovered from the Ulleung Basin, East Sea, Korea The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Stress-dependant characteristics of deep marine sediments recovered from the

More information

Electrical and geomechanical Properties of Natural Gas Hydratebearing Sediments from Ulleung Basin, East Sea, Korea

Electrical and geomechanical Properties of Natural Gas Hydratebearing Sediments from Ulleung Basin, East Sea, Korea The 212 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-3, 212 Electrical and geomechanical Properties of Natural Gas Hydratebearing Sediments

More information

Experimental Study on Mechanism of Depressurizing Dissociation of Methane Hydrate under Saturated Pore Fluid

Experimental Study on Mechanism of Depressurizing Dissociation of Methane Hydrate under Saturated Pore Fluid Scientific Research China Petroleum Processing and Petrochemical Technology 2016, Vol. 18, No. 2, pp 43-51 June 30, 2016 Experimental Study on Mechanism of Depressurizing Dissociation of Methane Hydrate

More information

Decomposition of methane hydrates in sand, sandstone, clays, and glass beads

Decomposition of methane hydrates in sand, sandstone, clays, and glass beads JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jb002771, 2004 Decomposition of methane hydrates in sand, sandstone, clays, and glass beads Tsutomu Uchida, 1 Satoshi Takeya, 2 Evgene M. Chuvilin,

More information

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at AVO crossplot analysis in unconsolidated sediments containing gas hydrate and free gas: Green Canyon 955, Gulf of Mexico Zijian Zhang* 1, Daniel R. McConnell 1, De-hua Han 2 1 Fugro GeoConsulting, Inc.,

More information

GAS HYDRATE QUANTIFICATION BY COMBINING PRESSURE CORING AND IN-SITU PORE WATER SAMPLING TOOLS

GAS HYDRATE QUANTIFICATION BY COMBINING PRESSURE CORING AND IN-SITU PORE WATER SAMPLING TOOLS Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. GAS HYDRATE QUANTIFICATION BY COMBINING PRESSURE CORING AND IN-SITU PORE

More information

Empirical trends of velocity- porosity and velocity-density in shallow sediment in Kerala- Konkan Basin on the west coast of India

Empirical trends of velocity- porosity and velocity-density in shallow sediment in Kerala- Konkan Basin on the west coast of India P-444 Summary Empirical trends of velocity- porosity and velocity-density in shallow sediment in Kerala- Konkan Basin on the west coast of India Maheswar Ojha*, Kalachand Sain, NGRI During the expedition

More information

EXPERIMENTAL METHOD FOR DETERMINATION OF THE RESIDUAL EQUILIBRIUM WATER CONTENT IN HYDRATE-SATURATED NATURAL SEDIMENTS

EXPERIMENTAL METHOD FOR DETERMINATION OF THE RESIDUAL EQUILIBRIUM WATER CONTENT IN HYDRATE-SATURATED NATURAL SEDIMENTS Proceedings of the 6th International Conference on Gas Hydrates (ICGH 8), Vancouver, British Columbia, CANADA, July 6-1, 8. EXPERIMENTAL METHOD FOR DETERMINATION OF THE RESIDUAL EQUILIBRIUM WATER CONTENT

More information

Open Access An Experimental Study on Percolation Characteristics of a Single-Phase Gas in a Low-Permeability Volcanic Reservoir Under High Pressure

Open Access An Experimental Study on Percolation Characteristics of a Single-Phase Gas in a Low-Permeability Volcanic Reservoir Under High Pressure Send Orders for Reprints to reprints@benthamscience.ae 186 The Open Petroleum Engineering Journal, 2015, 8, 186-192 Open Access An Experimental Study on Percolation Characteristics of a Single-Phase Gas

More information

Seismic interpretation of gas hydrate based on physical properties of sediments Summary Suitable gas hydrate occurrence environment Introduction

Seismic interpretation of gas hydrate based on physical properties of sediments Summary Suitable gas hydrate occurrence environment Introduction based on physical properties of sediments Zijian Zhang* 1,2 and De-hua Han 2 1 AOA Geophysics, Inc. and 2 Rock Physics Lab, University of Houston Summary This paper analyzes amplitude behavior of gas hydrate

More information

The Seafloor deformation and well bore stability monitoring during gas production in unconsolidated reservoirs

The Seafloor deformation and well bore stability monitoring during gas production in unconsolidated reservoirs The Seafloor deformation and well bore stability monitoring during gas production in unconsolidated reservoirs *Joo Yong Lee, Jong-Hwa Chun and Se Joon Kim Petroleum & Marine Research Division, KIGAM,

