Extraterrestrial Volcanism

Size: px
Start display at page:

Download "Extraterrestrial Volcanism"

Transcription

1 Extraterrestrial Volcanism What does it take to create volcanic activity? How do different planetary conditions influence volcanism? Venus Volcanism in our solar system. Io Europa

2 Mercury Venus Earth/Moon Rocky Planets Mars Gaseous Planets Jupiter Saturn Uranus Neptune

3 Requirements for Volcanism Source of Heat Primordial Heat Radiogenic Heat Tidal Heat (Io) Solar Heat (Triton) Europa Something to Melt Io

4 Earth s Moon The Moon originated by an impact between Earth and a Mars-sized body, hence it is made mostly of material that was once in Earth s mantle. The Moon's surface is currently geologically dead. No atmosphere at this time, little in the past.

5 Lunar Interior The Moon underwent limited differentiation but has a comparatively small core. Although seismic evidence and detailed observations of its orbit and rotation suggest there is still some molten material in its interior, no magma has reached its surface recently.

6 Two distinct terrain types: Surface of the Moon Light, cratered highlands made of anorthosite, a plutonic igneous rock, around four billion years old. Light highlands Darker, blotchy mare basins of low viscosity basalt flows that are very extensive, with flow fronts meters high. Three distinct phases of volcanic activity. Mare basins No obvious volcanoes; some rare volcanic domes.

7 Contrasts between Terrestrial and Lunar Volcanism Lunar volcanism is extinct; most is older than 3 billion years. No linear patterns of volcanic mountain chains on the moon (i.e., no arcs or hot spot trails). No evidence for lunar plate tectonics. Nearly no evidence for anything other than basaltic volcanism on the moon. Most lunar basalt is in larger craters or the thin crust of the nearside. Basalt deposits are flat and very broad. Dominantly fissure eruptions. Lunar gravity is one-sixth that of Earth. Very little water in the basalts. Little explosivity in eruptions. Ejecta widely spread, so no build-up of cones. No subduction/water to form continental crust.

8 Unusual Volcanic Features Certain volcanic features are cryptic: Flow fronts Wrinkle ridges Sinuous rilles Meandering channels from a few meters to several km wide, several hundred km long. May be the result of collapse of lava tubes and thermal erosion. Also some vestiges of explosive activity, probably driven by the last remaining CO 2, forming widespread but thin dark deposits; no cinder cones seen.

9 Sinuous Rilles Giant lava tubes or channels?

10 Dark Mantling Deposits May indicate some explosive volcanism.

11 Lunar Pyroclastic Deposits Approximately 100 identified Identifiable by dark deposits From very deep sources, perhaps down to 400 km Richer in volatiles than other lunar basalts Age of deposits generally greater than 3.5 billion years

12 Venus Similar in size and density to Earth, but closer to Sun; water couldn t form oceans. Covered in clouds of CO 2. Surface temp 500 o C and pressure 90 bars. Exceeds both Earth and Mars in number of preserved volcanic landforms, over 22,000 on just 25% of the surface area. Most abundant are small shields (2-8 km diameter) with small central crater, in large fields or colles.

13 Venusian Volcanism Long lava flows, km long. Long lava channels, or canali. One is the longest single channel in the solar system at 6800 km (Earth s Nile is 6497 km). Calderas, paterae, typically km in diameter, usually in sites of prior extensive eruptions.

14 Venusian Volcanic Features Lava Flows

15 Venusian Volcanic Features Sapas Mons, a volcano 400 km across and 1.5 km high

16 Venusian Volcanic Features The cone volcanoes in this cluster are about 2 km in diameter and 200 meters high. Sacajawea Patera is an elliptical caldera measuring 260 by 175 km.

17 Venusian Volcanic Features This cluster of four overlapping domes average about 25 kilometers in diameter with maximum heights of 750 meters. These features can be interpreted as viscous eruptions of lava coming from a vent on the relatively level ground

18 Jupiter s Moons (the Galilean Satelites) Io Europa Ganymede Callisto

19 Io Ganymede Europa Callisto

20 The innermost of Jupiter s four Galilean satellites. Io Size and density comparable to Earth s Moon. Only body outside Earth with confirmed active volcanism, with 100 active centers identified. 500 km 3 /yr of lava erupted, (8-15 km 3 /yr on Earth); over 300 times as much lava despite having only 1.5% the mass of Earth. Few craters- a young surface as a result of persistent volcanism.

21 Io Active plumes that rise hundreds of km above surface. Eruption temps much higher than those on Earth, 1300 o C or more. Ultramafic? Possible sulfur lava flows from remobilized deposits What causes heating?

22 Io Radioactive decay is not sufficient to heat Io s interior. Tidal forces- from orbiting Jupiter- create gravitational kneading that keeps its combined metal and silicate interior hot and partially molten. Visible spots on left correspond to hot spots on image at right

23 Pillan Patera 140 km - high plume Io s Volcanic Plumes Prometheus 75 km - high plume

24 Io s Volcanic Features 7th Orbit 10th Orbit Note new dark spot, 400 kilometers (249 miles) in diameter, (which is roughly the size of Arizona), surrounds Pillan Patera volcanic center. Six months elapsed time, Galileo spacecraft.

25 Io s Volcanic Features The reddish, white and black areas are surface deposits, consisting of mixtures of salts, sulfur and sublimate deposits of volcanic origin. Many of the black spots in these pictures are associated with craters of possible volcanic origin. The smallest features are 10 km across.

26 Model for Sulfur Volcanism on Io Sulfur is ejected as S2, as confirmed by Hubble in Upon landing, this sulfur rearranges into S3 and S4, producing a reddish color. Eventually these join to form conventional S8 rings with the ordinary pale yellow sulfur color.

27 Io s Volcanic Features The central feature has been named Loki Patera. The large dark area might be a lake of liquid sulfur with a raft of solid sulfur inside.

28 Io to Europa

29 Europa Cryovolcanism One of the Galilean moons of Jupiter (total of 63 known moons). Similar in size to Earth s Moon. Surface covered by water ice, very few craters.

30 Europa s Surface Red linear features are cracks and ridges caused by Jupiter s tides. Blocky chaotic terrain of broken ice blocks. Red material is a non-ice contaminant (salts from ocean below?). Few impact craters - young surface.

31 Europa Blocks which are thought to have broken apart and "rafted" into new positions. Evidence for liquid ocean beneath,

32 Europa s Surface Dark spots (lenticulae = freckles) are possible evidence for warmer ice from below moving upwards. Each spot is about 10 km across.

33 Flows on Europa 186 km Possible ice flow cutting across a ridge, perhaps erupted as a viscous, glacial mass.

34 Europa Two current models for Europa s interior. Combined with the geologic data, the presence of a magnetic field leads scientists to believe an ocean is most likely present within Europa today.

35 Io Ganymede Europa Callisto

36 Ganymede Dark areas: old, heavily cratered. Light areas: younger, tectonically deformed. Bright spots: recent impact craters and ejecta.

37 Ganymede Tectonics Ejectafilled impact crater Double impact crater Tectonic rifting of impact crater

38 Ancient Surface Flow on Ganymede

39 Europa Few craters. Young surface. Active icy tectonics and flows. Ganymede Some cratering Range of ages Early icy tectonics, similar to Europa. Callisto Cratered Old surface Eroded, covered by dark layer.

40

The Galilean Satellites. Jupiter has four planetary-sized moons first seen by Galileo and easily visible in binoculars.

The Galilean Satellites. Jupiter has four planetary-sized moons first seen by Galileo and easily visible in binoculars. 1 The Galilean Satellites Jupiter has four planetary-sized moons first seen by Galileo and easily visible in binoculars. 2 The Galilean Satellites Jupiter has four planetary-sized moons first seen by Galileo

More information

Moons of Sol Lecture 13 3/5/2018

Moons of Sol Lecture 13 3/5/2018 Moons of Sol Lecture 13 3/5/2018 Tidal locking We always see the same face of the Moon. This means: period of orbit = period of spin Top view of Moon orbiting Earth Earth Why? The tidal bulge in the solid

More information

Jovian (Jupiter like) Planets

Jovian (Jupiter like) Planets Jovian (Jupiter like) Planets Jupiter Internal structure Heat source Moons & rings Terrestrial vs. Jovian - Size & Density Density (g/cm 3 ) Density (g/cm^3) 6 5 4 3 2 1 0 Mercury Venus Earth Mars Jupiter