More information

STRESS AND GAS HYDRATE-FILLED FRACTURE DISTRIBUTION, KRISHNA-GODAVARI BASIN, INDIA

STRESS AND GAS HYDRATE-FILLED FRACTURE DISTRIBUTION, KRISHNA-GODAVARI BASIN, INDIA Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. STRESS AND GAS HYDRATE-FILLED FRACTURE DISTRIBUTION, KRISHNA-GODAVARI

More information

The relationship between silica diagenesis and physical properties in the East/Japan Sea: ODP Legs 127/128

The relationship between silica diagenesis and physical properties in the East/Japan Sea: ODP Legs 127/128 School of Ocean and Earth sciences The relationship between silica diagenesis and physical properties in the East/Japan Sea: ODP Legs 127/128 Journal of Asian Earth Sciences 30 (2007) 448 456 Gil-Young

More information

Mechanical Properties of Methane Hydrate Interbedded with Clayey Sediments

Mechanical Properties of Methane Hydrate Interbedded with Clayey Sediments Journal of Energy and Natural Resources 2018; 7(1): 24-31 http://www.sciencepublishinggroup.com/j/jenr doi: 10.11648/j.jenr.20180701.14 ISSN: 2330-7366 (Print); ISSN: 2330-7404 (Online) Mechanical Properties

More information

Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing , China

Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing , China Pet.Sci.(20118:43-48 DOI 10.1007/s12182-011-0113-5 43 Experimental study of the relationship between fluid density and saturation and sonic wave velocity of rock samples from the WXS Depression, South

More information

American Journal of Energy Engineering

American Journal of Energy Engineering American Journal of Energy Engineering 2017; 5(3): 11-16 http://www.sciencepublishinggroup.com/j/ajee doi: 10.11648/j.ajee.20170503.11 ISSN: 2329-1648 (Print); ISSN: 2329-163X (Online) Exploitation Evaluation

More information

NATURAL GAS HYDRATES in INDIA. Prof. Y. F. Makogon, Texas A&.M University

NATURAL GAS HYDRATES in INDIA. Prof. Y. F. Makogon, Texas A&.M University NATURAL GAS HYDRATES in INDIA Prof. Y. F. Makogon, Texas A&.M University Abstract Natural Gas-Hydrates is untraditional mineral energy, when natural gas exist in the reservoir in solid state (Makogon,

More information

Study on the change of porosity and permeability of sandstone reservoir after water flooding

Study on the change of porosity and permeability of sandstone reservoir after water flooding IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 06, Issue 02 (February. 2016), V2 PP 35-40 www.iosrjen.org Study on the change of porosity and permeability of sandstone

More information

Porosity Calculation of Tight Sand Gas Reservoirs with GA-CM Hybrid Optimization Log Interpretation Method

Porosity Calculation of Tight Sand Gas Reservoirs with GA-CM Hybrid Optimization Log Interpretation Method Journal of Geoscience and Environment Protection, 2014, 2, 92-98 Published Online June 2014 in SciRes. http://www.scirp.org/journal/gep http://dx.doi.org/10.4236/gep.2014.23013 Porosity Calculation of

More information

Experimental study on seismic wave velocity of hydrate-bearing fine-grained sediments

Experimental study on seismic wave velocity of hydrate-bearing fine-grained sediments The 212 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-3, 212 Experimental study on seismic wave velocity of hydrate-bearing fine-grained sediments

More information

INFLUENCE OF WATER-SOAKING TIME ON THE ACOUSTIC EMISSION CHARACTERISTICS AND SPATIAL FRACTAL DIMENSIONS OF COAL UNDER UNIAXIAL COMPRESSION

INFLUENCE OF WATER-SOAKING TIME ON THE ACOUSTIC EMISSION CHARACTERISTICS AND SPATIAL FRACTAL DIMENSIONS OF COAL UNDER UNIAXIAL COMPRESSION THERMAL SCIENCE: Year 07, Vol., Suppl., pp. S37-S334 S37 INFLUENCE OF WATER-SOAKING TIME ON THE ACOUSTIC EMISSION CHARACTERISTICS AND SPATIAL FRACTAL DIMENSIONS OF COAL UNDER UNIAXIAL COMPRESSION by Zheqiang

More information

Petrophysical Characterisation of Gas Hydrates

Petrophysical Characterisation of Gas Hydrates Petrophysical Characterisation of Gas Hydrates Anil Kumar Tyagi 1, Diya ukherjee 1 & Amuktha alyada 1 ABSTRACT The gas hydrates are crystalline substances composed of water and gas, in which each gas molecule

More information

Rock physics and AVO applications in gas hydrate exploration

Rock physics and AVO applications in gas hydrate exploration Rock physics and AVO applications in gas hydrate exploration ABSTRACT Yong Xu*, Satinder Chopra Core Lab Reservoir Technologies Division, 301,400-3rd Ave SW, Calgary, AB, T2P 4H2 yxu@corelab.ca Summary

More information

Methane Hydrates and Their Prospects for Gas Industry

Methane Hydrates and Their Prospects for Gas Industry WOC1 V N IIG A Z Methane Hydrates and Their Prospects for Gas Industry Dr. Vladimir Yakushev, Gazprom, Russia 23 rd World Gas Conference Amsterdam, 5-9 June, 2006 Global natural gas production cost trend

More information

UNIVERSITY OF CALGARY. The Role of THF Hydrate Veins on the Geomechanical Behaviour of Hydrate-Bearing Fine. Grained Soils. Jiechun Wu A THESIS

UNIVERSITY OF CALGARY. The Role of THF Hydrate Veins on the Geomechanical Behaviour of Hydrate-Bearing Fine. Grained Soils. Jiechun Wu A THESIS UNIVERSITY OF CALGARY The Role of THF Hydrate Veins on the Geomechanical Behaviour of Hydrate-Bearing Fine Grained Soils by Jiechun Wu A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT

More information

The Effect of Well Patterns on Surfactant/Polymer Flooding

The Effect of Well Patterns on Surfactant/Polymer Flooding International Journal of Energy and Power Engineering 2016; 5(6): 189-195 http://www.sciencepublishinggroup.com/j/ijepe doi: 10.11648/j.ijepe.20160506.13 ISSN: 2326-957X (Print); ISSN: 2326-960X (Online)

More information

INDIAN CONTINENTAL MARGIN GAS HYDRATE PROSPECTS: RESULTS OF THE INDIAN NATIONAL GAS HYDRATE PROGRAM (NGHP) EXPEDITION 01

INDIAN CONTINENTAL MARGIN GAS HYDRATE PROSPECTS: RESULTS OF THE INDIAN NATIONAL GAS HYDRATE PROGRAM (NGHP) EXPEDITION 01 Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. INDIAN CONTINENTAL MARGIN GAS HYDRATE PROSPECTS: RESULTS OF THE INDIAN

More information

Research Article Study on p-wave Attenuation in Hydrate-Bearing Sediments Based on BISQ Model

Research Article Study on p-wave Attenuation in Hydrate-Bearing Sediments Based on BISQ Model Geological Research Volume 23, Article ID 76579, 8 pages http://dx.doi.org/.55/23/76579 Research Article Study on p-wave Attenuation in Hydrate-Bearing Sediments Based on BISQ Model Chuanhui Li, Kai Feng,

More information

Predicting Gas Hydrates Using Prestack Seismic Data in Deepwater Gulf of Mexico (JIP Projects)

Predicting Gas Hydrates Using Prestack Seismic Data in Deepwater Gulf of Mexico (JIP Projects) Predicting Gas Hydrates Using Prestack Seismic Data in Deepwater Gulf of Mexico (JIP Projects) Dianna Shelander 1, Jianchun Dai 2, George Bunge 1, Dan McConnell 3, Niranjan Banik 2 1 Schlumberger / DCS

More information

Methane hydrate rock physics models for the Blake Outer Ridge

Methane hydrate rock physics models for the Blake Outer Ridge Stanford Exploration Project, Report 80, May 15, 2001, pages 1 307 Methane hydrate rock physics models for the Blake Outer Ridge Christine Ecker 1 ABSTRACT Seismic analyses of methane hydrate data from

More information

Open Access Study on Reservoir-caprock Assemblage by Dual Logging Parameter Method

Open Access Study on Reservoir-caprock Assemblage by Dual Logging Parameter Method Send Orders for Reprints to reprints@benthamscience.ae 282 The Open Petroleum Engineering Journal, 2015, 8, (Suppl 1: M4) 282-287 Open Access Study on Reservoir-caprock Assemblage by Dual Logging Parameter

More information

Gas hydrate stability zone modeling in the Krishna Godavari Basin, Eastern margin of India