More information

Solar System. The Jovian Satellites. Regular vs. Irregular Satellites. Jovian satellites reside beyond the frost line

Solar System. The Jovian Satellites. Regular vs. Irregular Satellites. Jovian satellites reside beyond the frost line The Jovian Satellites Satellites are common around Jovian planets Some are as large as Mercury, & thus are like planets Some have atmospheres Discovery of the first Jovian satellites In 1610, Galileo discovered

More information

Introduction to Planetary Volcanism

Introduction to Planetary Volcanism Introduction to Planetary Volcanism SUB G&ttlngen 204459 028 Gregory Mursky University of Wisconsin Milwaukee 96 A11088 Prentice Hall Upper Saddle River, New Jersey 07458 ' Preface Introduction 1 Historical

More information

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons The Moons Jupiter & Saturn Earth 1 Mars 2 Jupiter 63 Saturn 47 Uranus 27 Neptune 13 Pluto 3 Moons of the Planets Galileo (1610) found the first four moons of Jupiter. Total 156 (as of Nov. 8, 2005) Shortened

More information

Solar System. The Jovian Satellites. Regular vs. Irregular Satellites. Jovian satellites reside beyond the frost line

Solar System. The Jovian Satellites. Regular vs. Irregular Satellites. Jovian satellites reside beyond the frost line The Jovian Satellites Satellites are common around Jovian planets Some are as large as Mercury, & thus are like planets Some have atmospheres Discovery of the first Jovian satellites In 1610, Galileo discovered

More information

The Solar System. Tour of the Solar System

The Solar System. Tour of the Solar System The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets

More information

The Jovian Planets. Huge worlds, heavily mantled in gas at the time of the formation of the Solar System.

The Jovian Planets. Huge worlds, heavily mantled in gas at the time of the formation of the Solar System. 1 The Jovian Planets Huge worlds, heavily mantled in gas at the time of the formation of the Solar System. 2 The Galilean Satellites Jupiter has four planetary-sized moons first seen by Galileo and easily

More information

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth Class Announcements Please fill out an evaluation for this class. If you release your name I ll I give you quiz credit. Will you read Chap 32 before Wed. class? a) Yes b) No Chap 32 Beyond the Earth Objectives

More information

The Galilean Moons. ENV235Y1 Yin Chen (Judy)

The Galilean Moons. ENV235Y1 Yin Chen (Judy) The Galilean Moons ENV235Y1 Yin Chen (Judy) Jupiter The Galilean Moons Discovered by Italian Astronomer Galileo Galilei in 1609 using a new invention called telescope. http://astronomyonline.org/solarsystem/galileanmoons.asp

More information

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen Jupiter and Saturn s Satellites of Fire and Ice Chapter Fifteen ASTR 111 003 Fall 2006 Lecture 12 Nov. 20, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap.

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen. Guiding Questions

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen. Guiding Questions Jupiter and Saturn s Satellites of Fire and Ice Chapter Fifteen Guiding Questions 1. What is special about the orbits of Jupiter s Galilean satellites? 2. Are all the Galilean satellites made of rocky

More information

The Jovian Planets and Their Moons

The Jovian Planets and Their Moons The Jovian Planets and Their Moons Jupiter 1 Physical Properties of Earth and Jupiter Jupiter Earth Equatorial lradius 11.2 R Earth 6378 km Mass 318 M Earth 5.976 10 24 kg Average Density 1.34 g/cm 3 5.497

More information

The Fathers of the Gods: Jupiter and Saturn

The Fathers of the Gods: Jupiter and Saturn The Fathers of the Gods: Jupiter and Saturn Learning Objectives! Order all the planets by size and distance from the Sun! How are clouds on Jupiter (and Saturn) different to the Earth? What 2 factors drive

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 10 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: THE OUTER PLANETS AND THEIR MOONS Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ JUPITER DIAMETER:

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

solar system outer planets Planets located beyond the asteroid belt; these are known as the gas giants. CELESTIAL BODIES

solar system outer planets Planets located beyond the asteroid belt; these are known as the gas giants. CELESTIAL BODIES solar system Region of our galaxy under the influence of the ; includes eight planets and their natural satellites as well as one dwarf planet, two plutoids, asteroids and comets. outer planets Planets

More information

Jupiter and its Moons

Jupiter and its Moons Jupiter and its Moons Summary 1. At an average distance of over 5 AU, Jupiter takes nearly 12 years to orbit the Sun 2. Jupiter is by far the largest and most massive planet in the solar system being over

More information

Large Moons. Bjo rn Grieger. Overview. Part 1: Overview. Overview. (No) atmospheres on large moons. Surface structures of Galilean Satellites

Large Moons. Bjo rn Grieger. Overview. Part 1: Overview. Overview. (No) atmospheres on large moons. Surface structures of Galilean Satellites Large Moons Bjo rn Grieger Overview (No) atmospheres on large moons Surface structures of Galilean Satellites Tidal heating Subsurface oceans Titan Part 1: Overview Earth s Moon Io Europa 1 The four Galilean

More information

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 11 Astronomy Today 8th Edition Chaisson/McMillan Chapter 11 Jupiter Units of Chapter 11 11.1 Orbital and Physical Properties 11.2 Jupiter s Atmosphere Discovery 11.1 A Cometary

More information

Did you know that ALL Jovian Planets have rings??

Did you know that ALL Jovian Planets have rings?? Outer Planets Did you know that ALL Jovian Planets have rings?? Jupiter: faint, dusty rings Saturn: bright, spectacular rings Uranus: dark, thin rings Neptune: dark, thin rings & ring arcs PLANET DATA

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

ASTRO 120 Sample Exam

ASTRO 120 Sample Exam ASTRO 120 Sample Exam 1) If a planet has a reasonably strong magnetic field, we know that a. It is made entirely of iron b. There is liquid nitrogen below the surface c. It can harbor life d. It has a

More information

The Outer Planets (pages )

The Outer Planets (pages ) The Outer Planets (pages 720 727) Gas Giants and Pluto (page 721) Key Concept: The first four outer planets Jupiter, Saturn, Uranus, and Neptune are much larger and more massive than Earth, and they do

More information

Directed Reading. Section: Volcanoes and Plate Tectonics

Directed Reading. Section: Volcanoes and Plate Tectonics Skills Worksheet Directed Reading Section: Volcanoes and Plate Tectonics 1. Some volcanic eruptions can be more powerful than a(n) a. hand grenade. b. earthquake. c. geyser. d. atomic bomb. 2. The cause

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 28. Search for life on jovian moons. March

More information

Jovian Planet Systems

Jovian Planet Systems Jovian Planet Systems Reading: Chapter 14.1-14.5 Jovian Planet Systems Voyager 1 and 2 explored the outer planets in the 1970s and 1980s. The Galileo spacecraft circled Jupiter dozens of times in the late

More information

Terrestrial World Surfaces

Terrestrial World Surfaces 1 Terrestrial World Surfaces Solid rocky surfaces shaped (to varying degrees) by: Impact cratering Volcanism Tectonics (gross movement of surface by interior forces) Erosion (by impacts or by weather)

More information

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field? Mercury and Venus Learning Objectives! Contrast the Earth, the Moon, Venus and Mercury. Do they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?!

More information

11.2 A Wealth of Worlds: Satellites of Ice and Rock

11.2 A Wealth of Worlds: Satellites of Ice and Rock 11.2 A Wealth of Worlds: Satellites of Ice and Rock Our goals for learning: What kinds of moons orbit the jovian planets? Why are Jupiter's Galilean moons so geologically active? What is remarkable about

More information

Galilean Moons of Jupiter

Galilean Moons of Jupiter Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Satellites of Jupiter & Saturn Galilean satellites Similarities and differences among the Galilean satellites How the Galilean

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 29. Search for life on jovian moons. Habitability.

More information

Planetary Geology. Jupiter & Io. Io passing in front of Jupiter

Planetary Geology. Jupiter & Io. Io passing in front of Jupiter Planetary Geology Jupiter & Io Io passing in front of Jupiter Jupiter Jupiter is at a distance of about ~5 AU but is usually the 2nd brightest planet in the night sky (after Venus, though sometimes Mars

More information

NSCI SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET?

NSCI SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET? NSCI 314 LIFE IN THE COSMOS 11 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET? Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/

More information

After you read this section, you should be able to answer these questions:

After you read this section, you should be able to answer these questions: CHAPTER 16 4 Moons SECTION Our Solar System California Science Standards 8.2.g, 8.4.d, 8.4.e BEFORE YOU READ After you read this section, you should be able to answer these questions: How did Earth s moon

More information

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0.