Gas hydrate stability zone modeling in the Krishna Godavari Basin, Eastern margin of India P-223 Gas hydrate stability zone modeling in the Krishna Godavari Basin, Eastern margin of India Summary Uma Shankar,* and Kalachand Sain, NGRI The Krishna Godavari (KG) basin is rich in gas hydrate and

More information

Hydrocarbon Geochemistry and Pore Characterization of Bakken Formation and Implication to Oil Migration and Oil Saturation*

Hydrocarbon Geochemistry and Pore Characterization of Bakken Formation and Implication to Oil Migration and Oil Saturation* Hydrocarbon Geochemistry and Pore Characterization of Bakken Formation and Implication to Oil Migration and Oil Saturation* Tongwei Zhang 1, Xun Sun 1, and Stephen C. Ruppel 1 Search and Discovery Article

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

TANG Xiaoyan [a],* INTRODUCTION

TANG Xiaoyan [a],* INTRODUCTION Advances in Petroleum Exploration and Development Vol. 8, No. 2, 2014, pp. 6-12 DOI:10.3968/5958 ISSN 1925-542X [Print] ISSN 1925-5438 [Online] www.cscanada.net www.cscanada.org A Simulation Experimental

More information

Study on the Four- property Relationship of Reservoirs in YK Area of Ganguyi Oilfield

Study on the Four- property Relationship of Reservoirs in YK Area of Ganguyi Oilfield Study on the Four- property elationship of eservoirs in YK Area of Ganguyi Oilfield Abstract Xinhu Li, Yingrun Shang Xi an University of Science and Technology, Xi an 710054, China. shangyingrun@163.com

More information

WAMUNYU EDWARD MUREITHI I13/2358/2007

WAMUNYU EDWARD MUREITHI I13/2358/2007 WAMUNYU EDWARD MUREITHI I13/2358/2007 Olkaria geothermal area is situated south of Lake Naivasha on the floor of the southern segment of the Kenya rift. The geology of the Olkaria Geothermal area is subdivided

More information

Adsorption Research of Polymer on Oil Sands in Qidongyi Block of Xinjiang Conglomerate Reservoir

Adsorption Research of Polymer on Oil Sands in Qidongyi Block of Xinjiang Conglomerate Reservoir Applied Mechanics and Materials Online: -7- ISSN: -78, Vols. 8-8, pp 8- doi:.8/www.scientific.net/amm.8-8.8 Trans Tech Publications, Switzerland Adsorption Research of Polymer on Oil Sands in Qidongyi

More information

Main controlling factors of hydrocarbon accumulation in Sujiatun oilfield of Lishu rift and its regularity in enrichment

Main controlling factors of hydrocarbon accumulation in Sujiatun oilfield of Lishu rift and its regularity in enrichment 35 3 2016 9 GLOBAL GEOLOGY Vol. 35 No. 3 Sept. 2016 1004 5589 2016 03 0785 05 130062 P618. 130. 2 A doi 10. 3969 /j. issn. 1004-5589. 2016. 03. 019 Main controlling factors of hydrocarbon accumulation

More information

Study on Prediction Method of Fluvial Facies Sandbody in Fluvial Shallow Water Delta

Study on Prediction Method of Fluvial Facies Sandbody in Fluvial Shallow Water Delta IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 5, Issue 3 Ver. II (May - June 2017), PP 43-47 www.iosrjournals.org Study on Prediction Method of

More information

Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well

Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well Y. Zhou (Rock Solid Images), F. Ruiz (Repsol), M. Ellis*

More information

Reservoirs and Production

Reservoirs and Production Lesson Plan - Page 1 Topic Reservoirs and Production Source Oil and Natural Gas, pages 24-25, 26-27 Objective The students will learn that porosity refers to the percentage of holes (pores) in the rock.

More information

Temperature Dependent Mechanical Properties of Reservoir s Overburden Rocks During SAGD Process

Temperature Dependent Mechanical Properties of Reservoir s Overburden Rocks During SAGD Process Temperature Dependent Mechanical Properties of Reservoir s Overburden Rocks During SAGD Process Bo Zhao 1, Shangqi Liu 2, Bo Huang 3, and Yang Liu 4 and Guangqing Zhang *,5 1,5 China University of Petroleum

More information

Reservoirs and Production

Reservoirs and Production Lesson Plan Page 1 Topic: Reservoirs and production Topic Overview: Porosity refers to the percentage of holes (pores) in the rock. Permeability is the ability of fluids to travel through porous rocks.