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0. Mercury Mercury is the closest planet to the sun. It is extremely hot on the side of the planet facing the sun and very cold on the other. There is no water on the surface. There is practically no atmosphere.

More information

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons ESCI 110: Planetary Surfaces Page 3-1 Introduction Exercise 3 Surfaces of the Planets and Moons Our knowledge of the solar system has exploded with the space exploration programs of the last 40 years.

More information

Unit 4 Lesson 4 Volcanoes. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 4 Volcanoes. Copyright Houghton Mifflin Harcourt Publishing Company Magma Magic What is a volcano? A volcano is any place where gas, ash, or melted rock come out of the ground. Many volcanoes are dormant, meaning an eruption has not occurred in a long period of time. What

More information

The Solar System 6/23

The Solar System 6/23 6/23 The Solar System I. Earth A. Earth is the prototype terrestrial planet 1. Only planet in the solar system (we know of so far) with life 2. Temperature 290 K B. Physical Characteristics 1. Mass: 6

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

Lecture #10: Plan. The Moon Terrestrial Planets

Lecture #10: Plan. The Moon Terrestrial Planets Lecture #10: Plan The Moon Terrestrial Planets Both Sides of the Moon Moon: Direct Exploration Moon: Direct Exploration Moon: Direct Exploration Apollo Landing Sites Moon: Apollo Program Magnificent desolation

More information

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru A Look at Our Solar System: The Sun, the planets and more by Firdevs Duru Week 1 An overview of our place in the universe An overview of our solar system History of the astronomy Physics of motion of the

More information

37. Planetary Geology p

37. Planetary Geology p 37. Planetary Geology p. 656-679 The Solar System Revisited We will now apply all the information we have learned about the geology of the earth to other planetary bodies to see how similar, or different,

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

Similarities & Differences to Inner Planets

Similarities & Differences to Inner Planets Similarities & Differences to Inner Planets Jupiter Jupiter: Basic Characteristics Mass = 1.898 10 27 kg (318 x Earth) Radius = 71,492 km (11x Earth) Albedo (reflectivity) = 0.34 (Earth = 0.39) Average

More information

Jupiter and Saturn. Guiding Questions. Long orbital periods of Jupiter and Saturn cause favorable viewing times to shift

Jupiter and Saturn. Guiding Questions. Long orbital periods of Jupiter and Saturn cause favorable viewing times to shift Jupiter and Saturn 1 2 Guiding Questions 1. Why is the best month to see Jupiter different from one year to the next? 2. Why are there important differences between the atmospheres of Jupiter and Saturn?

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1 Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere

More information

Lecture 11 Earth s Moon January 6d, 2014

Lecture 11 Earth s Moon January 6d, 2014 1 Lecture 11 Earth s Moon January 6d, 2014 2 Moon and Earth to Scale Distance: a = 385,000 km ~ 60R Eccentricity: e = 0.055 Galileo Spacecraft Dec. 1992 3 [Review question] Eclipses do not occur each month

More information

The Moon & Mercury: Dead Worlds

The Moon & Mercury: Dead Worlds The Moon & Mercury: Dead Worlds There are many similarities between the Moon and Mercury, and some major differences we ll concentrate mostly on the Moon. Appearance of the Moon from the Earth We ve already

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial planets are made mostly of rock and have similar characteristics to Earth. There are four terrestrial

More information

The Planets, Asteroids, Moons, etc.

The Planets, Asteroids, Moons, etc. DATE DUE: Ms. Terry J. Boroughs Geology 305 Name: Section: The Planets, Asteroids, Moons, etc. Instructions: Read each question carefully before selecting the BEST answer or option. Use GEOLOGIC vocabulary

More information

Mimas, moon of Saturn and Death Star impersonator responsible for several gaps in Saturn s ring system

Mimas, moon of Saturn and Death Star impersonator responsible for several gaps in Saturn s ring system Last time: Gravitational signs of large outer moons in the rings Ring shepherding/gap maintenance Longer lived structures due to mean motion resonances with large satellites Example: 2:1 resonance with