More information

Rheological properties of polymer micro-gel dispersions

Rheological properties of polymer micro-gel dispersions 294 DOI 10.1007/s12182-009-0047-3 Rheological properties of polymer micro-gel dispersions Dong Zhaoxia, Li Yahua, Lin Meiqin and Li Mingyuan Enhanced Oil Recovery Research Center, China University of Petroleum,

More information

Tutorial on Methane Hydrate. Presented by Ad Hoc Group on Methane Hydrate Research March 24, 2004

Tutorial on Methane Hydrate. Presented by Ad Hoc Group on Methane Hydrate Research March 24, 2004 Tutorial on Methane Hydrate Presented by Ad Hoc Group on Methane Hydrate Research March 24, 2004 Tutorial on Methane Hydrate What is it and how is it formed? Where is it found? How much may exist? Multi-National

More information

Numeric Simulation for the Seabed Deformation in the Process of Gas Hydrate Dissociated by Depressurization

Numeric Simulation for the Seabed Deformation in the Process of Gas Hydrate Dissociated by Depressurization Numeric Simulation for the Seabed Deformation in the Process of Gas Hydrate Dissociated by Depressurization Zhenwei Zhao 1,3 and Xinchun Shang 2 1 Department of Civil Engineering, University of Science

More information

Kinetics of hydrate dissociation at a pressure of 0.1 MPa

Kinetics of hydrate dissociation at a pressure of 0.1 MPa Kinetics of hydrate dissociation at a pressure of. MPa Permafrost, Phillips, Springman & Arenson (eds) 23 Swets & Zeitlinger, Lisse, ISBN 9 589 582 7 V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov Institute

More information

The Mathematical Analysis of Temperature-Pressure-Adsorption Data of Deep Shale Gas

The Mathematical Analysis of Temperature-Pressure-Adsorption Data of Deep Shale Gas International Journal of Oil, Gas and Coal Engineering 2018; 6(6): 177-182 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20180606.18 ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online)

More information

F. Esmaeilzadeh, Y. Fayazi, and J. Fathikaljahi

F. Esmaeilzadeh, Y. Fayazi, and J. Fathikaljahi Experimental Investigation of a Mixture of Methane, Carbon Dioxide & Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors F. Esmaeilzadeh, Y.

More information

A MICRO-CT STUDY OF CHANGES IN THE INTERNAL STRUCTURE OF DAQING AND YAN AN OIL SHALES AT HIGH TEMPERATURES

A MICRO-CT STUDY OF CHANGES IN THE INTERNAL STRUCTURE OF DAQING AND YAN AN OIL SHALES AT HIGH TEMPERATURES Oil Shale, 2012, Vol. 29, No. 4, pp. 357 367 ISSN 0208-189X doi: 10.3176/oil.2012.4.06 2012 Estonian Academy Publishers A MICRO-CT STUDY OF CHANGES IN THE INTERNAL STRUCTURE OF DAQING AND YAN AN OIL SHALES

More information

Characteristics Analysis of Multiphase Flow in Annulus in Natural Gas Hydrate Reservoir Drilling

Characteristics Analysis of Multiphase Flow in Annulus in Natural Gas Hydrate Reservoir Drilling Characteristics Analysis of Multiphase Flow in Annulus in Natural Gas Hydrate Reservoir Drilling Na Wei1, a, Wan-Tong Sun1, b *, Yong-Jie Li1, Ying-Feng Meng1, Gao Li1, Ping Guo1, An-Qi Liu2 1 State Key

More information

The Experimental Research of the Effect of Heating Temperature and Heating Time for Oil Shale Crack

The Experimental Research of the Effect of Heating Temperature and Heating Time for Oil Shale Crack Yi Pan GENERAL et al., AND PHYSICAL J.Chem.Soc.Pak., Vol. 39, No. 02, 2017 177 The Experimental Research of the Effect of Heating Temperature and Heating Time for Oil Shale Crack Yi Pan*, Shidong Wang,

More information

Capillary effects on hydrate stability in marine sediments

Capillary effects on hydrate stability in marine sediments JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010jb008143, 2011 Capillary effects on hydrate stability in marine sediments Xiaoli Liu 1 and Peter B. Flemings 2 Received 3 December 2010; revised

More information

The effective pressure law for permeability of clay-rich sandstones

The effective pressure law for permeability of clay-rich sandstones 194 Pet.Sci.(011)8:194-199 DOI 10.1007/s118-011-0134-0 The effective pressure law for permeability of clay-rich sandstones Zhao Jinzhou 1, Xiao Wenlian 1, Li Min 1, Xiang Zuping, Li Lijun 1 and Wang Jun

More information

Test Study on Strength and Permeability Properties of Lime-Fly Ash Loess under Freeze-Thaw Cycles

Test Study on Strength and Permeability Properties of Lime-Fly Ash Loess under Freeze-Thaw Cycles Send Orders for Reprints to reprints@benthamscience.net 172 The Open Civil Engineering Journal, 214, 8, 172-176 Open Access Test Study on Strength and Permeability Properties of Lime-Fly Ash Loess under

More information

TIME DOMAIN REFLECTOMETRY (TDR) IN MEASURING WATER CONTENTS AND HYDRATE SATURATIONS IN MARINE SEDIMENTS

TIME DOMAIN REFLECTOMETRY (TDR) IN MEASURING WATER CONTENTS AND HYDRATE SATURATIONS IN MARINE SEDIMENTS Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. TIME DOMAIN REFLECTOMETRY (TDR) IN MEASURING WATER CONTENTS AND HYDRATE

More information

Gas Hydrates: Resource and Hazard

Gas Hydrates: Resource and Hazard Peter Folger Specialist in Energy and Natural Resources Policy May 25, 2010 Congressional Research Service CRS Report for Congress Prepared for Members and Committees of Congress 7-5700 www.crs.gov RS22990

More information

Sediment and Sedimentary rock

Sediment and Sedimentary rock Sediment and Sedimentary rock Sediment: An accumulation of loose mineral grains, such as boulders, pebbles, sand, silt or mud, which are not cemented together. Mechanical and chemical weathering produces

More information

Study on Coal Methane Adsorption Behavior Under Variation Temperature and Pressure-Taking Xia-Yu-Kou Coal for Example

Study on Coal Methane Adsorption Behavior Under Variation Temperature and Pressure-Taking Xia-Yu-Kou Coal for Example International Journal of Oil, Gas and Coal Engineering 2018; 6(4): 60-66 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20180604.13 ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online) Study

More information

Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11)

Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11) Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11) Office of Naval Research Grant Award Number N0014-12-1-0496 Methane Hydrates: Effect of the Properties of Porous Media on

More information

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION Jack Dvorkin Stanford University and Rock Solid Images April 25, 2005 SUMMARY In a viscoelastic sample, the causality principle links the attenuation of

More information

Technology of Production from Shale

Technology of Production from Shale Technology of Production from Shale Doug Bentley, European Unconventional, Schlumberger May 29 th, 2012 Johannesburg, South Africa What are Unconventional Reservoirs Shale both Gas & Oil Coal Bed Methane

More information

SOIL MECHANICS SAB1713 DR. HETTY

SOIL MECHANICS SAB1713 DR. HETTY SOIL MECHANICS SAB1713 DR. HETTY INTRODUCTION SOIL MECHANICS -Concerned solely with soils -Concerned with the deformation and strength of bodies of soils -Concerned with the interaction of structures with

More information

The Depositional Characteristics and Models and Accumulation of Gas Hydrate in Northern Continental Slope, South China Sea*

The Depositional Characteristics and Models and Accumulation of Gas Hydrate in Northern Continental Slope, South China Sea* The Depositional Characteristics and Models and Accumulation of Gas Hydrate in Northern Continental Slope, South China Sea* Jianzhong Wang 1, Xinghe Yu 1, Shunli Li 1, Xiaoming Zeng 1, and Wen Li 1 Search

More information

Seismic Response and Wave Group Characteristics of Reef Carbonate Formation of Karloff-Oxford Group in Asser Block

Seismic Response and Wave Group Characteristics of Reef Carbonate Formation of Karloff-Oxford Group in Asser Block Seismic Response and Wave Group Characteristics of Reef Zeng zhongyu Zheng xuyao Hong qiyu Zeng zhongyu Zheng xuyao Hong qiyu Institute of Geophysics, China Earthquake Administration, Beijing 100081, China,

More information

CHANGE OF THERMAL CONDUCTIVITY OF GAS-SATURATED SEDIMENTS DURING HYDRATE FORMATION AND FREEZING

CHANGE OF THERMAL CONDUCTIVITY OF GAS-SATURATED SEDIMENTS DURING HYDRATE FORMATION AND FREEZING Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. CHANGE OF THERMAL CONDUCTIVITY OF GAS-SATURATED SEDIMENTS DURING HYDRATE

More information

UNIT 4 SEDIMENTARY ROCKS

UNIT 4 SEDIMENTARY ROCKS UNIT 4 SEDIMENTARY ROCKS WHAT ARE SEDIMENTS Sediments are loose Earth materials (unconsolidated materials) such as sand which are transported by the action of water, wind, glacial ice and gravity. These