More information

Spacecraft to the Outer Solar System

Spacecraft to the Outer Solar System Spacecraft to the Outer Solar System Flybys: Pioneer 10, 11 Voyager 1, 2 Orbiters/ : Galileo, Cassini Landers (Jupiter) (Saturn) Voyager 2 is the only spacecraft to visit all four outer planets. Gas Giant

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets page - Lab 13 - Introduction to the Geology of the Terrestrial Planets Introduction There are two main families of planets in our solar system: the inner Terrestrial planets (Earth, Mercury, Venus, and

More information

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday Today Terrestrial Planet Geology Events Fall break next week - no class Tuesday When did the planets form? We cannot find the age of a planet, but we can find the ages of the rocks that make it up. We

More information

Chapter 17: Mercury, Venus and Mars

Chapter 17: Mercury, Venus and Mars Chapter 17: Mercury, Venus and Mars Mercury Very similar to Earth s moon in several ways: Small; no atmosphere lowlands flooded by ancient lava flows heavily cratered surfaces Most of our knowledge based

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version E of the exam. Please fill in (E). A) This

More information

WHAT IS A MAGMA. Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth.

WHAT IS A MAGMA. Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth. UNIT - 8 VOLCANOES WHAT IS A MAGMA Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth. In some instances, it solidifies within the crust to form plutonic

More information

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton Summer 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial

More information

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version B of the exam. Please fill in (B). A) This

More information

I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit

I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit for passing back HW, then with chart. Water on the Moon?

More information

The Terrestrial Planets

The Terrestrial Planets The Terrestrial Planets Large Bodies: Earth (1 R E, 1 M E ) Venus (0.95 R E, 0.82 M E ) Small Bodies: Mars (0.53 R E, 0.11 M E ) Mercury (0.38 R E, 0.055 M E ) Moon (0.27 R E, 0.012 M E ) The surfaces

More information

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Lunar Geology ASTR 2120 Sarazin

Lunar Geology ASTR 2120 Sarazin Lunar Geology ASTR 2120 Sarazin Interior of the Moon Density low (3.3 gm/cc), very little iron No iron core Very small heat flow out of interior Little radioactive heating No magnetic field No molten iron

More information

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

Directed Reading. Section: Volcanic Eruptions. light in color is called a. felsic. b. oceanic. c. mantle. d. mafic. dark in color is called

Directed Reading. Section: Volcanic Eruptions. light in color is called a. felsic. b. oceanic. c. mantle. d. mafic. dark in color is called Skills Worksheet Directed Reading Section: Volcanic Eruptions 1. Lava provides an opportunity for scientists to study a. the nature of Earth s inner core. b. the nature of Earth s tectonic plates. c. temperatures

More information

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian

More information

Chapter 8 2/19/2014. Lecture Outline. 8.1 The Galilean Moons of Jupiter. Moons, Rings, and Plutoids. 8.1 The Galilean Moons of Jupiter

Chapter 8 2/19/2014. Lecture Outline. 8.1 The Galilean Moons of Jupiter. Moons, Rings, and Plutoids. 8.1 The Galilean Moons of Jupiter Lecture Outline Chapter 8 Moons, Rings, and Plutoids All four Jovian planets have extensive moon systems, and more are continually being discovered. The Galilean moons of Jupiter are those observed by

More information

Outline. Astronomy 122. What s this Picture of? It s not your parent s Solar System

Outline. Astronomy 122. What s this Picture of? It s not your parent s Solar System Astronomy 122 Outline This Class (Lecture 10): The Solar System Next Class: The Sun Homework #4 is posted. Review of the Solar System Music: Venus Bjork What s this Picture of? It s not your parent s Solar

More information

Physics Homework Set 3 Fall 2015

Physics Homework Set 3 Fall 2015 1) Mercury presents the same side to the Sun 1) A) every third orbit. B) every 12 hours. C) all the time, just like our Moon. D) every other orbit. E) Twice every orbit. 2) Both the Moon and Mercury are

More information

Interiors of Worlds and Heat loss

Interiors of Worlds and Heat loss Interiors of Worlds and Heat loss Differentiation -materials separate into layers by gravity How do we learn about planetary interiors? Measure moment of inertia & average density Observe seismic events

More information

Chapter 11 Jovian Planet Systems

Chapter 11 Jovian Planet Systems Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors and Surfaces Our goals for learning What are terrestrial planets like on the inside? What causes geological

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

19 October 2012! Moons of Jupiter! So many moons, so little

19 October 2012! Moons of Jupiter! So many moons, so little 19 October 2012! Moons of Jupiter! So many moons, so little time!.! Jovian Planets " So Many Moons!! What are clues about how/where a moon formed?! Many retrograde orbits! Outermost highly inclined! small

More information

Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0.

Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0. Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0.387 astronomical units Diameter: 4,879.4 km (3,031.92 miles)

More information

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 11 Jupiter MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Jupiter is noticeably oblate because: A) it has a

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

The Giant Planets [10]

The Giant Planets [10] The Giant Planets [10] Distance Period Diameter Mass Rotation Tilt (au) (yrs) (hrs) (deg) Earth 1 1 1 1 24.0 23 Jupiter 5.2 11.9 11.2 318 9.9 3 Saturn 9.5 29.5 9.4 95 10.7 27 Uranus 19.2 84.1 4.0 14 17.2

More information

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning:! Are jovian planets all alike?! What are jovian planets like on the inside?! What is the weather like on jovian

More information

The observations. The deductions. Determine the density of the Galilean satellites. Two classes of Galilean satellites

The observations. The deductions. Determine the density of the Galilean satellites. Two classes of Galilean satellites The Galilean satellites are easily seen Spacecraft reveal unique properties The Galilean satellites mimic a planetary system Io is covered with volcanic sulfur compounds Io s interior is affected by Jupiter

More information

Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening.

Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening. Chapter 9 Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening. 3 Conditions Allow Magma to Form: Decrease in pressure

More information

Jovian planets, their moons & rings

Jovian planets, their moons & rings Jovian planets, their moons & rings The Moons of the Jovian Planets The terrestrial planets have a total of 3 moons. The jovian planets have a total of 166 moons. Each collection of moons orbiting the

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

Distance of Mercury to the Sun or the Orbital Radius

Distance of Mercury to the Sun or the Orbital Radius Distance of Mercury to the Sun or the Orbital Radius The minimum distance from the Sun to Mercury is about 45866304 kilometers and the maximum distance is about 70006464 kilometers. Space Station One Day

More information

Satellites of giant planets. Satellites and rings of giant planets. Satellites of giant planets

Satellites of giant planets. Satellites and rings of giant planets. Satellites of giant planets Satellites of giant planets Satellites and rings of giant planets Regular and irregular satellites Regular satellites: The orbits around the planet have low eccentricity and are approximately coplanar

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems How do jovian planets differ from terrestrials? They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different

More information

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet Part II: Solar System The Moon Audio update: 2014Feb23 The Moon A. Orbital Stuff B. The Surface C. Composition and Interior D. Formation E. Notes 2 A. Orbital Motion 3 Earth-Moon is a Binary Planet 4 1.

More information

A bowl shaped depression formed by the collapse of a volcano is called a. Magma that has left the vent of a volcano is known as. Lava.

A bowl shaped depression formed by the collapse of a volcano is called a. Magma that has left the vent of a volcano is known as. Lava. Magma that has left the vent of a volcano is known as Lava A bowl shaped depression formed by the collapse of a volcano is called a Caldera This can form in a caldera when magma starts to come back up

More information

11/4/2015. Venus and Mars. Chapter 13. Venus and Mars. The Rotation of Venus. The Atmosphere of Venus. The Surface of Venus

11/4/2015. Venus and Mars. Chapter 13. Venus and Mars. The Rotation of Venus. The Atmosphere of Venus. The Surface of Venus Venus and Mars Two most similar planets to Earth: Chapter 13 Venus and Mars Similar in size and mass Same part of the solar system Atmosphere Similar interior structure The Rotation of Venus Almost all

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

Life in the outer Solar System. AST 309 part 2: Extraterrestrial Life

Life in the outer Solar System. AST 309 part 2: Extraterrestrial Life Life in the outer Solar System AST 309 part 2: Extraterrestrial Life Prospects for life on: Overview: 1. Europa (Jupiter moon) 2. Titan (Saturn s moon) 3. Enceladus (Saturn s moon) Life on Europa? Europa

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different Terrestrial planets are made principally of

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different Terrestrial planets are made principally of

More information