More information

Microscopic and X-ray fluorescence researches on sandstone from Shahejie Formation, China

Microscopic and X-ray fluorescence researches on sandstone from Shahejie Formation, China IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 06, Issue 04 (April. 2016), V2 PP 27-32 www.iosrjen.org Microscopic and X-ray fluorescence researches on sandstone from

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

Geology 252, Historical Geology, California State University, Los Angeles - professor: Dr. Alessandro Grippo

Geology 252, Historical Geology, California State University, Los Angeles - professor: Dr. Alessandro Grippo LAB # 1 - CLASTIC ROCKS Background: - Mechanical and Chemical Weathering - Production of Clastic Sediment - Classification of Sediment according to size: Gravel, Sand, Silt, Clay - Erosion, Transportation

More information

A research on the reservoir prediction methods based on several kinds of seismic attributes analysis

A research on the reservoir prediction methods based on several kinds of seismic attributes analysis IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 10 (October. 2015), V1 PP 15-20 www.iosrjen.org A research on the reservoir prediction methods based on several

More information

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives:

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives: Learning Objectives Reservoir Rock Properties Core Sources and Seals Porosity and Permeability This section will cover the following learning objectives: Explain why petroleum fluids are found in underground

More information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) General Synthesis of Graphene-Supported

More information

Lecture Outline Wednesday - Friday February 14-16, 2018

Lecture Outline Wednesday - Friday February 14-16, 2018 Lecture Outline Wednesday - Friday February 14-16, 2018 Quiz 2 scheduled for Friday Feb 23 (Interlude B, Chapters 6,7) Questions? Chapter 6 Pages of the Past: Sedimentary Rocks Key Points for today Be

More information

High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation

High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation Page No. 069-1 High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation Thérèse Lynch* and John Hopkins, Department

More information

Rock Physics Interpretation of microstructure Chapter Jingqiu Huang M.S. Candidate University of Houston

Rock Physics Interpretation of microstructure Chapter Jingqiu Huang M.S. Candidate University of Houston Rock Physics Interpretation of microstructure Chapter2.1 2.2 2.3 Jingqiu Huang M.S. Candidate University of Houston Introduction Theory and models Example in North Sea Introduction Theoretical models Inclusion

More information

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project Rock Physics of Shales and Source Rocks Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project 1 First Question: What is Shale? Shale -- a rock composed of mud-sized particles, such

More information

Rock fragmentation mechanisms and an experimental study of drilling tools during high-frequency harmonic vibration

Rock fragmentation mechanisms and an experimental study of drilling tools during high-frequency harmonic vibration Pet.Sci.(03)0:05- DOI 0.007/s8-03-068-3 05 Rock fragmentation mechanisms and an experimental study of drilling tools during high- harmonic vibration Li Wei, Yan Tie, Li Siqi and Zhang Xiaoning School of

More information

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES PER AVSETH, JACK DVORKIN, AND GARY MAVKO Department of Geophysics, Stanford University, CA 94305-2215, USA

More information

Laboratory and field experiment on measurement of soil thermal conductivity by probe method

Laboratory and field experiment on measurement of soil thermal conductivity by probe method Global Geology 18 4 221-225 2015 doi 10. 3969 /j. issn. 1673-9736. 2015. 04. 03 Article ID 1673-9736 2015 04-0221-05 Laboratory and field experiment on measurement of soil thermal conductivity by probe

More information

A look into Gassmann s Equation

A look into Gassmann s Equation A look into Gassmann s Equation Nawras Al-Khateb, CHORUS Heavy Oil Consortium, Department of Geoscience, University of Calgary nawras.alkhateb@ucalgary.ca Summary By describing the influence of the pore

More information

MINERALOGICAL ASSOCIATION OF CANADA CLAYS AND THE RESOURCE GEOLOGIST

MINERALOGICAL ASSOCIATION OF CANADA CLAYS AND THE RESOURCE GEOLOGIST MINERALOGICAL ASSOCIATION OF CANADA SHORT COURSE HANDBOOK VOLUME 7, MAY 1981 EDITED BY: F.J. LONGSTAFFE CLAYS AND THE RESOURCE GEOLOGIST A short course sponsored by the Mineralogical Association of Canada

More information

Introduction. Theory. GEOHORIZONS December 2007/22. Summary

Introduction. Theory. GEOHORIZONS December 2007/22. Summary Seismic amplitude versus angle modeling of a bottom-simulating reflector Maheswar Ojha and Kalachand Sain National Geophysical Research Institute, Uppal Road, Hyderabad - 500 007, India * Corresponding

More information

Evaluation on source rocks and the oil-source correlation in Bayanhushu sag of Hailaer Basin

Evaluation on source rocks and the oil-source correlation in Bayanhushu sag of Hailaer Basin 30 2 2011 6 GLOBAL GEOLOGY Vol. 30 No. 2 Jun. 2011 1004-5589 2011 02-0231 - 07 163712 3 7 Ⅰ Ⅱ1 3 - - P618. 130 A doi 10. 3969 /j. issn. 1004-5589. 2011. 02. 011 Evaluation on source rocks and the oil-source

More information

Geologic and Oceanographic Setting

Geologic and Oceanographic Setting Thomas Cawthern is a PhD student in the Department of Earth Sciences at the University of New Hampshire. His current research is aimed at reconstructing the marine stratigraphy and sedimentology of the

More information

Wikipedia.org BUILDING STONES. Chapter 4. Materials of Construction-Building Stones 1

Wikipedia.org BUILDING STONES. Chapter 4. Materials of Construction-Building Stones 1 Wikipedia.org BUILDING STONES Chapter 4 Materials of Construction-Building Stones 1 What is Stone? Stone is a concretion of mineral matter. Used either as a; Construction material, Manufacture of other

More information

Prediction technique of formation pressure

Prediction technique of formation pressure IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 06, Issue 01 (January. 2016), V3 PP 29-34 www.iosrjen.org Prediction technique of formation pressure Wu Shangxin 1 1.

More information

Exploration, Drilling & Production

Exploration, Drilling & Production Nontechnical Guide to PETMOLEUM Geology, Exploration, Drilling & Production Third Edition Norman J. Hyne, Ph.D. Contents Preface *i Introduction 1 The Nature of Gas and Oil 1 Petroleum 1 The Chemistry

More information

Geology 12 FINAL EXAM PREP. Possible Written Response Exam Questions

Geology 12 FINAL EXAM PREP. Possible Written Response Exam Questions Geology 12 FINAL EXAM PREP Possible Written Response Exam Questions Use this study guide to prepare for the written response portion of the final exam. Name FINAL EXAM - POSSIBLE WRITTEN RESPONSE QUESTIONS

More information

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico Rock Physics for Fluid and Porosity Mapping in NE GoM JACK DVORKIN, Stanford University and Rock Solid Images TIM FASNACHT, Anadarko Petroleum Corporation RICHARD UDEN, MAGGIE SMITH, NAUM DERZHI, AND JOEL

More information

Experimental Study on Preparation of Natural Gas Hydrate by Crystallization

Experimental Study on Preparation of Natural Gas Hydrate by Crystallization Scientific Research China Petroleum Processing and Petrochemical Technology 2017, Vol. 19, No. 1, pp 106-113 March 31, 2017 Experimental Study on Preparation of Natural Gas Hydrate by Crystallization Ma

More information

EXPERIMENTAL STUDY OF SELF-PRESERVATION MECHANISMS DURING GAS HYDRATE DECOMPOSITION IN FROZEN SEDIMENTS

EXPERIMENTAL STUDY OF SELF-PRESERVATION MECHANISMS DURING GAS HYDRATE DECOMPOSITION IN FROZEN SEDIMENTS Proceedings of the 7th International Conference on Gas Hydrates (ICGH 11), Edinburgh, Scotland, United Kingdom, July 17-1, 11. EXPERIMENTAL STUDY OF SELF-PRESERVATION MECHANISMS DURING GAS HYDRATE DECOMPOSITION

More information

Numerical Analysis of the Influence of Seepage on the Displacement Law of Different Overburden Strata

Numerical Analysis of the Influence of Seepage on the Displacement Law of Different Overburden Strata 2nd International Forum on lectrical ngineering and Automation (IFA 2015) Numerical Analysis of the Influence of Seepage on the Displacement Law of Different Overburden Strata WANG Yun-ping1, a, ZHAO De-shen2,

More information

Measuring Methane Adsorption in Shales Using NMR

Measuring Methane Adsorption in Shales Using NMR SCA217-89 Page 1 of 7 Measuring Methane Adsorption in Shales Using NMR M.J. Dick 1, C. Muir 1, D. Veselinovic 1, and D. Green 1 1 Green Imaging Technologies, Fredericton, NB, Canada This paper was prepared

More information